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1 Groups

1.1 Generalities

Definition 1.1.1. Let X be a set. An internal law of composition on a set X is a map:
v X xX—>X
Definition 1.1.2. A Magma (X, 0) is a set X with an internal law of composition o on X.
Definition 1.1.3. A Category C is a triple consisting of:
1. Ob(C): A class of objects of C.
2. For B,C € Ob(C), Hom¢(B, C) is the set of morphisms from B to C.
3. Composition law: o : Hom¢(A, B) x Home (B, C) — Home (A, C) is an associative map.
4. Identity: idp € Home (B, B).
Let A, B € Ob(C), f € Hom¢(A, B).
1. f is called a monomorphism if for all objects Z and morphisms g1,g0 : Z — A:
fogn=fog = g =g
2. f is called an epimorphism if for all objects Z and morphisms hi, ho : B — Z:

hiof=hgof = hi=hs.

3. f is called an isomorphism if there exists a morphism g : B — A such that:
gof=idg and fog=idg.
4. We denote the set of morphisms from an object to itself, Hom¢(A, A), by End¢(A). Its

elements are called endomorphisms.

5. The subset of isomorphisms in End¢(A) is denoted by Aute(A). Its elements are called
automorphisms.

Definition 1.1.4. A monoid is an associative magma (M, -) with a neutral element e.
Remark 1.1.5. Let M be an associative magma. If there exists a neutral element e, it is unique.
Proof. If f is another, then e =ef = f. O

Definition 1.1.6. Let M be a monoid. An element m € M is said to be invertible if there
exists m~! € M such that m -m™1! 1

=m_ -m=e.

Lemma 1.1.7. Let M be a monoid, m € M. If m is invertible, its inverse is unique.

Proof. It m,m’ are inverses of m, m = mey = m(mm’) = (mm)m’ = epyym’ = m'. O
Definition 1.1.8. A group G is a monoid in which every element is invertible.

In the following, let G denote a group.

Example 1.1.9. 1. If M is a monoid, let M* = {m € M | m is invertible}. Then M* is a
group. For instance, if M = M, (K) (matrices), then M* = GL,(K).



2. Let X be aset. The group Autget(X ) with composition is denoted by S(X), the symmetric

group.

3. In a category C, the group of automorphisms of an object C' is Aut(C).

Definition 1.1.10. If G, H are groups, a map ¢ : G — H is a group homomorphism if:

Y(xy) =Y(x)Y(y) Yo,y € G.

The class of groups with group homomorphisins as morphisms forms a category we denote by

Grp.

Remark 1.1.11. Note that in groups, monomorphisms are exactly injective homomorphisms

and epimorphisms are exactly surjective homomorphisms.

Lemma 1.1.12. Let v : G — H be a group homomorphism. Then:
L. lec) =en
2. p(h™) =¢(h) ™

Proof. 1. eg-eg =eg = Y(en) Y(en) =v(en) - eq.

2. Vh€ H:p(h) - v(eg) = vlen) = e

1.2 Subgroups, Quotients
Definition 1.2.1. A subset H of a group G is called a subgroup if:

1. H is stable by multiplication: Va,b € H,ab € H.
2. e€ H.
3. Vhe H.h ' e H.

The induced law of composition - from G gives H a group structure.
There is always a canonical embedding monomorphism H — G.
If H is a subgroup of G, we sometimes write H < G.

Lemma 1.2.2. Let H C G be a nonempty subset.
H is a subgroup < Va,b€ H:a(b™') € H.

Proof. (= ): trivial.

(«<): Let # € H. Then, e¢ = zx~ ! € H,

Ve e H:eq-2' € H,and

Ve,yc H:y ' e H = x-(y )" =zy € H, so H is a subgroup.

Proposition 1.2.3. Let v : G — H be a homomorphism.
1. Im(v) = {¢¥(g9) € H | g € G} is a subgroup of H.
2. ker(¢p) = {g € G| ¥(g9) = en} is a subgroup of G.

3. 1 is a monomorphism if and only if ker(y)) = {eq}.

Proof. 1. Let hy, hy € im(¢)) with h; = 9(g;). Then hihy' = (g1)v(ga) !

im(%). Thus, im(¢) < H.

=Y(gig5") €



2. Let z,y € ker(v)). Then ¢(zy~!) = ¢(z)y(y)~! = eHe;Il = ey, implying zy~! € ker(1)).
Thus, ker(y)) < G.

3. (=) trivial.

(=) (@) =vy) = Y@)y) ' =ey = Yy ') =en. U ker(y) = {ec}, this
implies zy~! = eq, so x = v.
O

Example 1.2.4. 1. (Z,+) C (Q,+) C (R,+) C (C,+) are strictly speaking only monomor-
phisms, but we treat them as subgroups.

2. sgn: S, — {£1} is an epimorphism.
3. Any monomorphism ¢ : G < H induces an isomorphism G =N im(p) C H.

4. If ¢ : H — @ is an isomorphism of groups, clearly, o~ : G — H is a group homomorphism,
80 ¢ is an isomorphism in the category of groups.

1.2.1 Subgroups Generated by a Family

Lemma 1.2.5. Let (H;);es be a family of subgroups of a group G. Then H :=()..; H; is a

subgroup of G.

el

Proof. Since eq € H; for all i € I, we have eq € H, so H # (. Let x,y € H. Then x,y € H;
for every i € I. Since each H; < G, it follows that xy~' € H; for all i € I, and thus 2y~ ! € H.
Therefore, H < G. O

Definition 1.2.6. Let (g;)icr be a family of elements in G. We denote by ((g;)) the intersection
of all subgroups of G containing the elements (g;). It is called the subgroup generated by (g;).
We say that (g;) generates G if ((g;)) = G.

Remark 1.2.7. It is equivalent to say that ((gi)icr) is the subset of all elements in G that can
be written as a product of elements (g;) or (g; ')

Definition 1.2.8. 1. A group G is said to be of finite type if there exists a finite family
generating G.

2. If G is generated by one element g, GG is called cyclic.
3. If G is finite, |G| is called the order of G. If g € G, the order of g is [(g)].

4. For a group G, g,h € G, we denote ghg~'h~! by [g, h].
(9, hlg.nea) := [G, G] is called the commutator subgroup.

5. The symmetric group S, is the group of permutations on the set {1,...,n} (Autget({1,...,7}))
with composition. It has order n!.
It can be shown that S, = ((7ii+1)ie{1,...n—1}), With 7;; denoting the transposition of the
i-th and j-th element.

1.2.2 Quotient of a Group by a Subgroup

Definition 1.2.9. Let H be a subgroup of G. Let g € G. The set gH = {gh | h € H} is called
the left coset associated with g.
We say that (z,y) € G are right congruent modulo H if

JheH:y=x-h(ez 'ycH).



Lemma 1.2.10. For a subgroup H < G, right congruence modulo H defines an equivalence
relation on G with left cosets as equivalence classes.

Proof. Reflexivity: For any x € G, v 'z = eg € H, 50 v ~ x.

Symmetry: If x ~ y, then 271y € H. Since H is a subgroup, (z~1y)~! =y~
Y~ T

Transitivity: If © ~ y and y ~ z, then 2~ 'y € H and y~
rl2€ H sox~ 2

The equivalence class of g € Gis [g] ={zr € G |g~a}={x € G|gla=he H}={gh|he
H} =gH. O

'y € H, implying

12 € H. By closure, (z7y)(y~12) =

Definition 1.2.11. Let H < G. We denote by G/H := {gH | g € G} the quotient of G by the
equivalence "right congruence modulo H".
We get a canonical surjective map G — H, g — gH.

Definition 1.2.12. Let H < G. If G/H is finite, its cardinality is denoted by [G : H], called
the index of H in G.

Remark 1.2.13. We observe that for all g € G, the map o, : H — gH, h — gh has the inverse
04-1, S0 it is a bijection. It follows that all left cosets have the same cardinality.

Thus, we have shown:
Corollary 1.2.14 (Lagrange theorem). Let G be a finite group with subgroup H. Then,
G| = [H|[G : H].
Example 1.2.15. 1. Consider the subgroup nZ C Z. The quotient is Z/nZ, so the index is:

[Z : nZ] = n.

2. The index of the alternating group in the symmetric group is 2:
[Sn: Ap] =2.

Proof: Consider the sign homomorphism sgn : S,, = {£1}. We know that A,, = ker(sgn).
We will later see that this induces a bijection

S/ An =5 {1},
3. If H < G is a subgroup of index 2 (i.e., [G : H] = 2), then H is a normal subgroup
(H < G). Proof: exercises.
4. Let H < G. Consider the inversion map:

X:GiG, Tzt

We have x(H) = H. This map sends a left coset to a right coset.

G°P, the opposite group is defined by the set G equipped with the multiplication (z,y) —
yx. The map x defines an isomorphism G =2 G°. Consequently, x induces a bijection
between the set of left cosets and the set of right cosets:

G/H = H\G (or G/H).



1.3 Normal Subgroups, Quotient Groups

We begin by analyzing the structure of a group "collapse." Let 7 : G — H be an epimorphism
of groups (a surjective homomorphism). This map "collapses" elements of G onto H. To
understand the internal structure of this collapse, we examine the kernel:

K :=%ker(r) ={g€ G| n(g9) =en}.
Lemma 1.3.1. For every g € G, the preimage of m(g) satisfies:
mY(n(g)) = 9K = Kg.
Proof. Let x € G. We have:

zen ({n(9)}) < n(z)=n(g)
— (g 'z)=eny
— glreK
— z € gKk.
Thus 7 1({n(g9)}) = gK. The equality 7~ 1({r(g)}) = Kg follows analogously. Since the
preimage is equal to both the left and right cosets, we conclude gK = Kyg. O

Corollary 1.3.2. For every h € H, 7~ '(h) is a unique equivalence class in the quotient set
G/K (or K\G). Consequently, the map 7 induces a natural bijection:

7:H > G/K.

Since H is a group, this bijection allows us to impose the group structure of H onto the set of
cosets G/K. Thus, G/K becomes a group, and we obtain an isomorphism:

G/K =~ H.

More generally, since any homomorphism v : G — H is surjective onto its image, there is

always a canonical isomorphism G /ker = im 1. This result is known as the first isomorphism
theorem.

Remark 1.3.3. If 7 : G — H is an epimorphism, then G is partitioned into disjoint subsets,
each isomorphic to the kernel (as sets). We can write G as a disjoint union:

G = H 7Y h) = H Q.
heH acG/K

Having observed that kernels always satisfy the property gK = Kg, we abstract this property
to define a special class of subgroups.

Definition 1.3.4. A subgroup N C G is said to be normal (denoted N < G) if its left and
right cosets coincide for all elements of G:

Vg e G:gN = Ng.

Remark 1.3.5. We can conclude that if N is the kernel of any homomorphism, then N is
normal. Conversely, we will later see that every normal subgroup is the kernel of the natural
projection map G — G/N. Thus, normal subgroups are exactly the kernels of homomorphisms.

Lemma 1.3.6. Let N C G be a subgroup. It is easy to see that the following are equivalent:



1. N is normal (gN = Ng for all g € G).

2. N is invariant under conjugation:

Vge G:gNg ' =N.

3. Forallge G and all n € N:
gng~! € N.

Example 1.3.7. 1. A, <5, since it is the kernel of the sign homomorphism.
Similarly, over some field K, SL,(K) < GL,(K) is the kernel of the determinant.

2. Any subgroup of an abelian group is normal.

3. Commutator subgroups are normal.

Proof. To prove normality, it suffices to show that the subgroup is invariant under conju-
gation. Let g € G and let ¢ = [x,y] = zyz~'y~! be a generator of [G, G]. Conjugating c
by g, we obtain:

-1

9zg ") (gyg gz g gy g™
D gyg !

glz,ylg™' = glzyz~'y g

(
(929 ) (gyg™ ") (gzg ™)
= [gzg ", gy "].

1 1

Since grg~! and gyg~! are elements of G, the result [gzg~!, gyg~!] is itself a commutator
and thus belongs to [G, G].

Since the conjugate of any generator is in [G, G], and conjugation is a homomorphism, the
conjugate of any product of commutators is also in [G, G]. Therefore, g[G,G]g~! C [G, G]
for all g € G, proving that [G, G| is normal. O

4. Consider the subgroup of S, that fixes the element n, defined as H := {o € S,, | o(n) = n}.
This subgroup is naturally isomorphic to S,—;. For n > 3, H is not normal in S,,. To see
this, choose h = 7,_2,—1 € H and a conjugator g = 7,1, € Sy, \ H. The conjugate is:

—1
ghg™" = Tn—1,n © Tn—2n—1°Tn—1n = Tn—2,n-

Since the resulting transposition moves n (mapping n +— n — 2), it is not in H. Thus,
gHg ' ¢ H.

5. If H C @ is not necessarily normal, we may define
Ne(H) =:{g € G | glg™' = H},

the normaliser of H in G. It is the largest (not necessarily normal) subgroup of G in
which H is normal.

1.3.1 Quotient Groups

Lemma 1.3.8. Let H C G be a normal subgroup. Then for all z,y € G:

(zH) - (yH) = (vy)H.



Proof. We compute the set product (xH)(yH) = {xhiyhs | hi,he € H}. Since H is normal,
Hy = yH, meaning for any h; € H, there exists h’ € H such that hyy = yh’. Thus, an element
xhiyhy becomes xyh'hy, which lies in (xy)H. Conversely, any element (xy)h € (zy)H can be
written as « - 1 -y - h, which is in (zH)(yH). O

Theorem 1.3.9. Let H C G be normal. The operation defined by (zH)-(yH) = (vy)H induces
a group structure on the set of cosets G/H.

The canonical map 7 : G — G/H defined by g — gH is a group epimorphism with kernel
H. The group G/H is called the quotient group of G by H.

Proof. The previous lemma confirms the operation is well-defined on cosets. Associativity is
inherited directly from G. The identity element is the coset H (since (xH)(H) = xH), and the
inverse of zH is x'H (since (xH)(z"'H) = H).

The map 7 is a homomorphism by construction: m(zy) = (vy)H = (zH)(yH) = w(x)n(y).
Finally, kerm ={x € G |2H =H} = H. O

1.3.2 Conjugation and Automorphisms

Lemma 1.3.10. Let g € G. The map ¢4 : G — G defined by x — grg~! is an automorphism
of G.
This defines a map ¢ : G — Autgrp(G), which is a group homomorphism.

1 1

Proof. For z,y € G, cy(zy) = cy(x)cy(y) = grgLgyg™t = gryg™t = cy(xy), so ¢4 is a homo-

morphism. It clearly has the inverse ¢ -1, so it is bijective.

For g,h,z € G, c(gh)(z) = cgn(x) = ghah g™ = gep(x)g™' = ¢4 o0 cp(z), so cis a
homomorphism. O

Definition 1.3.11. Let ¢ be defined as above. We denote its image by Inn(G), the group of
inner automorphisms.

We denote the quotient group Autgrp(G)/Inn(G) by Out(G), the group of outer auto-
morphisms.

kerc < G =: Z(G) is called the center of G. It is the set of elements that commute with all
elements in G.

Remark 1.3.12. Inn(G) is a normal subgroup of G.

Proof. Let ¢ € Aut(G) be an automorphism and let ¢, € Inn(G) be an inner automorphism.
Then, for any z € G:

Thus, pocyop~t= Co(g)- Since cy(g) € Inn(G), the subgroup is normal. O
Example 1.3.13. 1. Given a group G with subgroup H, we define
Ca(H):={9€ G|Vhe H:gh=hg} 2 Z(H).

It is the largest subgroup of G whose elements commute with every element of H and is
called the centraliser of H in G.



2. In S,(n > 3) The center is trivial, so S, = Inn(S,,). For n # 6, every automorphism is
inner, so S, = Aut(S,). For n = 6, there exists an exceptional outer automorphism, so
Sn € Aut(Sg).

3. In A,,, The center is trivial, so A,, = Inn(A,,). However, conjugation by an odd permutation

~Y

in S, (e.g., (12)) induces an automorphism of A,, that is not inner to A,. Thus Out(A,) =
7)2.

4. For some field K, in GL,(K), The center consists of scalar matrices K* - I. The inner
automorphism group is the projective general linear group:

Inn(GL,(K)) 2 GL,(K)/Z(GL,(K)) =: PGL,(K).
Since there are automorphisms that are not conjugations (e.g., A — (AT)~!), we have
Inn(GL,(K)) C Aut(GL,(K)).
1.3.3 Universal Property of the Quotient

Theorem 1.3.14. Let H < G. Let ¢ : G — M be a group homomorphism such that H C
ker(¢). There exists a unique homomorphism ¢ : G/H — M such that the diagram commutes:

G —2 5 M

G/H
Remark 1.3.15. In other words for H < G and any group M, the map
HomGrp(G/H7 M) — HomGrp(Ga M)a pr=@pom

is injective with image {¢) € Homgrp(G, M) | ¥|g = *}, where * denotes the trivial homomor-
phism.

Proof. Let ¢ : G — M, H C kert. We have to show that ¢ = ¢ o 7 for some ¢ : G/H — M.
We define p(gH) = ¥(g). Then, Vg € G : p(n(g9)) = w(9H) = ¥(g), so v = ¢ om. Left to
show is that ¢ is well-defined: Let g1 H = goH in G/H. This implies that g1 € goH and since
H C kerp, ¥(g1) = ¥(g2), which is equivalent to p(g1H) = ¢(g2H). It is easy to see that ¢ is
a homomorphism and unique. O

Example 1.3.16. 1. The universal property of the kernel: Let ¢ : G — H be a homomor-
phism with kernel K = ker(¢) and inclusion ¢ : K < G. For any group M, composition
with ¢ yields a map:

iy : Homgyep (M, K) — Homgp(M, G).

This map is injective, and its image consists exactly of those homomorphisms ¢ : M — G
such that ¢ o) is trivial.

Homgp(M, K) = {¢p € Homgrp(M,G) | potp = 1}.

2. The first isomorphism theorem is an immediate consequence of the universal property. Let
¢ : G — H be a group homomorphism.

Since G/ ker ¢ is a quotient group with canonical projection 7 : G — G/ ker ¢, the universal
property guarantees a unique homomorphism:

¢:G/kero — H, gkerp— p(g).



Clearly, the kernel of ¢ is trivial, so the map is an isomorphism onto its image.

This yields the canonical factorisation of ¢:
G —— G/ ker(yp) % Im(p) —— H

such that ¢ = 1o @ om. Here, 7 is the canonical projection, ¢ is the inclusion map, and ¢
is the isomorphism induced by the universal property.

Applying this result yields the following:
(a) Sp =5 {1} = S, /A, = {+1}.
(b) GLn(K) %% K* = GL,(K)/SLy(K) = K*.

3. Let ¢ : G1 — G35 be a homomorphism. If Ny < G; and Ny < G9 are normal subgroups
such that o(N1) C Na, there exists a unique induced map @ making the diagram commute:

Gl#GQ

ko,

We obtain this result by applying the universal property to the composition m o .

1.3.4 Group Extensions

Definition 1.3.17. A sequence of groups and homomorphisms

UL N o A [N L N

is called exact at Gj if the image of the incoming map equals the kernel of the outgoing map:
im(fi-1) = ker(f;).
The sequence is called exact if it is exact at every group G; in the sequence.
Definition 1.3.18. A group extension of a group H by a group K is a short exact sequence:
x — K -G - H—x

Let x - K — G — H — * be an extension.
Consider another extension x — K — G’ — H — x. We say they are isomorphic if there

exists an isomorphism ¢ : G =, G’ such that the following diagram commutes:

* K G H *
| o=
* K G’ H *

Remark 1.3.19. Let + — K —» G —=+ H — * be a group extension. Assume K is abelian.
Since there is an embedding K — G, we can treat K as a proper subgroup of G.

Consider the conjugation homomorphism ¢ : G = Autgep(K).

Since K is abelian, the conjugation by any element h € K is trivial (i.e., hkh™' = k for all

k € K). This means K C ker(c).

10



By the universal property of the quotient, the map ¢ induces a unique homomorphism from
the quotient group H = G/K to the automorphism group of K:

G —— AUtGrp(K)

i ///7
o7 Ay

G/K

Thus, we obtain a homomorphism ¢ : H — Autgrp (K).

Example 1.3.20. Consider the extension:
K* 2 Z(GL,(K)) = GL,(K) - PGL,(K).

In this specific case, the induced map ¢ : PGL,(K) — K* is trivial, because K* consists of
scalar matrices AI, which lie in the center of GL,(K). ¢ is induced by the universal property
of the quotient, so it has the mapping rule M K* — ¢(M), with

(M) : Z(GLp(K)) = Z(GLn(K)), M — MAIM ™! = I,
so all MK* € PGL,(K) get mapped to the trivial automorphism.
This leads to the general definition:

Definition 1.3.21. An extension * - K — G — H — x is called central if the kernel is
contained in the center of the group, i.e., K C Z(G). (In such extensions, the action of H on K
is always trivial).

Definition 1.3.22. Let
¥ — K — G 5 H — %

be an extension. If there is a ¢ € Homgyp(H, G) such that m o o0 = idy, o is called a section
and the extension is called split.

Example 1.3.23. 1. Counsider the extension given by the sign homomorphism:
x — Ay = Sp B {£1} — #

We can define a section o : {£1} — S,, by mapping —1 to any fixed transposition (e.g.,
T=(12)):

o(1)=1id, o(-1)=(12).
Since sgn((12)) = —1, we have sgnoo = id. The image of this section is a subgroup
H = {id, (12)} =2 Z/27 that complements A,

2. Consider the extension given by the determinant:

det

* — SLp(K) — GL,(K) — K* — %

We can define a section s : K* — GL,(K) by embedding K™ into some diagonal entry of

a matrix:
A0 0
0 1 0
a(A) = :
0 0 1

Clearly, det(c(A)) =A-1---1 =X, so detoo = idgx.

11



Lemma 1.3.24. Let x — K — G — H — * be a split extension wth section o. Then,

the map
®: K xH— G, (kh)— ko(h)

is a bijection.
Proof. Suppose ®(ky,h1) = ®(ka, h2). Then:
l{ilg(hl) = ]{520'(]12).
Apply the projection 7 to both sides. Since ki, ko € ker(w), we have w(k1) = w(ko) = e. Also,
since o is a section, 7(o(h)) = h.
TI'(klo'(hl)) = ﬂ(kgS(hQ)) —— €- h1 =e€- hg — h1 = hg.

Substituting Ay = hg back into the original equation, we can cancel o(hy) from the right to
obtain k1 = ko. Thus, the map is injective.

Let g € G. We want to find k € K and h € H such that g = ko(h). Set h = m(g). Consider
the element k := g - o(h)~!. We check if k € K by applying 7

w(k) =n(go(h)™") =n(g)-m(a(h) ' =h-h"  =e.

Since w(k) = e, we have k € ker(r) = K. Thus, g = k-o(h) = ®(k,h), so the map is

surjective. ]

Remark 1.3.25. Let x - K — G — H — x be a split extension with section o. Since K is
normal in G, for every h € H and k € K, the conjugate o(h)ko(h)~! lies in K. This defines a
homomorphism:

po - H— Aut(K), h~ (k— o(h)ko(h)™).

We observe how the multiplication in G behaves under this bijection. Let g = kjo(h1) and
g = kQU(hQ).

91 92 = kio(h1) - k2o (h)
= ki - o(hy)kgo(h1) - o(hy)o(hg)
po (h1)(k2) o(hihs)
= (k1 - po(h1)(k2)) - o(hihs).
This calculation shows that the group operation on the pairs (k, h) involves the action p.

Definition 1.3.26. Let H, K be groups and let p : H — Aut(K) be a homomorphism. The
semidirect product of K and H with respect to p, denoted K x, H, is the set K x H equipped
with the multiplication:

(kl,hl) : (kg,hg) = (kl . p(hl)(kQ), hlhg).

The group axioms are easy to verify.

Lemma 1.3.27. Let 1 - K — G 5 H — 1 be a split extension with section o : H — G. Let
p: H — Aut(K) be the homomorphism defined by h — ¢ )|k -

Then the map ¢ : K x, H — G defined by (k,h) — k- o(h) is an isomorphism of groups.
Moreover, this isomorphism makes the following diagram commute (i.e., the extensions are
isomorphic):

1— K -3 Kx,H -3 H ——1
| e
1 K——»G— > H 1
where i1 (k) = (k,e) and ma(k, h) = h.
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Proof. Since the map (k,h) — k- o(h) is a bijection from K x H to G, ¢ is a bijection.
Furthermore, we previously calculated that the multiplication in G satisfies:

(k1o (h1)) - (k2o (h2)) = (k1 - p(h1)(k2)) - o(h1h2)

. Since this is exactly the definition of the multiplication in the semidirect product K x, H, the
map ( preserves the group operation. Thus, it is an isomorphism.

We verify the commutativity of the diagram by checking the left and right squares separately.

For the left square, we must show that p o4; = 7. Let & € K. Following the top-right
path, we compute i1 (k) = (k,eq), and applying ¢ yields k- o(ep). Since o is a homomorphism,
o(er) = e, so the result is k. This matches the bottom path where i(k) = k.

For the right square, we must show that mo@ = my. Let (k,h) € K x, H. The top-right path
yields ma(k, h) = h. For the bottom-left path, we first apply ¢ to obtain k- o(h). Applying =
gives m(k-o(h)) = w(k)-m(o(h)). Since k € ker(m) and o is a section, this simplifies to 1-h = h.

Since both squares commute, the extensions are isomorphic. ]

Example 1.3.28. This lemma justifies the semidirect product structure of our previous exam-
ples:

1. S, = A, %, (Z/2Z).

Here, p describes how the transposition (12) conjugates the even permutations.
2. GLy(K) = SLy(K) %, K*.

Here, p(\) is the conjugation of SL,(K) by the diagonal matrix diag(\, 1,...,1).

1.3.5 Nilpotent and Solvable Groups

Definition 1.3.29. We define a sequence of groups inductively by Gl := G and
G+ .= Gl z (G,
A group G is called nilpotent if there exists some n € N such that Gl = «.

Definition 1.3.30. The derived subgroup of G is defined as D(G) := [G,G], the subgroup
generated by all commutators ghg~'h~'. The derived series is defined inductively by D(O(G) :=
G and

DY(G) := D(D')(@)) fori>1.

A group G is called solvable if there exists some n € N such that D" (G) = x.

Lemma 1.3.31. Let G be a group. G is solvable if and only if there exists a subnormal series
*=Gp 4G 1 4. 4G 4Gy =G
such that the quotients G;_1/G; are abelian for all 1 < i < n.

Proof. (=) If G is solvable, then by definition the derived series terminates: D™ (G) = |(AVe
for some n. Set G; := D®(G). Recall that DUHD(G) = [DY(G), DWD(G)]. The quotient
DW(@)/DHN(@) is abelian (since we are quotienting by the commutator subgroup). Thus,
the derived series itself serves as the required subnormal series with abelian factors.
(<) Suppose such a series exists: = G, < --- < Gy = G with G;_1/G; abelian. We prove by
induction that D*)(G) C G}, for all k.

If k =1, since Go/G1 = G/G is abelian, the commutator subgroup D(G) = [G, G| must be
contained in G1. Thus D(l)(G) C Gy.
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Let k > 2. Assume D*)(G) C G}. We compute the next derived subgroup:
D** (@) = [D™W(@), DM (@)].

By the induction hypothesis, this is a subgroup of [Gk,Gg|. Since the quotient Gi/Gr41 is
abelian, the commutator subgroup of Gy, must lie inside Gi11 (i.e., [Gg, Gx] € Gky1). Therefore:

DHI(@) C [Gk, Gr] C G-
By induction, D™ (G) C G,, =. Hence D™ (G) =, so G is solvable. O

Corollary 1.3.32. If GG is a finite group, then G is solvable if and only if there exists a chain
of subgroups
*x=G, CGr1 C---CGy=G

such that
Gi—1/Gi 2 7Z/p;Z where p; is prime.

Proof. (<) If such a series exists, the factors G;_1/G; = Z/p;Z are cyclic and therefore abelian.
By the Lemma, the existence of a series with abelian factors implies G is solvable.

(=) Let G be a finite solvable group. By the Lemma, there exists a subnormal series where
the quotients A; = G;_1/G; are abelian.

We rely on the fact that any finite abelian group can be written as a direct product (a trivial
semidirect product) of cyclic subgroups:

Ai gZ/?”LlZ X oo X Z/nkZ

(This is a special case of the structure theorem for finitely generated R-modules over PIDs,
which we will prove later.)

Using this decomposition, we can insert subgroups between G; and G;_; corresponding to
these cyclic factors. Furthermore, each cyclic group Z/n;Z has a series where the factors are of
prime order Z/pZ (derived from the prime factorisation of n;).

Applying this to every interval in the original series yields a composition series for G where
every factor is isomorphic to Z/pZ. O

Lemma 1.3.33. Every nilpotent group is solvable.
Proof. Let G be a nilpotent group. By definition, the sequence of groups GG ) = @ and G+
Gl1/Z(G) terminates at the trivial group for some n (i.e., G = {e}).

We define a sequence of subgroups in G inductively. Let m; : G — Gl be the natural
projection map composed of all the previous quotient steps. Let Z; = ker(m;).

For i =0, G = G, so 7 is the identity map. Thus Zy = {e}.

For i =n, G = {e}, s0 Z, = G.

Since Gt is a quotient of G, the map ;41 is formed by composing 7; with the projection
p: G — Gl /z(GH). 1f g € Z;, then m;(g) = e. The projection of e is e, so mi+1(g) = e. Thus
g € Ziy1. This gives us the chain:

x=70<92,<4...<427,=0G.

Consider the quotient Z;+1/Z;. By definition of the sequence, the kernel of the map from
Gl to GH1 is exactly the center Z(GU).
The elements of Z; 1 are exactly the elements in G that map into this center under ;:
mi(Zig1) = Z(G).
Since the kernel of 7; is Z;, the map 7; induces an isomorphism between the factor group Z;11/7;
and the image Z(G).
Since Z(Gl) is the center of a group, it is abelian. Therefore, Z;,1/Z; is abelian.

We have shown that the chain Zp < --- < Z,, is a subnormal series with abelian factors.
Thus, G is solvable. O
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1.4 Operations of Groups on a Set

Definition 1.4.1. Let G be a group and X a set. A left operation of G on X is a homomor-
phism p: G — S(X) (1),
or equivalently, a map G x X — X (2), (g,x) — ¢ - x, satisfying:

l.VieX:eg-z=2z
2. Vg,h € G,z € X : g(hx) = (gh)x
The set that is acted on by G is called a G-set.
Proposition 1.4.2. The definitions are ideed equivalent.
Proof. (1) — (2): p maps g € G to permutations o, : X — X, so we obtain a map
GxX =X, (g,2) = plg)(x) =: a4().
Since p is a homomorphism,
Vee X :eq x=o0,(x)=idx(z) = x.
as well as
Vg,h € G:g-(h- ) =o0g4(on(z)) = (0g00n)(x) = ogn(x) = (gh) - x.

(2) = (1): For each g € G, we obtain amap o4 : X — X, z— g-x.
It is a bijection since

Vo€ X :og(og(x) =g (g-2)=(97"9) x=eq-a=a=g-(97") 1 =0y(04-1()),
S0 04-1 s its Inverse. O
Example 1.4.3. Let G be a group.

1. Given any set S, there is the trivial operation G x S — S, (g, s) — s.

2. S, operates on {1,...,n}.

3. G operates on itself by left multiplication (translation), so we get a homomorphism

p:G—= Sa =Yg
Since
kEekerp s pk)=idg & VgeG:k-g=kg=g< k=eg — kerp=x,

¢ is an embedding, so G is isomorphic to a subgroup of Sig. This result is known as
Cayley’s theorem.

4. G also operates on itself by conjugation (g -z = gzg™!).

5. G operates on the set of its subgroups by conjugation and on sets of left cosets by trans-
lation.

6. Let K be a field. GL,,(K) operates on the left on K™ by matrix multiplication.

Definition 1.4.4. Let X be a G-set, x € X.

15



1. Staby(z) =7, ={9 € G| g-x =x} C G is called the stabiliser or isotropy subgroup of
.

2. G-z={g-2|ge G} CX is called the orbit of z.

3. x is called a fixed point of the operation if Stabg(x) = G. We denote the set of fixed
points by S¢ ={s€ S|g-s=1s,YVg € G} C X.

4. An operation is called transitive if X # @ and Ve, y e Xdge G:g-x =y.
5. Let Y C X. We say that Y is G-invariant if Ve G:g-Y =Y

Definition 1.4.5. Let X be a G-set. An equivalence relation is defined by:
r~y <= dJgeG,gr=y

The equivalence classes are the orbits G -z = {gz | ¢ € G}. The set of equivalence classes is
denoted G\ X. It is in particular the disjoint union of all orbits.

Proof. We verify the axioms of an equivalence relation:

Reflexivity: Forallz € X, e-z=x,s0 v ~ x.

Symmetry: If x ~ g, then gx = y for some g € G. Thus x = g~ 'y, implying y ~ .
Transitivity: If x+ ~ y and y ~ z, then y = gx and z = hy for some g,h € G. Then
z = h(gx) = (hg)x, so x ~ z.

The equivalence class of x is [z] = {y e X |z ~y} ={ye X |Fge G,y=gz} ={gx | g €
G}=G . O

Remark 1.4.6. Using the orbit decomposition, it is easy to see that a subset is G-invariant if
and only if it is a union of orbits.
Note that unlike in the set of left cosets, the equivalence classes in G\ X are not in bijection.

Theorem 1.4.7. Let X be a G-set, x € X. The map ¢, : G/Z, — G-z, gL, — g -z is
well-defined and a bijection. In particular, if G is finite:

_ g

|G- z| = .
1Zs |

Proof. Let p(gZ;) = g - x. We verify well-definedness and injectivity simultaneously via the
following chain of equivalences:

gL, =hIl, < hlgel, — (hlg) 2=2 < g-z=h-z.

Reading left to right shows ¢ is well-defined; reading right to left shows ¢ is injective.
Surjectivity is immediate by the definition of the orbit G - x. Thus, ¢ is a bijection. O

Definition 1.4.8. A map f: X — Y between G-sets is called G-equivalent if

Vg€ G,z € X: fgz) = gf(2).
We may now define G-Set, the category of G-sets.
Example 1.4.9. Let X be a G-set.

1. Let Y C X be G-invariant. Y is a G-set with left multiplication and the inclusion Y — G
is G-equivalent.

For instance, Vax € X, the orbit G-z C X is G-invariant.
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. Vx € X, the bijection G/Z, 5G nis G-equivalent.
Indeed: let g € G. v(9Z,) =g -z = gleq - x) = gp(Iy).

. Let X be a G-set. We can decompose X into its orbits. Let I be a set of indices indexing
the orbits, i.e., G\X = {O;};c;. We choose a system of representatives (z;);cs such that
x; € O; for each 4. Then the map defined by the disjoint union of the orbit bijections is a
G-equivalent isomorphism:

[16/z, = x.

i€l
. Let f: X — Y be a G-equivalent map. The map f induces well-defined maps on the fixed
points f¢: X¢ - Y&
and the quotient spaces f: G\X — G\Y, G-z — G - f(z)

. Consider the symmetric group S, acting on the set N = {1,...,n}. This action is tran-
sitive. The stabiliser of the element n is the subgroup of permutations fixing n, which
is isomorphic to S,_1 (permuting the first n — 1 elements). Thus, we have the canonical
Sp-equivalent bijection:

Sn/Sn—1=A{1,...,n}.

. Let K be a field and n > 1. The general linear group GL,(K) acts on the vector space
K™. The orbits of this action are exactly {0} and K™\ {0}. In particular, the set of
non-zero vectors K™ \ {0} is a transitive GL,,(K)-set.

. Let P € R[X] be a polynomial with real coefficients, P = Y a;X*. Let Rp(C) = {2z € C |
P(z) = 0} be the set of complex roots. Complex conjugation 7 : C — C,z +— Z is a field
automorphism. This defines an action of the group G = Z/2Z = {id, 7} on C.

The set of roots Rp(C) is a G-invariant subset.

Proof. Since the coefficients a; are real, P(zZ) = P(z). Thus, if P(z) = 0, then P(z) =
0. O

We can decompose Rp(C) into orbits under this action. The fixed points are the real
roots, which form singleton orbits {x;}. The non-real roots come in conjugate pairs,
forming orbits of size 2, {z;, 2;}.

Rp(C) ={z1,...,x.} U{z1, 21} U - U{zs, 2}
. Generalisation: Let L be a field and let G C Aut(L) be a finite subgroup of automorphisms.

Let K = L% be the fixed subfield. For any polynomial P € K[X], the set of roots
Rp(L) is a finite G-invariant subset of L. (This is because for any o € G and root y,

P(a(y)) = o(P(y)) = 0(0) = 0).

. Let X be a G-set. If x,y are two elements in the same orbit, then their stabilisers G, and
G, are conjugate subgroups in G.

Proof. Since x and y are in the same orbit, there exists ¢ € G such that y = g-x. We
claim that G, = gG,g~ 1.

Let h € Gy. By definition, h -y = y. Substituting y = g-z, we get h- (g-z) =g - .
Multiplying by ¢g~! on the left (and using the group action axiom):

g thg ==
This implies g~'hg € G, or equivalently, h € gG,g~*. Thus, G, C gG,g~ . A similar

argument shows the reverse inclusion. O
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10. Let G operate on itself by conjugation. This induces a left operation of G on the set U(G)
of all subgroups of G. For a subgroup H € U(G), the normaliser Ng(H) is the stabiliser
of H under the conjugation action.

It follows that if N C G is a subgroup containing H such that H < N, N C Iy = Ng(H).

1.4.1 Cycle Decomposition in 5,

We analyze the action of a permutation o € S, on the set {1,...,n}. The subgroup (o)
generated by o acts on {1,...,n}, decomposing it into disjoint orbits:
{1,....n} = J] a={ilo@=iju ] «
ag(@)\{1,...,n} |a|>2

The set of elements moved by o, {i | 0(i) # i}, is called the support of o, denoted supp(o).

For each orbit a with |a] > 2, we choose an element ¢ € «. The orbit has the form
a={i,o(i),...,c'"1(i)} where [ = |a|. We define the cycle =, corresponding to this orbit as
the permutation that cycles these elements and fixes everything else.

Lemma 1.4.10. Let 71 and 72 be cycles with disjoint support (i.e., supp(y1) N supp(y2) = 0).
Then

7ev2="720M7-.

Proof. If © € supp(y1), then = ¢ supp(72), so y2(x) = x. Thus v2(y1(z)) = 71(x). Similarly
v1(y2(z)) = v1(x). If x is not in either support, both fix . Thus the permutations are identical.
]

Theorem 1.4.11. Every permutation ¢ € .S,, can be written as a product of cycles with disjoint
support:
o=7100%

where 7; corresponds to the distinct orbits of o with size > 2. This decomposition is unique up
to the order of the factors (which commute together).

Proof. The decomposition follows directly from the partition of {1,...,n} into disjoint orbits.
For any z € {1,...,n}:

If x is a fixed point of o, it is not in the support of any v;, so both sides map z to x.

If x is moved by o, it belongs to exactly one orbit «;. Thus = € supp(y;) and « ¢ supp(~yx) for
k # j. The product on the right acts as v; on z, which matches o(x) by definition. O

Corollary 1.4.12. The order of o is the least common multiple of the lengths of its disjoint
cycles.
ord(o) =lem(ly,...,1s).

Proof. Let l; = ord(y;) be the length of the j-th cycle. If o' =id, then (y10---075)" = id. Since
the cycles have disjoint support and thus commute, this expands to 44 o--- 0% =id. Since the
supports are disjoint, each factor must individually be the identity: V;f =id for all j. This holds
if and only if [; | ¢ for all j. The smallest such positive ¢ is lem(lq,. .., ). O

1.4.2 Application to finite groups

Let G be a finite group operating on a finite set X. We distinguish between orbits of size 1
(fixed points) and larger orbits. The set of fixed points is X¢ = {z € X |Vg € G,g -2 = z}. If
x ¢ X©, then its orbit has size |a| > 1.
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Lemma 1.4.13 (Class Equation). Let R be a set of representatives for the non-trivial orbits of
X (i.e., orbits with size > 1). Then:

X[ =X+ ) [G: L.
TER

Corollary 1.4.14. Let G be a group of order p”, p prime, acting on a finite set X. Then:
X=X (mod p).
Proof. Consider the class equation from the Lemma above:

x| - x¢ = (6 : L.

z€ER

For every representative x € R, the orbit is non-trivial, so the index [G : I;] > 1. Since G is a
p-group, the index [G : I,] must be a divisor of |G| = p". The only divisors of p" greater than 1
are multiples of p.

Therefore, every term in the sum is divisible by p.

Z[G :I;] =0 (mod p).

z€ER

Consequently, | X| — | X% =0 (mod p). O

1.5 p-Groups and the Sylow Theorems
Definition 1.5.1. Let p be a prime number. A (finite) p-group G is a group of order p", r > 0.

Lemma 1.5.2. Any subgroup of a p-group is a p-group.

Proof. Clear. O

Theorem 1.5.3. Let G be a nontrivial finite p-group. Then, Z(G) # .

Proof. Note that if we let G act on itself by conjugation,
GY={heG|VgeqG:ghgt =h(<= gh=hg)}=2(G).

We know that ¢ = 0 mod p and, from the corollary from the previous section, that |G| =

|Z(G)| mod p.
It follows that 0 = |Z(G)| mod p, and since |Z(G)| > 1, |Z(G)| > p, so Z(G) is in particular
nontrivial. O

Corollary 1.5.4. Every finite p-group is nilpotent.

Proof. Let G be a finite p-group. We consider the sequence GI% = G and GIHY = Gl /z(Gl).

If Gl is non-trivial, it is a p-group, so its center is nontrivial. Since the order of a quotient
group is given by |G/N| = |G|/|N| = p"/p* = p"~*, the quotient GI*! remains a p-group with
strictly smaller order. Thus, the sequence of groups must eventually terminate at {e}. O

Theorem 1.5.5. Let G be a finite group with g be a prime divisor of its order. Then, there is
a subgroup of order p (which must be cyclic).
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Proof. Let X = {(g1,92,---,9p) € G” | g192...9p = e}. We can choose the first p — 1 elements
freely, and the last element is then uniquely determined (specifically g, = (g1 ... gp—1)""). This
implies |X| = |G|P~L. Since p | |G, it follows that p | | X|.

Let C 2 Z/pZ, and let o be a generator of C. Let C act on X by:

0(917 s 7gp) = (92793> s 7gpvgl)'
The shifted tuple is still in X. Indeed:

gi...gp=€ — e= 9;1(9192---9;:)91 = (gflgl)(QQ---gpgl) =g2---9pg1-

Since (o) = C, the entire action is well-defined.

Because |C| = p and the size of any orbit must divide |C|, any orbit has size 1 or p. Let Ny
be the number of orbits of size 1 (the fixed points), and N, the number of orbits of size p. Then
the total size is the sum of the orbit sizes:

[ X| = (N1-1) + (N, - p).

The fixed points are exactly the tuples of the form (g,...,g) with g € G. For this tuple to
be in X, the product must be identity: g? = e. Thus, Ny = [{g € G | g* = e}|.

We know p | |X|. From the equation | X| = N + pN,, we can write N1 = |X| — pN,,. Since
p | |X| and p | pN,, it follows that p | Ni.

We know Nj > 0, because the tuple (e,...,e) is always in X (as e’ = e). Since p | N1 and
N1 # 0, we must have N > p.

Thus, there are at least p — 1 non-identity elements g such that g” = e (which is equivalent
to ord(g) = p, because p is prime). O

Definition 1.5.6. Let G be a finite group with |G| = n. Let p be a prime number. We can
write n = p” - m where ged(p,m) = 1. Here, r is the p-adic valuation of n. Assume p | n. A

p-Sylow subgroup (or Sylow-p-subgroup) of G is a subgroup H C G such that |H| =p". (i.e.,

it is a p-subgroup of maximal possible order).
Example 1.5.7. 1. Let G =Z/nZ. If n = p"m as in the definition, then:
ZInZ = 7)p"7 x Z]/mZ.
The subgroup isomorphic to Z/p"Z is the unique p-Sylow subgroup. (Generally, if n =
pyt...pYs is the prime decomposition, then Z/nZ = Z/p{*Z x - -- X L/p}*Z).

2. Let G = S3. Order |S3| = 6 = 3 x 2. The subgroup ((123)) = {id, (123), (132)} has order
3. It is a 3-Sylow subgroup.

3. Let G = S4. Order |Sy] =24 = 3 x 23.

The subgroup ((123)) = Z/3Z is a 3-Sylow subgroup.
The Dihedral group Dy (of order 8) embedded in Sy is a 2-Sylow subgroup.

Theorem 1.5.8 (Sylow Theorems). Let G be a finite group, |G| = n, with n = p" - m and
ged(p,m) =1, r > 1.
1. Forevery k € {1,...,r}, there exists a subgroup H C G such that |H| = p*. (In particular,

p-Sylow subgroups always exist).

2. If H C Gis ap-group and P C G is a p-Sylow subgroup, then there exists g € G such
that:
HCgPg™".

(In particular, all p-Sylow subgroups are conjugate to each other).
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3. Let n, be the number of p-Sylow subgroups in G. Then, n, | r and n, =1 (mod p).

Proof of the first theorem. Let k € {0,...,r}. Let Q := {S C G | |S| = p*}. Since (L}C,i') is the
number of subsets of G with cardinality p*, |Q| = (lC,i').
P

Claim: The highest exponent e such that p© | || is e = 7 — k. Notation: v,(|Q2]) =r — k.
Indeed:

= (V) < P . Pl H

P pHp* —1)...1 g

Using the property v,(zy) = vp(x) + vp(y), we have:

pk—1
op(1) = 3 (uplo'm = 1) — vy (* — 1)) .
i=0
For the first term (i = 0): vp(p” m) — vp(p¥) = r — k (because p { m).
We can now assume 1 < i < p¥. We con81der the p adic valuation of i: 4 = p’ -y, where p { y
Since i < p¥, we have j < k < r. Then, p*¥ —i = p* —(pr) P (pF7 —y). Because p | p*~

and p { y, we have pt (p*~/ —y). Thus, v,(p" — i) = v,(P (P* 7 —y)) = j.

And p'm —i = p'm — (ply) = pj( "~Im — y). Because p | p"/m and p { y, we have
pt (" Im —y). Thus, v,(p'm — 1) = v,(p? (P /m — y)) = j.

Therefore, for all other terms (i > 0), vy(p"m — i) — v,(p* — i) = j — j = 0. Consequently,
the sum collapses to the first term: v,(|Q2]) =r — k. O

Define a group action of G on Q2 by g-S := {gs | s € S}. Note that g - S is indeed in Q,
because h — gh maps bijectively.
Consider the orbit decomposition Q| = > peq\q [O|. By the claim above, PR L Q) so

there must be an S € Q such that p"~**1 4 |G - S|. This implies v,(|G - S|) < r — k.
By the Orbit-stabiliser Theorem: |G -S| = |G|| |G| = |Zs| - |G - S|. We analyze the

valuations:
w(G) =71 v(G-S|) <r—k.

Thus, v,(|Zs|) = v,(|G|) — v,(|G - S|) > r — (r — k) = k. This implies |Zg| > p*.
Now we must show |Zg| < pF. Let sg € S. Define f : Zg — S by h — hsg. Then
g:S—>Zs, h— hsal acts as a left inverse on the image. Explicitly, let h € Zg:

go f(h)=g(hso) = hsosy ' =h = go f=idz,.

Thus, f is injective, so |Zg| < |S| =
To conclude, we have [Zg| > p* and |Zs| < p¥ = |Zs| = p*. So we have found a subgroup
of G of order pF. O

Proof of the second theorem. Let P be a p-Sylow subgroup of G and let 2 := G/P. Since
|G| = p"m with p t m and |P| = p", it follows immediately from Lagrange’s Theorem that
| =m # 0 (mod p).

Now, let H be any p-subgroup of G acting on {2 by left multiplication.

We have already shown that this must hold: |Q| = |Q| (mod p) (class equation).

Combining this observation with || # 0 (mod p), we see that
Q| £ 0 (mod p), so QF is non-empty. Let gP € Q. Then for all h € H,

h(gP)=gP — ¢ 'hgP=P — ¢ 'HgC P — H CgPg !

If H is a Sylow subgroup, then |H| = | P|, forcing H = gPg~". O
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Proof of the third theorem. Recall that G = p* - m.
Let ¥ = Syl,(G) be the set of all p-Sylow subgroups of G. By definition, n, = [X].
1. The divisibility condition (n, | m)
The group G acts on X by conjugation. By the second theorem, this action is transitive. Fix
a Sylow subgroup P € ¥. We determine the stabiliser of P under this action:
Stabg(P)={g€G|g-P=P}={geG|gPg ' =P}
By definition, the set of elements that conjugate a subgroup to itself is the normaliser of that
subgroup. Thus, Stabg(P) = Ng(P).
The size of the orbit is given by the Orbit-stabiliser Theorem:
G gl
| Stabg(P)|  [Ng(P)|
We consider the fraction representing the index of P in G:
|6 |¢l  INa(P)]
[Pl [Na(P)] [P
We know that |G| = p"m and |P| = p”. Substituting these values into the left side:
_INa(P)]
SR

ny = |X| =

Since P is a subgroup of Ng(P), Lagrange’s Theorem guarantees that the fraction |N‘GI§‘P)| is an

integer. Therefore, n, must be a divisor of m.

2. The congruence condition (n, =1 (mod p))

We restrict the action of G on X to the subgroup P itself. P acts on % by conjugation. We
know that

== =" (mod p).
The set of fixed points is 2 = {Q € L |Vz € P2Qr ' =Q} ={Q € ¥ | P C Ng(Q)}.

Clearly P € ©F because P is a subgroup of its own normaliser (P C Ng(P)).

Let Q € XF be any fixed point. Then P C Ng(Q). Inside the group Ng(Q), both P and Q
are subgroups of order p", so they are both p-Sylow subgroups of Ng(Q).

By definition of the normaliser, @ is a normal subgroup of Ng(Q). By the second theorem
applied to the group Ng(@), all Sylow subgroups must be conjugate. Since @ is normal, it is
the only conjugate of itself. Thus, P must equal Q.

The only fixed point is P itself, so |[SF| = 1.

np,=1X=1 (mod p).

Example 1.5.9. 1. n, =1 <= the p-Sylow subgroup is normal.

2. Let A be a finite abelian group. If p | |A|, there exists a unique p-Sylow subgroup A4, C A.
For example, consider Z/nZ. If p | n, write n = p" - m with p { m,r > 1. Then
(m) C Z/nZ = Z]p"7Z x Z/mZ is the unique p-Sylow subgroup.

3. Consider S3. |S3] =6 =2-3. A3 <53 is a 3-Sylow subgroup = ngz = 1.

For ny: we know ng | 6 = ng € {1,2,3,6}. Also ng =1 (mod 2) = ng € {1,3}. For
any distinct , j, the subgroups ((ij)) are 3 distinct 2-Sylow subgroups. Thus ng = 3.

4. Consider Sy. |Sys| = 24 = 3-23. We know that na | 3and ny =1 (mod 2) = ng € {1,3}.

Dy (of order 8) is a 2-Sylow subgroup, but it is not normal in Sy = ny #1 = ng = 3.

For n3: we know ng | 8 and ng = 1 (mod 3) = ng € {1,4}. Notice that ((123)) #
((124)), but both are 3-Sylow subgroups = ng = 4.
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2 Rings

2.1 Generalities

Definition 2.1.1. A ring R is a tuple (R, +-) with internal laws of compositon +, -, such that:
1. (R,+) is an abelian group with neutral element 0
2. (R,-) is an associative monoid with neutral element 1
3. Ya,b,c€ R: (a+0b)-c=a-c+b-c (Distributive law)

We say that R is commutative if Va,be R:a-b=1>"a.

Definition 2.1.2. Let R, S be rings. A ring homomorphism ¢ : R — S is a map such that for
all r,s € R:

Loo(r+s) = o(r) + ¢(s)

2. ¢(r-s) = o(r) - ¢(s)
Now, one may define Ring, the category of rings.
Lemma 2.1.3. Let r,s € R.

.r-0=0-r=0

2. (=r)-s=r-(—s)=—(r-s)
Proof. 1.7r-0=r-(0+0)=r-04+r-0 = r-0=0.

2 7 (=5)trs =T (54 (<5) =70 =0 = 1+ (=5) = —(r-5)

Example 2.1.4. 1. (Z,+,-), the ring of integers, is the initial object in Ring.
2. (Q,+,:) € (R,+,-) C (C,+,-) are subrings.
3. For n > 1, Z/nZ is a ring, the projection Z — Z/nZ is a ring homomorphism.

4. In the above example, for n = 0, Z/Z =: 0 is the zero ring. A ring R is the zero ring if
and only if Og = 1p.

5. Let K be a field, n > 1. M,,(K) is a ring. More generally, let V' be a vector space. Then,
Endg (V) is a ring with multiplication defined as composition.

6. For rings R,S, R x S is a ring called the product ring of R and S with pointwise
operations. More generally, if (R;);ecz is a family of rings, [[, R; is a ring.

7. Let G be a group. Let Z[G] be the free abelian group on the set G.

The elements of Z[G] are formal sums with finite support:
a=2) alg

where a4 € Z are coefficients, and a, = 0 almost all g.

Let [g] denote the function that is 1 at g and 0 elsewhere. {[g] | g € G} generates the free
abelian group Z[G].
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We define multiplication on the generators using the group operation of G:

[g] - [h] := [gh].

We extend this linearly to the whole set. If o = )" a4[g] and 8 = > by[h], their product
is:

a-B="3" (agby)lghl.

g,heG

This gives Z[G] the structure of a ring, called the group ring. It is commutative if and
only if G is abelian.

Definition 2.1.5. Let S C R be a subset. S is called a subring of R if:
1. (S,+) is a subgroup of (R, +)
2. lpe S, Ve,ye S:x-gy€S. (S is stable by product in R)
Definition 2.1.6. Let R be a ring. The multiplicative group, denoted R*, is defined as:
R*:={ue R|3v e R:uv=ovu=1x}.

This forms a group under the ring multiplication. Note that if R is non-commutative, R* is
generally a non-abelian group.

Example 2.1.7. 1. Aring R is called a division algebra if R* = R\ {0}. If R is commu-
tative and a division algebra, R is a field.

2. Let K be a field. The group of units of the matrix ring M,,(K) is the general linear group:
(M, (K))* =: GL,(K).
3. Let n € N with n > 2. Consider the commutative ring (Z/nZ,+,-). The group of units is
given by: B
(Z/nZ)* ={\| X € Z,ged(\, n) = 1}.
Proof. Let \ € Z.
A is invertible <= JpcZ:X-g=1
< JpeZ:n|(1-An)
<~ du,meZ:1= A+ nm.

This implies that ged(A,n) = 1. Indeed, if there were a prime p such that p | n and p | A,
then p must divide the linear combination Ay + nm = 1, which is a contradiction. O

Remark: Tt follows that if n is not prime, Z/nZ is not a field.

4. Let ¢ : R — S be a ring homomorphism. Then ¢ maps units to units, i.e., p(R*) C S*.
Proof: Since ¢(1g) = 1g, for any x € R* we have:
plaz') = p(1r) = Ly = @()p(z™!) = 1g.
Similarly ¢(z71)¢(z) = 1g. Thus () is invertible in S with inverse p(z~1).
Consequently, ¢ induces a group homomorphism:
X R* — S*.
In categorical terms, this defines a functor from the category of rings to the category of

groups:
F :Ring — Grp, R+~ R*.
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5. Any ring homomorphism mapping out of a field is injective.

Proof. Consider a nonzero element in the domain. Since the domain is a field, this element
is a unit. Because homomorphisms map units to units, its image must be a unit in the
codomain, so it cannot be zero. Thus, the kernel is trivial. O

Definition 2.1.8. A commutative ring R is called an integral domain if R # 0 and
Ve,y€e R:zy=0 = z=0o0ry=0

In other words: the product of nonzero elements are nonzero. (1 is the empty product, so R # 0
is also covered)

Example 2.1.9. 1. Z is an integral domain.
2. Any field is an integral domain.
3. Finite integral domains are fields. (proof: ezercises)

4. In integral domains, the following simplification is possible:

Va,b,c€ R,a#0:ab=ac — b=c.
Proof. ab—ac=0 < a(b—¢c)=0 <= b—c=0 < b=c O

2.1.1 Formal Power Series and Polynomials

Definition 2.1.10. Let R be a commutative ring. We consider the set of sequences RY =
Homget (N, R). This set becomes a ring (R[[z]],+,-) under componentwise addition and the
following product:

(an)n : (bn)n = Z aibj

1+j=n n

This ring is called the ring of formal power series over R.

We identify R as a subring of R[[z]] via the injection r — (r,0,0,...). Furthermore, we
define the indeterminate X as the specific sequence X := (0,1,0,0,...). Since X* corresponds
to the sequence with 1 at index k and 0 elsewhere, every element a = (ap)nen € R][z]] can be

uniquely written as:
oo
a= Z anX".
n=0

Remark 2.1.11. The definition of the product on R[[X]] is motivated by the formal distribution
of series multiplication. Since X is central, we can expand the product of two series as follows:

(i anX”> : (i mem> = Zanme"+m = i ( Z anbm> X
n=0 m=0 n,m k=0 \n+m=k

Thus, the formal product is the unique multiplication compatible with the distribution of terms
and the laws of exponents.

Definition 2.1.12. We denote by R[X] the subring of R[[X]] consisting of sequences (ap)neN
with a, = 0 for almost all n. It is called the polynomial ring over R.
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Remark 2.1.13. We define the ring of formal power series in n variables inductively by
R[[X1,- . Xol] 1= (RIX, ., Xooa )Xl
Analogously, the polynomial ring in n variables is defined inductively by:
R[X1,..., X, := (R[X1,..., Xn_1])[Xn].
Example 2.1.14. 1. If R is commutative, the evaluation map
ev : R[x] - Homget(R, R), P+ fp

is a ring homomorphism.

Proof. The preservation of addition is immediate. For multiplication, let P = )" a,z™ and
Q = > bypa™. For any y € R, we have:

fey) - foly) = (Z any”> : (Z bmym)
n=0 m=0

anbm> y® (since R is commutative)

|
3
(]

2. If R is an infinite field, the evaluation map is injective.

3. The polynomial ring Z[z1,...,z,] satisfies the following universal property: Let R be a
commutative ring. There is a natural bijection:

Homging (Z[z1, ..., zp], R) = R"
given by evaluating the homomorphism at the generators:
o (1), ., p(zn)).
Definition 2.1.15. Let R be a ring and let P =Y ja, X" € R[X] be a polynomial.

1. The degree of P, denoted deg P, is defined as:

dog P 1= max{n € N | a, # 0} %fP;éO,
—00 it P=0.

2. If P # 0 and d = deg P, the coefficient a4 is called the leading coefficient of P.

3. The polynomial P is called monic if its leading coefficient is 1.

Remark 2.1.16. Let R be an integral domain. Then, for P,Q € R[X]: deg(P - Q) = deg P +
deg Q. (proof: exercises)
In particular, R[X] is also an integral domain.
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2.1.2 Field of Fractions of an Integral Domain

Definition 2.1.17. Let R be an integral domain. Consider the set of pairs M = R x (R\ {0}).
We define an equivalence relation ~ on M by:

(a,b) ~ (¢,d) <= ad = bc.

The field of fractions of R, denoted Frac(R) is the set of equivalence classes M/ ~. We denote
the class of (a,b) by the fraction ¢.
We define addition and multiplication on Frac(R) as follows:

g_i_f‘_ad—i-bc
b d~ bd

ac

@ c._ac
b d’ bd

Proposition 2.1.18. Let R be an integral domain and let ~ and Frac(R) be defined as above.
1. The relation ~ is indeed an equivalence relation.
2. With the defined operations, Frac(R) is a field.

3. The map ¢ : R — Frac(R) defined by «(r) = { is an injective ring homomorphism.

Proof. 1. Reflexivity and symmetry are immediate from the commutativity of R. For tran-
sitivity, suppose (a,b) ~ (¢,d) and (¢, d) ~ (e, f). Then ad = bc and c¢f = de. Multiplying
the first equation by f and the second by b, we get:

adf =bcf and bef =bde = adf = bde.
Since R is an integral domain, we can cancel d to obtain af = be, so (a,b) ~ (e, f).

2. It is easy to verify that addition and multiplication are well-defined and satisfy the ring
axioms. The additive neutral element is % and the multiplicative neutral element is % For
any non-zero element ¢ %, we have a # 0 (since a -1 # b-0). Thus, (b,a) is a valid pair
in R x (R\ {0}).

a b ab 1
b a ba 1
Thus, every non-zero element has a multiplicative inverse.

3. The map ¢ preserves addition and multiplication directly from the definitions. For injec-
tivity, let r € ker(¢). Then:

r

Since the kernel is trivial, ¢ is injective.

O

Proposition 2.1.19. Let R be an integral domain, L a field and ¢ : R — L an injective
homomorphism.

Proposition 2.1.20 (Universal Property of the Field of Fractions). Let R be an integral domain
and let L be a field. Let ¢ : R — L be an injective ring homomorphism. Then there exists a
unique ring homomorphism ¢ : Frac(R) — L such that the following diagram commutes (i.e.,

Ypou=yp):

R—? [

A
L /’/
l 11"

Frac(R)
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Proof. For any x € R, we must have ¢)({) = ¢(x). For any y € R\ {0}, since ¢ is injective and
L is a field, p(y) # 0, so ¢(y) is invertible in L. We define 9 by:

W <x> = (@) - p(y) "

)

1 is well-defined: suppose 3 = . Then ad = be. Applying ¢:

Multiplying both sides by ¢(b)lo(d)~! yields p(a)p(b)™ = ¢(c)p(d)~t. Thus, the map is
independent of the representative.
It is straightforward to verify that 1 is a homomorphism and is the unique solution. ]

Remark 2.1.21. Intuitively, this states: "If a field L contains R, it must contain Frac(R)."

Corollary 2.1.22. Let ¢ : R — S be an injective homomorphism between two integral domains.
Then there exists a unique homomorphism Frac(y) : Frac(R) — Frac(S) making the following
diagram commute:

R—* 5§

[ [

Frac(R)H!—lf{a—C—(f )Frac(S )

This is obtained by applying the universal property of Frac(R) to the composite map R — S —
Frac(S).

Example 2.1.23. 1. The field of fractions of the integers is the field of rational numbers:

Frac(Z) = Q.

2. Let K be a field. The field of fractions of the polynomial ring is called the rational
function field:
K(X) := Frac(K[X]).

Similarly, for n variables:
K(X1,...,Xy) :=Frac(K[X1,..., X,)).
Note that the inclusion of rings induces an inclusion of fields. Since K[Xj,...,X,—1] C

K[X1,...,Xy], we have:

K(Xl,...,Xn_l) CK(Xl,...,Xn).

2.2 Ideals, Quotient Rings

In the following, let R be a commutative Ring.
Definition 2.2.1. Let a C R. a is called an ideal if
1. (a,+) is a subgroup of (R, +).
2. For all r € R and x € a, we have rz € a.

Remark 2.2.2. 1. Let a C R be anideal. If 1 € a, a = R. Ideals that do not contain 1p are
called proper ideals.

2. Let K be a field, a C K an ideal. Then, a=0or a = K.
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Proof. 1. Letre R.r=1-r€a,s0a=R.

2. Obviously, 0 is an ideal of K. If there is  # 0 € a, because K is a field, 27! € K,
1=z c K.
O

Example 2.2.3. 1. Vn € Z : nZ is an ideal.

2. Leta € R. (a):=={b€ R|3Jc€ R:b=ca} is an ideal, called principal ideal generated
by a.

3. If a,b are ideals in R, so are a4+ b and anb.

4. Let G be a group. The augmentation map is the ring homomorphism
e : Z|G] — Z defined by summing the coefficients:

€ Zag[g] :Z“g-

geG geG

On basis elements, this simply looks like e([g]) = 1 for all g € G.
The augmentation ideal, denoted I(G), is the kernel of this map:

1(G) = ker(e) = {Z a,lg] € Z[G] ( S ag = o} .

Definition 2.2.4. Let (ap)keca be a family of elements in R.

((ak)keA) = {J:‘ €R | El(/\k)keA S RA : A, = 0 for almost all k € A, x = Z YR ak}
keA

is an ideal, called the ideal generated by (ag)kecA-
Definition 2.2.5. Let a,b be ideals in R. We define:
n
a+b={a+b|a€abeb}, a-b:{Zak-bk In € Nyay € a,by, € b}
k=1

Remark 2.2.6. Note that a+ b is "larger" than a and b, since both are contained in their sum,
but a- b is "smaller"; it is in fact easy to see that a-b C anb.

Lemma 2.2.7. Let ¢ : R — S be a ring homomorphism.
Then, kerp = {r € R | ¢(r) = 0g} is an ideal.

Proof. Since keryp is the kernel of the underlying group homomorphism (R, +) — (S,+), kerp
is already an additive subgroup.
Let r € R,z € kery. ¢(rz) = p(r)-0g =05 = rx € ker p. O

Definition 2.2.8. An ideal a C R is said to be of finite type if
A(a,...,an) € R" : (a1,...,a;) = a.

Note that (ai,...,ay) refers to an n-tuple on the left, and a generated ideal on the right.
R is called noetherian if all of its ideals are of finite type.

Definition 2.2.9. R is called a principal ideal domain (PID) if R is an integral domain and
any ideal is principal (generated by one element).
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Theorem 2.2.10 (Definition of the quotient ring). Let a C R be an ideal. On the quotient
abelian group (R/a,+) ((a,+) is normal in (R, +) since both groups are abelian), there is a
unique ring structure which makes the group canonical projection 7 : R — R/a a ring homo-
morphism.

Proof. Let m: R — R/a be the canonical projection.
We require g/ : (R/a) \ {0})* = R/a, (a+a)-(b+a)=(a-rb)+aforalla, be Rformto
be a ring homomorphism. Thus, our desired ring structure is unique.
We have to show that the operation is well-defined:
Let a, @ € a+a, b, b € b+ a, so there are z, y € a such that a +z = a, b+y = b. To show:
ab € ab + a.

ab+a=(a+z)b+y)a=ab+ay+bz+ xy

=

Because a is an ideal, we get ay, bx € a, so the entire expression is indeed element of ab+a. [

Proposition 2.2.11 (Universal property of the quotient ring). Let a C R be an ideal, S a
commutative ring, 7 : R — R/a the canonical projection. Then,

@ZJ : HomRing(R/a) — HomRing(Ra S)a (75 = 9‘_7 om

is injective with image {¢ € Homging(R, S) | ¢|a = 0}.
In other words: If ¢ € Homging(R,S) with a C ker ¢, there is a unique
¢ € Homging(R/a, S) such that the following diagram commutes:

R—2 5§

R/a
Proof. We want ¢ to map r+a € R/a to ¢(r) € S, then we would have

pom(r) =p(r+a) =e(r).

for all » € R. Since we are mapping out of a quotient, we have to check whether this is well-
defined: Let 7 € r+a,s0 r+a=7+ain R/a. It follows that there is an a € a with ¥ = r + a,
S0

o(F+a)=@((r+a)+a) =@(r+a).
It is also clear that ¢ is a ring homomorphism.
Since 7 is surjective, the image of each element in R/a is already defined by ¢, making @
unique. ]

Corollary 2.2.12 (Isomorphism theorem for rings). Let ¢ : R — S be a ring homomorphism.
Then,

R/ker ¢ = im .
Proof. Let K = ker ¢, I = im .
The proof of the universal property already gives us a well-defined homomorphism ¢ : R/K —
I, r+ K w— o(r).
Because

k+Keckrpopk)=pk+K)=0sokc Ko k+K=K=0g/,

@ is injective. Because for all ¢(r) € I, ¢(r + K) = ¢(r), ¢ is an isomorphism between R/ker ¢
and im . O
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Definition 2.2.13. An ideal p is called a prime ideal if R/p is an integral domain. Spec(R)
denotes the set of all prime ideals in R.
A proper ideal m is called a maximal ideal if for all ideals a:

mCaCR = a=mVa=R.
Remark 2.2.14. 1. If p is a prime ideal in R, R/p is an integral domain, so in particular,
p=0grsp #1rjp 2 1r, 501 ¢ p, so p is a proper ideal.
2. Let a,be R. If a-b € p,

(@+p)-(b+p)=a-b+p=p=0g,,
and since R/p is an integral domain, either a +p = Opsp or b+p =0gsp,80a €EpVDED.

3. Let Z(R) denote the set of all proper ideals in R. It is partially ordered by set inclusion
C. Maximal ideals are the maximal elements in Z(R). One can prove the existence of
maximal ideals in R # 0 using Zorns Lemma.

Lemma 2.2.15. Let m C R be an ideal. Then, m is maximal in R if and only if R/m is a field.

Proof. In the exercises, it was proven that surjective homomorphisms preserve ideals.
Also, if we have ideals a C R, b C R/a, the pullback 7—!(b) is an ideal in R containing a.

It is then easy to see that the map
®:Z(R/a) = Z(R), b 7 1(b)

is injective,
inducing a bijection on its image {a C R | a C a}.

(=): Let m be an ideal in R. If R/m is a field, any ideal a in R/m is either 0 or R/m,

so ®(a) = 7 1(a) is either 771(0) = m or 7~ }(R/m) = R, which are precisely the ideals in
R containing m.

Thus, m is maximal in R.

(<): Let r + a be a nonzero element in the quotient R/m.

This means that » € R and r ¢ m. Consider b := (r) + m.

Since r € b, r ¢ m = m C b and m maximal, we can conclude that b = R and in
particular 1z € b.

Hence, we can write 1 = u -7+ m, m € m, u € R, which becomes 1 =% -7+ 0 in R/m, so
we have found an inverse u for all 7 € R/m. O

2.2.1 Euclidean division in R[X]

Theorem 2.2.16. Let R be a commutative ring, A € R[x] \ {0},d := deg(A) € N. Assume the
leading coefficient ag of A is invertible. Then,

VB € Rlz]Q,Re Rz] : B=Q- A+ R, deg(R) < d.

Proof. Existence:

We proceed by strong induction on n = deg(B).

Base Case: If deg(B) < d, we can simply choose @ =0, R = B.
Inductive Step: Let deg(B) = n, b, being the leading coefficient of B.
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We want to eliminate the leading term b, X™ of B by subtracting a multiple of A. We define the
monomial term
T(X)=by-ay" X"
Now, consider the polynomial
B'(X)=B(X)-T(X) - A(X).

Notice that the leading term of T(X) - A(X) is (b, - a;' - ag) X("=D+d = b, X7 which is the
leading term of B(X) as well.
We can conclude that deg(B’(X)) < n, so we apply our induction hypothesis to B’: There exist
Q', R’ € Rx], such that

B =Q -A+ R, deg(R) < d.

If we substitute the definition of B’, we get
B-T-A=Q - A+R < B=(Q +T)-A+ R, deg(R) <d.

Uniqueness: o
Suppose (@, R) as well as (@, R) satisfy the conditions above, so

B=Q A+R=Q A+ R, deg(R), deg(R) < d.

This is equivalent to

0=(Q-Q)-A+(R-R) & (Q-QA=R-R.
Let Q=Q—Q,R=R— R, so
QA =TR.

Suppose for the sake of contradiction that @@ # 0. Since the leading coefficient ag is invertible
and thus not a zero divisor, we get

deg(QA) = deg(Q) + deg(A) = deg(Q) +d.

Since deg(Q) > 0, we get deg(QA) > d. But since obviously deg(R) < d, we have a contradic-
tion. Thus, @ = 0 and consequently R =0-A4 = 0. O

Corollary 2.2.17. Let K be a field, P € K[X]\ {0}.
Then, K[X]/(P) is a K-vector space with basis B = {1, Z,...,zd@)-1},

Proof. We will prove a more general statement using the Euclidean division later. O

Definition 2.2.18. Let I be an integral domain. If there is a norm function N : R\ {0} — Ny
such that for all a,b € R, b # 0 there are ¢, € R such that a = bg + r with (r =0) V (N(r) <
N(b)), I is called a Euclidean domain.

Corollary 2.2.19. Every FEuclidean domain is a principal ideal domain.

Proof. Let R be a Euclidean domain with norm N and an ideal a. We must show that a is
principal.
If a = 0, a is obviously principal. Suppose a # 0. Consider the set of the norms of all nonzero
elements in a:
S={N(x)|xz€a\{0}}.

S is a nonempty subset of N, so by the well-ordering principle, it must have a least element
N(d), d € a. We show that (d) = a. Clearly, (d) C a. Let a € a. Since R is a Euclidean domain,
there are ¢,r € R such that

a=d-g+rer=a—d-q,

where r = 0 or < d. We know that a € a and d € a, so » must be in a.
If » # 0, we would have r < d, contradicting our assumption that N(d) is minimal. Thus, r
must be 0, so a = d - ¢ and we get a C (d). O
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Corollary 2.2.20. Let P € R[X], k € R. Then,
P(k) =0 (X — k)| P,

Proof. Euclidean division of P by (X — k), which is allowed because the leading coefficient of
X — k is invertible. We get
P=Q(X —k)+r.

Since deg(X — k) =1, deg(r) <1,sor € R,and P(k) =0 r=0< (X — k)| P. O
Definition 2.2.21. Let A be a commutative ring, P € A[X]. We define
Rp(A) :={x € A|P(z) =0}
to be set of roots of P in A.
Corollary 2.2.22. Let K be a field, P € K[X]\ {0},deg(P) = n(> 0). Then,
[Rp(K)| < n.

Proof. Induction on n. If n =0, R is a nonzero constant and thus has no roots.

If n =1, we can assume P = aX + b, where a # 0, so a invertible.

Assume that for all P’ € K[X] with deg(P’) = n’ < n, |Rp(K)| < n’. Let deg(P) = n. If
Rp(K) = &, there is nothing left to show. If not, let 1 € Pr(K). From the previous corollary,
we know that (X — x1) | P, so there is a P} € K[X] such that

P=(X—-x)P.
It is easy to see that deg(P;) = deg(P) — 1, and
Plz)y=0ez=x1Vz € Rp(K) = Rp(K)={z1} URp,(K).
By our inductive hypothesis, we have
Rp(K)| = [Rp ()| +1< (n—1) +1=n,
O

Remark 2.2.23. This holds for polynomial rings over an integral domain A as well, since for
P e A[X]\ {0}, deg(P) = n:

[Rp(A)| < [Rp(Frac(A))] < n.
Corollary 2.2.24. Let K be a field, P € K[X]\ {0}, |Rp(K)| = n. Then,
P=a, H (X —1),

TERP(K)
where a,, is the leading coefficient of P.

Proof. Consider the polynomial N = P — an [[,¢p, (x)(X — ). Since the n-th terms of both P
and an [[,cpp(x) (X — 1) are (anX™), it follows that
deg(NN) < n — 1. But clearly,

Vy € Rp(K): N(y) =0, |[Rp(K)|=n>n -1,

so N must be 0, otherwise this would contradict the previous corollary. O

Example 2.2.25. Consider X" — 1 € C[X]. Let ( = e
Since for all i < n, (¢)" = (") = 1" = 1, Rx»_1(C) = {1,¢,...,¢(""}. By the previous
corollary, X" —1 = Z;(l)(X —¢Fyin C[X).

Definition 2.2.26. Let K be a field.
in(K) = Rxn_1(K) = {z € K |a" = —1)
is the set of the n-th roots of unity in K.
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2.2.2 Relations Between Roots and Coefficients of Polynomials

Let K be a field. Consider a monic polynomial P € K[X] of degree n > 1. We can express P
in its expanded coefficient form

PX)=X"+ a1 X" '+ +aX+a=) X"
k=0

and its factored form (assuming it splits completely in K)

n

Px) = [J(X - )

i=1
Definition 2.2.27. Let n > 1,4 € {1,...,n}. The i-th elementary symmetric function %;
is defined as:

Si= Y X ezxy,... X, where X7 =[] X;.
JCA{1,...,n} jeJ
|J|=i

It is clear that this is equivalent:

%= > X, Xj, ... X,
1<j1<ga<-<ji<n
Theorem 2.2.28. For the polynomial P(X) = Y"1 ;a; X" with roots a1, . .., oy, the coefficients
are given by:
a; = (—1)”71'2”_1'((11, ceey )
for all 0 <7 < n.

Proof. We proceed by expanding the factored form of the polynomial and comparing coefficients
with the standard form.
Consider the product:

P(X) = (X —a1)(X —as)...(X — ap)

To determine the coefficient of a specific term X* in this expansion, we must choose X from
exactly k of the factors,

and choose the constant term (—c;) from the remaining n — k factors.

Let m = n — k be the number of roots chosen. The term involving X* is formed by summing
over all possible combinations of choosing m distinct roots.

For a specific choice of indices J = {j1, ..., jm} with |J| = m, the contribution to the product
is:

(—og ) (=) - (=g, )X = (=1) ™ (qyy - o, ) X

Summing over all such subsets J C {1,...,n} of size m, the total term is:
(1 Y o) 3
|J|=m jeJ

Recognizing the inner sum as the elementary symmetric polynomial ¥,,, the coefficient of X"»™™
is:
(1),
To match the index notation of the theorem, let 7 be the power of X, so i = n—m, which implies
m=n—1i.
Substituting this back into our expression for the coefficient a;:

ai = (—1)"7%, ;.
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Remark 2.2.29. Let 0 € S,,. A map
K[Xl,...,Xn] — K[Xl,...,Xn], P(Xl,...,Xn) — P(Xg(l),...,P(XU(n))) = P?

is an automorphism of the polynomial ring. Vi < n: X7 = ¥;.

2.3 R-Modules
Definition 2.3.1. Let R be a commutative ring. An R-module M is a triple (M, +,-) with
+:M?* M, :RxM— M,
such that: Vr,s € R,m,n € M:
1. (M,+) is an abelian group with neutral element 0
2. (r+s)-m=r-m+s-m
3.r-(m+n)=r-m+r-n
4. (rxs)-m=r-(s-m), where x refers to the multiplication in R
5. lp-m=m
Example 2.3.2. 1. If R = K is a field, any R-module is a K-vector space.
2. Any abelian group (A, +) admits a unique Z-module structure determined by 1-a = a.

3. Let M be a module over the polynomial ring K[X]. This single object packages the data
of a vector space and a linear map into one structure:

Since K C K[X], the module M is automatically a vector space V over K.
X € K[X] must act on the vectors in V. We define this action asa map T : V — V:

Tw):=X" v

Crucially, because X commutes with scalars in the polynomial ring (XA = AX), the map
T preserves scalar multiplication:

TA)=X- (M) =(XA) - v=AX) -v=X\-(Xv) =AT(v)
Thus, T is a K-linear endomorphism.

Definition 2.3.3. Let M and N be R-modules. A map ¢ : M — N is called a homomorphism
of R-modules or an R-linear map if it is a morphism of the additive groups and

VAe RVz € M : o(A-prx) = XN ()
Remark 2.3.4. One may define the category of R-modules R-Mod.

Example 2.3.5. Let ¢ : R — S be a commutative ring homomorphism, M be an S-module.
We may consider the R-module M?¥ with multiplication defined as:

/\']V[(p$= 90()\) ‘M -

Definition 2.3.6. Let M be an R-module. A sub-R-module N is a subgroup of the additive
group with the following property:

VA€ RVze N:\-x € N.
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Example 2.3.7. R is trivially an R-module itself. Submodules are precisely the ideals in R.

Theorem 2.3.8. Let M be an R-module with sub-R-module N. On the quotient of the under-
lying abelian groups (M, +)/(N,+), there exactly one map

-t Rx (M,+)/(N,+) — (M,+)/(N,+) that makes the canonical projection 7 : M — M/N
R-linear. The resulting module is called the quotient module.

Proof. Let a+ N, b+ N € M/N. We define - : (\,m + N)) — (A-m)+ N. It is easy to check
that it is well-defined, makes m R-linear and imposes a module structure on N/M. ]

Example 2.3.9. If f: M — N is R-linear, ker(f) is a sub-R-module of M, im(f) is a sub-R-
module of N. The quotient

N /im(f) := coker(f)
is called the cokernel of f. The kernel of the projection N — coker(f) is im(f).

Definition 2.3.10. Let (M;);ez be a family of R-modules. We define the R-modules
[I = {miicz|Vi € T:m; e M3},
i€
called the direct product of (M;);cz and
@Mi ={(m;)iez |Vi € Z : m; € M, m; =0 for almost all i},
€L
called the direct sum.

Remark 2.3.11. It is clear that the direct sum is a submodule of the direct product. They are
equal if and only if the index set Z is finite.

Lemma 2.3.12 (Universal properties of the direct sum and direct product). Let N be an R-
module, (M;);ez a family of R-modules. There are bijections between the sets

Hompg (N, H M;) and H Hom (N, M;)
€T €T
as well as

HomR(EB M;,N) and H Homp(M;, N).
1€ €L

Remark 2.3.13. Categorically, The direct product is the universal object designed to be easy
to map into, whereas the direct sum is the universal object designed to be easy to map out of.

Proof of the lemma. For the direct product, Let 7 : [[ M; — M} denote the canonical projec-
tion onto the k-th factor. We construct the bijection by defining maps in both directions.
Define ® : Homp (N, [[ M;) — [[Hompg(N, M;) by composing with the projections:

O(f) = (mio fiez-

Define ¥ : [[Hompg(N, M;) — Hompg(N, [[ M;) as follows. Given a family of maps (f;)ier,
we define the map ¥((f;)) by its action on an element n € N:

V((fi)iex)(n) = (fi(n))iez-

This map is well-defined because the product allows arbitrary tuples.
The maps are inverse to each other:

(@0 W)((fi)i) = ®(n = (fi(n))i) = (mx o (n = (fi(n)i))k = (fr)k-
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(Wo®@)(f) =W((miofi) = (n (m(f(n)))i)

Since a tuple is determined by its components, this recovers f. 1. Thus, ® and ¥ are inverses.

For the direct sum, Let ¢ : My — @ M; denote the canonical injection of the k-th summand.
Define ® : Hompg( M;, N) — [[ Hompg(M;, N) by composing with the injections:

O(F) = (Fovt)iet

Define ¥ : [[ Hompg(M;, N) — Hompg(E M;, N) as follows. Given a family of maps (¢;)iez,
we define the map W((g;)) by its action on a tuple (m;);ez € @ M;:

U((gi)ier)(ma)iez) = Y gi(mi).
1€l

This map is well-defined because, by the definition of the direct sum, m; = 0 for almost all i,
making the sum finite. (® o ¥)((g;)i)x = Y((gi)i) © tg. For any x € My, tx(x) has z at index k
and 0 elsewhere. Thus, the sum collapses to gi(x). So the result is gg.

(¥ o @)(F) acts on (m;); as > ,(F o¢;)(m;). Since F' is linear, this is F'(}_,ti(m;)). Since
(mi)i = Y_; ti(m;), this recovers F((m;);).

Thus, ® and ¥ are inverses. O

2.3.1 Sub-R-modules generated by a Family

Definition 2.3.14. Let M be an R-module, (M;);c7 a family of its submodules. Consider the
direct sum €, .7 M;. For each i € 7, we have a canonical inclusion ¢; : M; < M, so by the
universal property, there is a unique map

P Mi = M, (mi)iez =Y 1i(mi).

1€T i€l

We call its image the sum of (M;);cz, denoted by >, M;.
In other words, ) ;.7 M; = {> ;c;m;|m; € M;, m; = 0 for almost all 4}.
Now, let (a;);ez be a family of elements of M. It is easy to see that

Daryer DR = M, Niez = Y Nias
i€l €T
is R-linear. We denote its image by ((a;)iez) and call it the sub-R-module of M generated
by (ai)iez-
If (ai)iez € M, ((ai)iez) = X ier(ai).
Definition 2.3.15. Let M be an R-module, (e;)icz a family of elements, ®(.,)._, : @;cx & M
defined as above. We say that:

1. M is generated by (e;)icz if D(c,),., is an epimorphism.

i€l

2. M is a free R-module with basis (e;)cz if ?(,),, is an isomorphism.

1€T
3. M is a finite type R-module if it has a finite family of generators.

Remark 2.3.16. It is easy to see that the injectivity of @p is equivalent to the linear indepen-
cence of B.

Example 2.3.17. 1. Let P € R[X] be monic, deg(P) = n. R[X]/(P) is a free R-module
with basis B := {1, X,..., X" 1}
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Proof. We show that B is a linearly independent generating family.

Let f € R[X]/(P). Since P is monic, we can perform Euclidean division to write f = ¢P+r

with deg(r) < n (or r = 0).

In the quotient, P = 0, S0 f = 7. Since deg(r) < n—1, we can write r = Z?:_ol a; X" for some a; €
R. Thus, f = ZZ 0 a; X', showing that B generates M.

Suppose >, La;X' =0,a; € R. Let g = 2?2—01 a;X*. The condition g = 0 implies

g € (P),so g=nh-P for some h € R[X|. It h # 0, then deg(g) = deg(h) + deg(P) > n
(since P is monic). However, by construction, deg(g) < n — 1. This contradiction implies

h =0, and thus g = 0. Therefore, all coefficients a; are 0. ]

2. P[X] is a free R-module with basis {X"|n € N}.

3. Let R be a noetherian ring. Then, if M is a finite type R-module, any submodule of M is
of finite type. proof: exercises

4. RIX][Y]/(XY —1) is a free R-module on {X*|i € Z}. proof: ezercises

2.3.2 Structure of Modules over Principal Ideal Domains

Definition 2.3.18. Let R be an integral domain, let M be an R-module.

Migy i ={me M |INe R\{0} : \-m=0} C M
is a sub- R-module, called the torsion submodule. If M, = @, M is called torsion free.

Theorem 2.3.19 (Structure Theorem for Finitely Generated Modules over a PID). Let R be
a principal ideal domain and let M be a finite type R-module. There exists a unique integer
n > 0 and a unique decreasing sequence of ideals:

ROILI DI, D---21,

such that there is an isomorphism of R-modules:

M = éR/Ii.
=1

The ideals I1,..., I, are called the invariant factors of M.

Remark 2.3.20. Since R is a PID, for each I; there is an a; € R such that I; = (a;). Since
L DLy = a1 €L, = Ir€R:r-a; =a;+1 < a;|ait1,
the chain of ideals implies the divisibility condition
ap |ag || an.

Note that while the sequence of ideals I; is unique, the generators a; are not (they are determined
only up to multiplication by a unit).

Remark 2.3.21. Let s € {1,...,n} be the smallest integer such that I; # 0 and I;4; = 0. We
get the decomposition

S+r

= EBR/I o P R/IL(=
i=s5+1

T F
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Note that because F is a finite direct sum, it is just the product R", which has a canonical basis,
so F is free. Since R is an integral domain, F is in particular torsion free.

Now, let & be any non-zero element of the smallest ideal, i.e., € I, \ {0}. Then, = € I for
all ke {1,...,s}.
Let t = (71,...,7s) € T. Then:

rx-t=(x-71,...,x-7s) = (TrL,...,TTs).

Since x € Iy for every k, the product zry, lies in Iy, so Trg = 0 in R/I}.
Thus, z -t = 0. Since there exists a non-zero scalar x that kills every element in 7, every
element in 7 is a torsion element. Therefore, 7 is isomorphic to the torsion submodule Mioy.

Example 2.3.22. 1. Let A be a finitely generated abelian group (a Z-module of finite type).

There exists a unique integer r > 0 and a unique sequence of integers ay, ..., a, such that:
n
A27" o PZ/(a)(=Z/a)
i=1

subject to the condition that the a; are positive, non-invertible integers satisfying the
divisibility chain a1 | ag | -+ | ap.

If A is a finite abelian group, there cannot be a free part since its order would then no
longer be finite. Thus, a finite abelian group is purely torsion and isomorphic to a direct
product of cyclic groups:

AZZ/a7 X L]asZs X - -+ X L] anZ
subject to the unique sequence of integers a; being positive, non-invertible, and satisfying
aylag || an.

We first prove the following theorem which will be helpful when proving the structure theo-
rem:

Theorem 2.3.23 (Adapted Basis Theorem). Let R be a principal ideal domain. Let F be a
free R-module of rank n, and let M C F be a submodule.
Then:

1. M is a free R-module of rank m < n.
2. There exists a basis B = {e1,...,e,} of F' and elements ai,...,a, € R\ {0} such that
{ai€1,...,amen} is a basis of M with a1 |aa |-+ | am.

Remark 2.3.24. Let R be a nonzero commutative ring, n,m € Ns; such that ¢ : R* - R™
is an isomorphism of R-modules. Then, n = m. This means that any finite type free R-module
has a well-defined rank.

Proof. Let ¢ : R" = R™ be an isomorphism. Since R # 0, there exists a maximal ideal m C R.
Let k = R/m be the residue field (here, we use commutativity of R, otherwise k£ would not be a
field).
Reducing coefficients modulo m induces a linear map between the k-vector spaces:
ok — k™

Since ¢ is an isomorphism with inverse v, the reduction ¢ has inverse 1, making ¢ an isomor-
phism of vector spaces.
Since isomorphic vector spaces have the same dimension, we conclude:

n = dimg (k") = dimg (k™) = m.
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Proof of the adapted basis theorem. The previous remark allows us to proceed by induction on
the rank n of F.

We proceed by induction on the rank n of F'. The case n = 0 is trivial.

Let n > 1. Consider the set of all scalars obtainable by evaluating linear forms of F' on
vectors in M. We define the set I'(M) C R:

(M) ={¢(x) | ¢ € F*, x € M}

where F* = Homp(F, R). 1t is easily verified that I'(M) is an ideal of R. Since R is a PID, this
ideal is principal, generated by some element a; € R.

I'(M) = (a1)

If a; = 0, since F is free, there are particularly projections onto single coordinates which
must all be zero, implying that M is zero, so we can assume a1 # 0.

Then, by definition, there exists a form ¢; € F* and a vector x; € M such that ¢1(x1) = a;.
We claim that ay divides z7 in F. Let {¢;} be an arbitrary basis of F' and {€!} the dual basis.
For any coordinate j, the value €;(x1) lies in I'(M) = (a1), so a1 divides every coordinate of x1.
Thus, there exists a unique e; € F' such that:

T1 = aiel
Evaluating our chosen form ¢ on this equation:

a1 = ¢1(71) = ¢1(are1) = ar¢1(er)

Since R is a domain and a; # 0, we conclude ¢1(e1) = 1.
The condition ¢1(e;) = 1 implies that the map 7(y) = ¢1(y)eyr is a projection onto the
submodule generated by e;. This yields a direct sum decomposition of F"

F = Re; @ ker(¢1)

We obtain a compatible decomposition for M. Let y € M. Then ¢1(y) € T'(M) = (a1), so ¢1(y)
is a multiple of a;.
y=d1(y)er+ (y — d1(y)er)
—_—— —/ —
€R(are1) cker(1)
Thus, M = R(aie1) @ (M Nker(¢y)).

Let F' = ker(¢1) and M’ = MNker(¢y). F'is free of rank n—1. By the induction hypothesis,
there exists a basis {ea, ..., e,} of F" and scalars ag | - - - | ag such that {ages, ..., arex} is a basis
of M'. Combining these, {e1,...,e,} is a basis of F, and the basis for M is {a1e1, azes, . .., arer}.
Finally, to see that a1 | ag, observe that T'(M’) is generated by restrictions of forms to M’, so
['(M') CT(M). This implies (a2) C (a1), or a1 | as. O

Now we have all the tools needed to prove the structure theorem.

FEristence proof of the structure theorem. Let M be a finite type R-module. By definition, there
is an epimorphism

m: R" - M

Let K = ker(m) C R™. By the first isomorphism theorem, we have M = R"/K.

Since R is a PID and R" is free, we can apply the adapted basis theorem to the submodule
K, so K is free of rank m < n and there exists a basis (eq,...,e,) of R™ and scalars ay,...,an €
R\ {0} such that:
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1. (aieq,...,amen) is a basis of K.

2. The divisibility condition holds: aq | a2 | -+ | am
We can visualize the situation with the following commutative diagram:

T M = R"/kerm = R"/im(1) = coker(s)

K —— R"
R™ R" coker (1))

Here, the map ¢ : R™ — R" is defined by mapping the canonical basis of R to the adapted
,€n), the map v is given by the diagonal

basis elements of K. With respect to the basis (eq,

matrix:
al 0 0
0 a9 0
A=|10 0 am | € ™™
0 0 0
o 0 .- 0

From the diagram it is clear that to understand the structure of M we only have to understand
the cokernel of the map v given by A. To do this, we decompose both R™ and im(v) into direct

,€n) is a basis, R" is the direct sum of free modules generated by each basis

sums.
Since (eq, ...
vector:
n
R" =P Re; = Re; ® Rea @ -+ @ Rey,
1=1

The image of ¢ is the submodule generated by the images of the basis vectors of the domain.
By the definition of the matrix representation, the i-th column of A contains the coefficients of
ey €n).

¥(€;) (with €; being the i-th canonical basis vector) with respect to the basis (ey,
Since A is diagonal with entries a;, we have 1(¢;) = a;e;. Consequently, the image submodule

decomposes into a direct sum of the submodules generated by these elements:

n
im(¢)) = @P Rlaie;) = Rayer & -+ & Ramen 0@ - @0
=1
We can conclude: o R
R €;
M = coker(y)) = =1
( ) @?:1 Raiei
By the universal property of the direct sum, the family of projection maps m; : Re; —

Re;/Raje; induces a unique surjective homomorphism:

n n Re;
D Re;
ie_? & — (Raie,-)

i=1

The kernel of @ is the direct sum of the kernels of the m;, which is @' ; Ra;e; = im(¢). Finally,

1=

we get:
M = R" /im(¢) = (€D Re;) /ker & = im(®) = (P (szeze)
et 1 11

We analyze the components Re;/Ra;e; in two groups:
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the torsion part (1 <i<m):
Consider the map
i Re; = R/(a;), re; — r+ (a;).

Since e; is a basis element, the coefficient r is unique, making ¢; well-defined. The map is clearly
surjective with kernel Ra;e;. Thus, by the first isomorphism theorem:

Rei/Raiei = R/(az)

the free part (m < i <n)
In these coordinates, the image is zero (a; = 0). We are quotienting by the zero submodule,
which leaves the component unchanged:

Rei/O = Rei =~ R.
Combining these parts, we obtain the decomposition:
M=R/(a1)® - DR/(am)®DRD--- DR

Remark: Finally, we remove any trivial terms where a; is a unit (since R/1 = 0) to obtain the
invariant factors. O

We introduce some tools for the uniqueness proof:

Definition 2.3.25. The annihilator of an R-module M is the set of scalars that kill every
element in M:
Ann(M) ={re R|Vz € M,r -z = 0}.

It is easy to see that it is an ideal in R.

Lemma 2.3.26. Let M = @ | R/I; be a decomposition with a descending chain of ideals
RO I D152 --- D I,. Then the annihilator recovers the last ideal:

Ann(M) =1,
Proof. This is a special case of the lemma that follows. O

Definition 2.3.27. Let M and N be R-modules and let k¥ > 1 be an integer.
Definition: A map ¢ : M* — N is called R-multilinear if it is R-linear in each variable
separately. That is, for every index 4, every A € R, and all z;,y € M:

O(x1, T+ Ay, xk) = O(X1, Ty X)) F AO(T1, Yy, X))
The map ¢ is called alternating if it vanishes whenever two arguments are equal:
Ji # j such that x; = 2; = ¢(z1,...,2,) =0
Remark: The alternating property implies:
O iy ) = =0Ty, Ty )

Lemma 2.3.28. Let M =@} | R/q;

with the ideals now indexed in ascending order:
apCac---Ca &R

=

Let Ty, be the ideal of scalars defined by the property that they annihilate all alternating k-linear
forms on M:

Ty = {\ € R| VN, Vo : M*¥ - N R-multilinear and alternating , A - ¢ = 0}
Then, for every 1 < k < n, we have the equality:

Ty = ag
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Proof. (T, C ai) We construct a specific form to test X\. Let x € M. We denote the component
of  in the j-th summand R/a; by x().

To define a determinant, we must view these components in a common ring. We choose the
target R/ay. For any j < k, we have a; C a;. This inclusion of ideals induces a natural map
7 : R/a; — R/ay, defined by r + a; — 7 + ai. This is well-defined because any element in the
smaller ideal a; is automatically in aj, (i.e., the zero of the source maps to the zero of the target).

We define ¢ : M¥ — R/a; by taking the first k components of the inputs, projecting them
all into R/ay, and computing the determinant:

L ap) = det ( G) )
w(xly axk) e 77(:’62 ) 1<ij<k
We evaluate this on the generators of the first & summands. Let e; € M be the element with
the identity coset 1 in the j-th position and zero elsewhere. Since m(1) = 1, the matrix becomes
the identity:
¢(€1,...,€k) =1e€ R/Clk

If A\ €T, then A= =0,s0 A\-1 =0 in R/ag, implying \ € ay.
(ar, C T}) Let A € ai. We show that A annihilates any alternating k-linear map ¢ : M* — N.
By multilinearity, it suffices to check the value of ¢ on tuples of the form (x1,...,z;) where
each x,, belongs to a specific summand R/a;,, . Suppose two inputs, say ; and z2, come from
the same summand R/a;. Since R/a; is cyclic, it is generated by a single element e. Thus, we
can write 1 = r - e and x9 = s - e for some r,s € R. Substituting this into the map:

d(x1,29,...) = @(re,se,...) =rs-d(e,e,...)

Since ¢ is alternating, ¢(e,e,...) =0, so the entire term vanishes.

Conclusion: The map ¢ is non-zero ounly if the inputs x1,...,z; come from k distinct sum-
mands. Let the indices of these distinct summands be j; < jo < --- < ji. Since there are
k distinct integers chosen from {1,...,n}, the largest index must satisfy jr > k. Using the
ascending chain of ideals:

A€ a, C aj,.

The input z, belongs to R/a;,, so it is annihilated by a;, (and thus by ).
Thus, A kills every non-zero term of the map, so A € Tj. ]

Uniqueness proof of the structure theorem. Suppose we have two decompositions of a finitely
generated R-module M:

M=R &R/ and M=R" &PR/J;
i=1 j=1

where the ideals form chains RO 1 DD --- D, and RD J1 2 Ja D - D Jp,.

Uniqueness of the free part.

First, we separate the torsion and free parts. We have already concluded that the torsion
submodule M, corresponds to the torsion part of the decomposition
@ | R/I; = T. Consider the quotient M /M,

M/Mior = (R° & T)/T = R®

(Tt is easy to see that the quotient is isomorphic to the free part R® by considering the canonical
projection 7 : R®* @ T — R?®; its kernel is precisely T" = Mo, because R is an integral domain.)
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Analogously, we get M /Moy = RS Thus, M /M is a free module over the commutative ring
R. We have shown that in this case, s must equal s/, so the free parts are equal. We now assume
s = 0 and focus on the torsion part.

Uniqueness of the torsion part. If s = 0, M is a torsion module. Suppose we have two decom-
positions of M into cyclic factors:

M = éR/ai and M = éR/bj
i=1 j=1

To apply our Lemma, we order the ideals in ascending chains (renaming indices if necessary so
that a; is the smallest ideal, i.e., the annihilator of M):

apCaC---Ca, CR

by Cb2C---Ch,, CR

By the Lemma proved previously, the ideals in such a decomposition are entirely determined
by the intrinsic properties of M. Specifically, the k-th ideal in the ascending chain is equal to
Ty (M), the ideal of scalars that annihilate all alternating k-linear forms on M. Since Ty (M)
is defined independently of the decomposition, we must have a; = by for all £ where both are
defined.

Suppose for contradiction that the lengths differ, for instance m > n. Consider the intrinsic
ideal T;,+1(M). Using the first decomposition (M = @, R/a;), any alternating map with n+1
inputs must vanish, because it is impossible to choose n + 1 distinct summands from a set of n.
Thus, the annihilator is the whole ring:

Tn+1(M) - R
However, using the second decomposition, the Lemma implies:

Tn—i—l(M) == bn—i—l

Since the summands in the decomposition are non-zero, the ideals are proper (b, 11 € R). This
leads to the contradiction R = b,,+1. Thus, we must have n = m.
We conclude that since n = m and a = by, for all k, the invariant factors are unique. O

2.4 Divisibility and Factorisation in Integral Domains

In the following, let R be an integral domain.

Definition 2.4.1. 1. Let a,b € R. One says that a divides b if there is a ¢ € R such that
b=q-a, denoted a | b.

Remark 2.4.2. It is easy to see that a | b < (b) C (a).

2. We say that a,b € R are associated if there is an invertible ¢ € R* such that b = ¢ - a,
denoted a ~,4 b.

Remark 2.4.3. (a) ~,q is an equivalence relation. In fact, R* acts on R by multipli-
cation. The orbits are the equivalence classes of ~,gs.

(b) a ~ass b & (CL) = (b)

Proof. (=) is clear. For (<), let (a) = (b). We can assume that both are nonzero,
otherwise the proof is trivial. Let b = ga, a = rb for ¢,r € R, so b = qrb —
grb—b=0 = b(gr—1)=0 = qgr=1 = q,r € R*. O
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Definition 2.4.4. Let r€ R, 7 #0, 1 ¢ R*.

1. 7 is called a prime element if Va,b€ R: 7| a-b = w|aor m|b. P(R) denotes the
set of prime elements.

2. 7 is called irreducible if Va,b€e R: m=a-b = a € R* or b € R*. Irr(R) denotes the
set of irreducible elements.
(in other words, all divisors of 7 are associated to ).

Remark 2.4.5. Let p € R\ {0}. pis a prime element if and only if (p) is a prime ideal.

Proof. (=) Assume p is a prime element. By definition, p is not a unit, so (p) C R. Let zy € (p).
Then p | zy. Since p is prime, p | x or p | y, which implies x € (p) or y € (p). Thus, (p) is a
prime ideal.

(<) Assume (p) is a prime ideal. By definition of prime ideals, (p) C R, so p is not a unit.
Suppose p | zy. Then xy € (p). Since (p) is prime, x € (p) or y € (p), which implies p | = or
p | y. Thus, p is a prime element. O

Lemma 2.4.6. Let m € R be a prime element. Then, 7 is irreducible.

Proof. Let a,b € R such that m = a - b. Since 7 is prime, assume without loss of generality that
7| a, s0 a=qm, q€ R. Then,

T=a-b=gqr-b=(¢gb)tr = qgb=1 = be R*,
so 7 is irreducible. O

Example 2.4.7. In fields, there are no irreducible or prime elements.

2.4.1 Divisibility in Principal Ideal Domains

In the following, let R be a principal ideal domain.

Lemma 2.4.8. Let (an)nen a sequence in R such that for all n > 1, ay, | ap—1. Then, 3Ing €
NVn > ng : an ~ass ang-

Proof. We can reformulate the condition by
(ap) € (a1) C (ag) C....

Consider I = J,,cy(an). It is easy to see that I is an ideal. Since R is a principal ideal domain,
there must be a € R such that I = (a). Since a € I = J,cy(axn), there must be an index ng € N
such that a € (ap,) (which implies (a) C (ap,)), so for all k > ng:

(ang) € (ar) € [ (an) = I = (a) C (any),

neN
so Vk > ng : (ag) = (an,), which is equivalent to ap ~ags n,- O
Corollary 2.4.9. Every non-zero, non-unit element a € R has at least one irreducible divisor.

Proof. We construct a sequence of divisors (a,) with ag = a. Aslong as a,, is reducible, we write
ap = ap4+1bp4+1 with non-units a1, bp41- This yields a sequence where a,41 | ay, for all n. By
the lemma, there exists ng such that for all n > ng, ay,, ~ass an,. In particular, ang+1 ~ass Gng,
which implies apy4+1 = u - ay, for a unit w. This means the factorisation step a,, = any+1bno+1
did not split ay, into non-units, so the process must have terminated. Thus, the element a,, is
irreducible. ]
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Corollary 2.4.10. Let a € R\ {0}, a ¢ R*. Then, there are irreducible 7y, ..., m,(n > 1) such
that a = [, m.

Proof. Let ag = a. We recursively construct a sequence of divisors. If ay is a unit, the process
terminates. If ap is not a unit, by Corollary 1, there exists an irreducible 7m;y1 such that
ar = Tg+1ak+1. This yields a sequence where a1 | ay for all k. By the previous lemma, there
exists ng such that for all k > ng, agyr1 ~ass ar. The condition agiq ~ags ag implies ax = u-agy1
for a unit w. Substituting this into ax = mr416k+1, We see that 41 must be a unit. Since mg41 is
irreducible (and thus a non-unit), the sequence cannot continue beyond index ng. Therefore, the
sequence terminates at some a, which is a unit, yielding the factorisation a = w1 -+ -7, - u. O

Remark 2.4.11. If R is an euclidean domain such as Z or K[x] (where K is a field), the
existence of factorisation can be proven more directly using the Euclidean norm, without relying
on the abstract lemma.

Proof. Let R be a Euclidean domain equipped with a norm N : R\ {0} — N.

For R=17, let N(a) = |al.

For R = K[X], let N(f) = deg f.

These norms satisfy the property: if b | @ and 3 is not a unit, then N(b) < N(a).

Let a € R be a non-zero, non-unit element. If a is reducible, we can write a = a1b; where
ay, by are non-units. By the norm property, N(a;) < N(a). If a; is reducible, we write a; = agba
with N(a2) < N(a1). We repeat this process to obtain a sequence of divisors a, a,ag, ... with
strictly decreasing norms:

N(a) > N(a1) > N(ag) > ...

Since N(x) € N, such a strictly decreasing sequence of natural numbers cannot be infinite. The
process must terminate at some element ap which is irreducible. O

Corollary 2.4.12. Let a € R\ {0}, a ¢ R*. Then, there are irreducible 71, ..., m,(n > 1) such
that a = [}~ m.

Definition 2.4.13. Let R be a general integral domain, a,b € R\ {0}. d € R is called the
greatest common divisor (gcd) of a and b if

1. d|aand d|b
22VxeR:z|aandz |b = =z |d

We denote d by ged(a,b).

m € R is called the least common multiple (lcm) of a and b if
l.a|mandb|m
2.VxeR:a|zandb|z = m|x

We denote m by lem(a, b).

Remark 2.4.14. 1. Note that in general, a gcd may not exist.

2. If a ged exists, it is unique up to multiplication by a unit of R.

Proof. If d,d' are both ged’s of a and b, we have that d | d and d' | d, so (a) = (b), which
means that a and b are associated. O

Theorem 2.4.15. Let a,b € R\ {0}. Then, d = gcd(a, b) exists and (d) = (a,b).
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Proof. Since R is a PID, we can write (a,b) = (d) for some d € R. It follows that a € (d), b € (d),
sod|a,d]|b,sodisacommon divisor of a and b. Now, let d’ be another common divisor of a
and b. Then, a € (d') and b € (d'), so

(a,b) C(d) < (d) C(d) < d'|d,
so d is the greatest common divisor of a and b. O

Because in particular d € (a,b), d must be a linear combination of a and b with coefficients
in R. We obtain the following result:

Corollary 2.4.16 (Bézout formula). For a,b € R\ {0} there are u,v € R such that ged(a,b) =
ua + vb.

Remark 2.4.17. Let a,b € R.

1. If d € R is a linear combination and common divisor of a and b, it must be the gcd.
Indeed: If d' is a common divisor of a and b, it must divide any linear combination, so
d | d.

2. One says that a and b are coprime if ged(a,b) = 1. (This is equivalent to Ju,v € R :
ua + vb = 1)

3. Rass denotes the set of equivalence classes of the relation ~z5. The relation on Rags defined
by a <b <= a|bis a partial order.

Proof. First, we verify that the relation is well-defined. Let ¢/ € @ and b € b. Then
a' = ua and b = vb for some units u,v € R*.

a|b <= b=ka < v W =kuld <= V= (vku')d <= d|V.

(a) Reflexivity: For any a € R, we have a = 1-a, so a | a. Thus a < a.
(b) Antisymmetry: Supposea < bandb < a. Thena |band b | a,s0 a ~ass b <= @ =b.

(c) Transitivity: Suppose @ < b and b < ¢. Then a | b and b | ¢, meaning b = za and
¢ = yb for some z,y € R. Substituting, we get ¢ = y(za) = (yz)a, so a | c. Thus
a<ec

O

Theorem 2.4.18. Let R be a PID, 7 € R\ {0},7 ¢ R*. Then, the following conditions are
equivalent:

1. 7 is a prime element

2. m is irreducible

3. R/(m) is an integral domain

4. R/(m) is a field

Proof. We have already shown 1. = 2. and 4. = 3. = 1. is clear, so only 2. = 4. is
left to show.
Assume 7 is irreducible. Let @ € (R/()) \ {0}, which implies @ € R and « ¢ (7). Consider the
ideal generated by 7 and a:

(m) C (m,a) C R

47



Since R is a PID, there exists 6 € R such that (§) = (m, ). Note that J is a ged of 7 and a.
Since (7) C (), we have ¢ | 7. Because 7 is irreducible, § must be either a unit or associated to
.

Since « € (J) but o ¢ (), we have (§) # (7), so § cannot be associated to 7. Therefore, §
is a unit, and (7, @) = (§) = R. By Bézout’s lemma, there exist u,v € R such that:

1=pr+ra
Projecting this equation into the quotient R/(7), we get:
l=pr+va=ra
Thus, every non-zero element @ has an inverse 7, so R/(m) is a field. O

Remark 2.4.19. In particular, nonzero prime ideals are always maximal in PIDs.

2.4.2 Unique Factorisation Domains

Definition 2.4.20. An integral domain R is called a factorial ring or unique factorisation
domain (UFD) if for all a € R\ {0} and a ¢ R*:

T
Jr>1,3(m1,...,7) € P(R)" such that a= Hm
i=1
Remark 2.4.21. We have proven that in principal ideal domains, all nonzero elements can be
factored into irreducible elements and that all irreducible elements are prime, so all PIDs are
factorial rings.

Lemma 2.4.22. Let R be a factorial ring, 7 € R. Then, 7 € P(R) < = € Irr(R).
Proof. We have already shown ( = ). Let 7 € Irr(R). Since R is a factorial ring, we can write
T=m...m, Vie{l,...,r}:m € P(R),
so in particular, for all 4, m; ¢ R*. Since 7 is irreducible, r must be 1, so
7 =m € P(R)
O
Remark 2.4.23. We denote by P(R)ass := {7 € Rass | 7 € P(R)} and by (Ta)aeP(R)as @ €t

of representatives of prime elements in R. We can canonically define such a set as e.g. the
prime numbers in Z or the monic irreducible polynomials in K[z]|, but for general rings, this

requires the axiom of choice.

Theorem 2.4.24. Let R be a UFD and let (7,), be a set of representatives of prime elements.
For all a € R\ {0}, there exists a unique family (n4)qa, with n, € N and n, = 0 for almost all
«, and a unique unit v € R* such that

— Na
(I—U’llﬂ'a.
[e%

Remark 2.4.25. We can reformulate the result as follows: the set of non-zero association
classes Rags \ {0} is a commutative monoid under multiplication. Specifically, Ragss \ {0} is a free
commutative monoid on the set of prime association classes P(R),gs.
(Monoid = Euxistence of factorisation, Free = Uniqueness of factorisation)

(Note: The free monoid on a set of n elements is isomorphic to N™).

If K = Frac(R) is the fraction field of R, then the quotient group K*/R* is the free abelian
group on the set P(R),ss via the inclusion:

P(R)ass C K*/R*, 7+ (7).
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Lemma 2.4.26. Let R be an integral domain. Let r > 1, s > 1 and let p1,...,p, € P(R) and
q1,---,q9s € P(R) be prime elements.
If
pi-pr=qi--¢s inR,

then r = s, and there exists a permutation o € S, such that for all 4, p; and ¢,(;) are associated.

Proof. We proceed by induction on 7.
If r =1, we have p1 = q1 ...qs. Since pq is in particular irreducible, we can assume that go, ..., qs
are invertible, so p; and ¢; are associated.
If r > 2, Consider the equality:
P1-"Pr=4q1""4Qs-

Since p, divides the left of the equation, we have p, | ¢1---¢s. By the definition of a prime
element, p, must divide at least one factor on the right. Thus, there exists an index j € {1,..., s}
such that p, | g;.

Since g; is irreducible, p, and g; must be associated. Thus, ¢; = u - p, for some unit v € R*.

Substituting this into the original equation and cancelling p, (valid since R is an integral
domain), we obtain:

DL Drl = U qre G s

Absorbing the unit w into one of the remaining factors on the right (e.g., let ¢} = uq1), we have
a product of r — 1 primes on the left equal to a product of s — 1 primes on the right, so we can
apply the inductive hypothesis, completing the proof. ]

Proof of the theorem. FEuxistence: Follows from the fact that R is a UFD, allowing any non-zero
non-unit to be written as a finite product of irreducibles. We collect associated primes into the
representatives 7, and combine the units into wu.

Uniqueness: Suppose a has two such representations:

— Na Ma
a=u-J[rte =o- [[n0=.
« (0%

Expanding these powers into linear products of primes, we apply the Lemma. The Lemma
guarantees that the prime factors on the left and right are identical up to permutation and
association.

Since (7q)a 1s a set of distinct representatives (i.e., no two distinct 7, are associated), the
association of factors implies strictly that n, = my for all a. Cancelling the prime powers from
both sides yields u = v. O

Remark 2.4.27. 1. Let R be a UFD and let (my)s be a set of representatives of prime
elements. Consider a,b € R\ {0} with factorisations:

a:u-nga, b:U-Hﬂ'(T‘*, (u,v € R™).
« (0%

It follows that:

(a) a|b <= Va, ng < myg.

(b) The greatest common divisor exists and is given (up to association) by:

ged(a, b) ~ H Wgﬁn("“’m“).

(¢) The least common multiple exists and is given by:

lem(a, b) ~ nglax(”wma).
«
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(d) From the above, we obtain the identity:
ged(a, b) - lem(a, b) ~ a - b.
(e) a and b are coprime if and only if for all o, min(nq, mq) = 0.
Note: One may define the ged of multiple elements (ai,...,a,) € (R\ {0})" recursively:
ged(ag, ... an) = ged(ag, ged(ag, . .., ap)).
2. Gauss’s Lemma I: Let R be a factorial ring, a,b,c € R\ {0}. If a | bc and a, ¢ are coprime,
then a | b.

3. Let K be a field and let P € K[z]. If deg P < 3, then:

P is irreducible <= Rp(K) =0,

Proof. (=) If Rp(K) # 0, P has a root « and factorizes as (X — «)@Q, so it is reducible.

(<) If P is reducible, P = A - B with deg A,deg B > 1. Since deg P < 3, necessarily one
factor must have degree 1 (as 2+ 2 =4 > 3). A degree 1 factor implies the existence of a
root. O

Consider (X2 + 1)% in R[z]. It has no roots in R (Rp(R) = )) but is clearly reducible.

2.4.3 Polynomial Rings over UFDs

To conclude this chapter, we prove that the polynomial ring over a UFD is a UFD itself. We
begin with the following

Observation: If A is an integral domain, A,s = Prin(A) via the map a — (a), where Prin(A)
denotes the set of principal ideals in A. Also note that the product of equivalence classes maps
to the ideal product.

Proof. Let ® be the map defined above. We construct the inverse map W : Prin(A) — Augs. Let
I € Prin(A) be a principal ideal. Choose a generator = such that I = (z), and define ¥(I) = 7.

Suppose I has two different generators, I = (x) = (y). Then x | y and y | . Since A is a
domain, this implies * = uy for some unit u € A* (i.e., * ~ugs y). Thus T = g in A,g, so the
map is well-defined and is clearly the left and right inverse to ®. O

Recall that For all a,b € A:
(a) = (b) <= @ ~pss b

alb <= (b) C (a)
. Thus, we can easily see:

Lemma 2.4.28. Let a,b € R, where R is a UFD. Then gcd(a,b) € Rass. It is sup((a), (b)) €
(Prin(A), €), where in a poset (S5, <), for a,b € S:

sup(a,b) = min{c € S| a <cand b <c}
Remark 2.4.29. 1. In general, (a) + (b) € (gcd(a,b)) (unless R is a PID).
2. For (ay,...,a,) € R", we may define ged(ay, ..., a,) = sup((ai), ..., (a,)) (if Ris a UFD).
Definition 2.4.30. Let R be a UFD, P € R[X]\ {0}. P = Y7  a; X", a, # 0 is called

primitive if ged(ayq,...,a,) = 1.
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Remark 2.4.31. This means that no prime element in R divides all coefficients of P.
Example 2.4.32. 1. Monic polynomials are primitive.
2. In Z[X], 2X + 3 is primitive.

Lemma 2.4.33 (Gauss’ Lemma II). Let R be a UFD and let P,Q € R[X] be primitive poly-
nomials. Then their product P - () is also primitive.

Proof. Suppose P - (Q is not primitive. Then there exists an irreducible element 7 € Irr(R) such
that 7 divides all the coefficients of P - Q. (This is equivalent to saying 7 | (P - Q) in R[X].)
Consider the reduction homomorphism modulo 7:

&:RIX] = (R/(n)[X], A A

Recall that for any A € R[X], 7| A <= A=0in (R/(m))[X].
Our assumption 7 | (P - Q) implies:

P-Q=P-Q=0 in(R/(m))[X]

Since 7 is irreducible in a UFD, the ideal (7) is prime. Therefore, the quotient ring R/ ()
is an integral domain, so the polynomial ring R/(m)[X] is also an integral domain.
Since P - @ = 0 in an integral domain, we must have:

P=0 Vv Q=0,
So either P or @ is not primitive. O
Remark 2.4.34. In a UFD R, generally, R/(7), 7 € P(R) is an integral domain but not a field.

Lemma 2.4.35. Let R be a UFD, K = Frac(R). Recall that we consider R C K. Let
P e K[X]\{0}.
Then there exist ¢g € K \ {0} and Py € R[X] primitive, such that:
P = CoPo

Furthermore, this decomposition is unique up to a unit in R. That is, if P = ¢ P; is another
such decomposition, then there exists u € R* such that:

g =ucy and P = uilpo

Proof. Existence. Write P using a common denominator:

n a A

P:Zb—ZX’, a; € R, b; € R\ {0}
=0
1 —~ i /
= m ZaiX ,  Where q; = Hbj a; € R
=0 JFi

Let d = ged(ay, - . ., al,) inside R. Then we can write:

P =

d " ad .
- Py, where Py = E —<X'e R[X}
H] b] =0 d
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Clearly, gcd(%, — ) =1, so Py is primitive.

Uniqueness. Suppose cOPo = ¢1 P = P is another decomposition. (In particular, i—‘fPo = P).
Let (m,) be a family of representatives of primes in R. Since R is a UFD, we can factor the
fraction in K:

€0
f:u-HWZ“, Ng €72, u€ R*
1

The equality z—‘l)Po = P; becomes:

u - H ﬂ-ga.PO: H ﬂ.;na

na >0 na <0

If there is some n, < 0 (for some fixed «), then 7, divides the right hand side. By Gauss’
Lemma I, since 7, is prime, it must divide the product on the left. However, 7, does not divide
the primes with positive exponents (since m, ~u4 73 for distinct indices), so 7, must divide Pp.

This implies 7, divides all coefficients of Py, which is a contradiction because P is primitive.
Thus, for all «, we must have n, = 0 (and symmetrically ny ¥ 0) — o =u€ R O

Remark 2.4.36. 1. Similarly, & € R, and P, = (—) - Py.

€o

2. cp, up to multiplication by a unit, is called the content of P. F; is called the primitive
part.

3. Let P € K[X]\ {0}, with P = ¢oPy where P, is primitive and ¢y € K \ {0}. Of course,
P e R[X] < ¢p € R\ {0}.

4. Gauss’ Lemma IT implies that the content of a product P-@ is the product of the contents.
Proof. Write P = ¢oPy and @ = dpQo. Then P - Q = (codp) - (PyQo). Since Py, Qo are

primitive, their product PyQq is primitive (by the lemma). Thus, the content of PQ is
indeed codpy (up to units). O

Theorem 2.4.37. Let R be a UFD. Then, the polynomial ring R[X] is a UFD.

Proof. Let K = Frac(R). We define two sets of elements in R[X] and show they act as the
prime elements.

1. Let S; := P(R) be the set of prime elements of R. Let m € S;. Then 7 is a prime element
in R[X].

Indeed: 1f m | PQ in R[X], we must show 7 | P or 7 | Q. Recalling the reduction map
modulo 7, we have:

7| PQ <= PQ=P-Q=0 in (R/(r)X]

Since 7 is prime in R, the quotient R/(7) is
is also an integral domain. Therefore, P - Q
tor | Porw|Q in RX].

an tegral domain. This implies (R/(m))[X]
=0 = P =0or @ =0. This corresponds

2. Let Sy := {P € R[X] | P primitive and irreducible in K[X]}. (Note that irreducibility in
K[X] implies deg(P) > 1). Let P € S3. Then P is a prime element in R[X].

Indeed: Let P | QS where @, S € R[X]. Then clearly P | QS in K[X]. Since K is a
field, K[X] is a Euclidean domain (hence a UFD), so irreducible elements are prime. Thus
P € P(K[X]),so P|Qor P|Sin K[X]. Assume without loss of generality that P | @
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in K[X]. Then Q = PQ; for some @); € K[X]. By the previous Lemma, we can write
Q1 = cQ2 with c € K\ {0} and Q2 € R[X] primitive. Substituting this back:

Q=P c Qr=c(PQ2)

Since P and @)y are primitive, their product PQs is primitive (by Gauss’ Lemma). Com-
paring contents, we must have ¢ € R (up to a unit). Therefore Q1 = cQ2 € R[X], which
implies P | @ in R[X].

We can now show the existence of the factorisation. Let P € R[X]\ {0}. We show P is a
product of elements from S; and Sz. View P as an element of K[X]. Since K[X] is a UFD, we
have a factorisation into irreducibles in K[X]:

P=Q;---Q,, where@; € K[X] are irreducible.

By the previous Lemma, for each i, we can write Q; = CZ'QZ', where ¢; € K and QZ € R[X] is
primitive. Note that @Q; is associated to @; in K[X], so it is still irreducible in K[X]. Thus

Q@' € Sy. Now we have:
P: (Hc,L) Ql"'@r

i=1
Let C' = [J¢i. Since P € R[X] and the product []Q; is primitive (Gauss’ Lemma), the scalar
C must actually be in R\ {0}. Since R is a UFD, we can factor C into primes of R:

C=wu-m---m, wherem; €S

Thus, P is a product of primes from &; and Ss.
O

Remark 2.4.38. The prime elements in R[X| are exactly the elements of S; USs (up to multi-
plication by units in R), since we proved that any non-zero polynomial P admits a factorisation

P:u'(ﬂl"'ﬂk)'(Ql"'Qm)

where u is a unit, m; € Si, and Q; € Sp. If P is itself an irreducible (prime) element, it cannot
be decomposed into a product of two or more non-units. Therefore, exactly one factor in the
list above must be non-unit, and all others must be units. This forces P to be associated either
to a single m (case m = 0) or to a single @1 (case k =0).

Theorem 2.4.39 (Eisenstein Criterion). Let R be a UFD and P € R[X] be given by P =
S gai X" withn > 1 and a,, # 0. If there is a prime 7 € P(R) such that

L. 71 apy.
2. For alli € {0,...,n — 1}, 7 | a;. (This is equivalent to saying P = @, X" in (R/(7))[X]).
3. ™ {ag.

Then P is irreducible in Frac(R)[X] (and irreducible in R[X] if P is also primitive).

Proof. Suppose P is reducible in K[X] (where K = Frac(R)). That is, P = QS with Q, S €
K[X] and deg @, deg S > 1.

Using the contents (or the previous Lemma), we can clear denominators to find polynomials
in R[X]. Specifically, writing @ = ¢(Q)Qo and S = ¢(5)Sy where Qq, Sy are primitive in R[X],
we get:

P = (c(Q)c(5))QoSo = P = AQoSo
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for some scalar A € R (since P € R[X]). We can absorb the scalar into one of the factors, say
Q = AQop. Thus we may assume P = QSp in R[X]| with deg@®, degSp > 1.
Now, consider the reduction modulo 7:

mX"=P=Q-5 ¢€(R/(m)X]

Since 7 { a,, we have @, # 0. Since 7 is prime, R/(m) is an integral domain, so factorisation

of monomials is unique. Therefore, the factors Q and Sp must be monomials of the form:

Q=uX" Sy=uvX'

where m + 1 = n, and u,v are units in R/(7).

Because deg(Q) + deg(Sp) = n, the degrees of the reductions must match the degrees of
the original polynomials (i.e., the leading coefficients were not killed by 7). If we assume P is
reducible, then m = deg@ > 1 and [ = degSy > 1.

Consequently, the constant terms of Q and Sy must be 0 (since m,l > 1). This means m
divides the constant coefficient of Q and 7 divides the constant coefficient of Sj.

Let go and so be these constant coefficients. Since ag = gpso, and 7 | gop and 7 | so, it follows
that:

72 | ag

This contradicts assumption 3. Thus, P must be irreducible. ]
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3 Field Extensions

In the following, let K and L be fields.

3.1 Generalities

Definition 3.1.1. Let A be a commutative ring. An A-algebra is a pair (R, ¢) consisting of a
ring R and a ring homomorphism ¢ : A — R such that the image of A is contained in the center
of R:

p(A) € Z(R)

(le,Vac A,z e R:p(a) -z =1z-p(a)).
A homomorphism of A-algebras between (R, ) and (S,1) is a ring homomorphism f :
R — S such that f o = 1.

Remark 3.1.2. 1. The homomorphism ¢ defines a scalar multiplication A x R — R given
by (a,z) — ¢(a)z. This gives R the structure of an A-module.
2. The condition f o ¢ = 1 is equivalent to requiring that f is A-linear.
Note that in the case where A C R and A C S are subrings, this is precisely the requirement
that f|4 =ida.

3. Let A be a commutative K-algebra and let u € A be any element. We can formally justify
evaluating a polynomial at an element v € A by considering the obvious map

n n
o, K[X] — A, ZaiXi — Zaiui.
1=0 =0

And writing ®,(P) =: P(u).

Definition 3.1.3. A field extension is a ring homomorphism ¢ : K — L.

Note that we have shown that  must be injective since we are mapping out of a field. Thus,
we usually consider K as a subfield of L and denote ¢« by K C L.

Clearly L is a K-algebra, so L is a K-vector space. [L : K| =: dimg L is called the degree
of the extension.

An extension K — L is called finite if [L : K| < oo, and infinite otherwise.

Example 3.1.4. 1. Given a field M, if K C L and L. C M are field extensions, then the
composite inclusion K C M is also a field extension.
2. We have the chain of inclusions Q C R C C.

The extension C/R is finite. Since {1,4} is a basis, we have [C: R] = 2.
The extension R/Q is infinite. This can be seen as {\/p | p € P(Z)} is an infinite linearly
independent set over Q.

3. Let K be a field. Consider the polynomial ring K[X] and its field of fractions (rational
functions) K(X) = Frac(K[X]). By 1., the inclusion K C K(X) defines a field extension.

This extension is infinite, as the elements {1, X, X2, ...} form a linearly independent set
over K.

4. Let P € K[X] be a monic irreducible polynomial. (It follows that deg P > 1.)
The quotient ring L = K[X]/(P) is a field (since (P) is a prime ideal and K[X] is a PID).

{1,a,...,0%P)=11 ig a basis of L over K, so:

[K[X]/(P) : K] = deg(P)
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Example 3.1.5. Let P(X) =}, a; X" be a polynomial in K[X]. Consider the quotient ring
L = K[X]/(P) and let @ = X be the equivalence class of X in L.
We calculate P(«) by substituting « into the expression for P:

n n n n
Pla) =) ai(a) =) ai(X) =) aX' =) a; X" =P(X).
i=0 i=0 i=0 i=0
Inside the quotient L, the element P(X) is 0 (since P(X) € (P)).
Definition 3.1.6. Observe that for any ring R, there is a canonical morphism of rings
n
wR:Z—>R,nI—>ZlR.
i=1
We define the characteristic of a field K, denoted char K using the map ¥ as follows:
1. If ¥k is injective, char K := 0.

2. If ¢ is not injective, its kernel is a proper ideal of Z. Since Z is a PID, it is generated by
a unique positive integer p € Z. We set char K := p.

Remark 3.1.7. 1. If Yi : Z — K is injective, by the universal property of the fraction field,
Y factors through Frac(Z) = Q. Since Q is a field, we can consider Q C K.

2. If ¢k is not injective, we have Z/ker ¢ = img. Since K is particularly an integral
domain, the subring im ¥ is an integral domain, so ker ¢ is a prime ideal, so its generator
pis in P(Z). Since p > 0, p is a prime number.

Lemma 3.1.8. Let + : K — L be a field extension. Then, char K = char L.

Proof. Consider the canonical ring homomorphisms ¢x : Z — K and vy, : Z — L. Note that
Yr(n) =n-1p=n-u(lx) = un-1x) = (r(n)).
Since K is a field, ¢ is injective. Thus:
n € ker(¢yr) <= 1(Yi(n)) =0 < Yx(n) =0 <= n € ker(Yk)
Therefore, ker(¢1,) = ker(¢x) and thus char K = char L. O
Example 3.1.9. 1. charQ = char R = char C = char C[X] = 0.

2. Consider the finite field [, (which has p elements). Let P € F,[X] be a monic, irreducible
polynomial. Then the quotient L = F,[X]/(P) is a field extension of F).
We can conclude:
char(L) = char(F,) =p

Note: This extension L is a finite field with pd¢8(”) elements, since L is an F p-vector space
. . deg P
and thus isomorphic to F, °" .
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3.2 Transcendental and Algebraic Elements

Definition 3.2.1. Let A be a commutative K-algebra and let x € A. Consider the evaluation
homomorphism:
evy : K[X] - A, P~ P(x)

1. If ev, is injective, x is called transcendental over K.

2. If ev; is not injective, then ker(ev,) # {0}. Since K[X] is a PID, this kernel is generated
by a unique monic polynomial P, € K[X]:

ker(ev,) = (Py)

In this case, x is called algebraic over K, and P, is called the minimal polynomial of
x over K.

Example 3.2.2. 1. If A is a field, it is now easy to see that P, is irreducible in K[X].
2. Consider Q — C. Let P = X2 — 1 € Q[X] Then, v/2 € C is a root of P, s0 P € kerev s.
Thus, v/2 is algebraic.
More generally, if there is a monic P € Q[X] with root z € C, z is algebraic over Q.
3. Let K — L be a finite extension. Then, all x € L are algebraic.

Indeed: ev, : K[X] — L is particularly K-linear and dimg (K [X]) = oo > dimg (L), so
evg cannot be injective.

Lemma 3.2.3. Let z € L and let ¢, € Endg (L) be the multiplication map y — zy. For any
polynomial P € K[X], we have P(p:) = ¢p(y)-

Proof. Since Endy (L) is a K-algebra, the expression P(p,) is well-defined. Let P(X) = 3" a; X".
Using the linearity of the map assignment z — ¢, and the fact that (¢,)" = @,

Pps) =Y aiph = 00,0 = 05 gii = PP(a)

Consequence: P(p,) =0 <= P(z) = 0. Thus, the minimal polynomial of the element x is
exactly the minimal polynomial of the linear operator ;. O

Definition 3.2.4. Let K — L be a field extension, (z;);cs a family of elements in L.

The sub-K-algebra generated by (z;);cr, denoted K[(x;);cz], is the smallest subring of L
containing both K and all elements x;.

Explicitly, it consists of all polynomial expressions in the x;’s with coefficients in K:

K[(iﬁl)zej] = {P(xil,...,x“) ‘ {il,...,ir} QI, PE K[Xl,...,XT]}

Note that K[(x;)icr] is generally only an integral domain. We denote its field of fractions by
K((xi)icr)-

Clearly, there is an embedding K[(x;);cr] < L, so the embedding factors through K ((x;)icr).
Thus, K((zi)icr) C L.

Example 3.2.5. Let K C L be a field extension and let z € L.
The K-algebra K|[z] is precisely the image of the evaluation homomorphism:

im(evy) = {P(z) | Pe K[X]|} =K[z]C L
If x is algebraic over K with minimal polynomial P,, there is an isomorphism:
K[X]/(P.) = im(ev,) = K[z]

Since P, is irreducible, the quotient K[X]/(P;) is a field. Consequently, the subring K|[z] is
a subfield of L. Moreover, K — K[X] is a finite extension since K[X]/(P;) is clearly finite-
dimensional and isomorphic to K{z].
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3.3 Algebraic Extensions

Definition 3.3.1. Let K — L be a field extension. It is called algebraic if all z € L are
algebraic over K.

Example 3.3.2. 1. Finite field extensions are algebraic.

2. Q C R is not algebraic: for instance e, 7 € R are transcendental over Q.
(Lindemann- Weierstrass- Theorem)

Lemma 3.3.3. Let K — L be a field extension, x1,...,x, € L.
If for all ¢, x; is algebraic over K, the sub-K-algebra Klz1,...,x,] C L is a subfield and
dimg (K[x1,...,2,]) < o0.

Proof. We proceed by induction on n. We have already shown the claim for n = 1.

Ifn>2let FF=Klzy,...,ry—1]. We can assume that F is a field and [F': K| < oc.

Now consider K|x1,...,z,] = F[z,]. Since x,, is algebraic over K, there is a nonzero minimal
polynomial P, € K[X]. Since K C F, we have P, € F[X], so x, is also algebraic over F.

By the base case logic (applied to the extension over F'), F[x,] is a field and [F[z,] : F] < oo.
Using the fact that for finite extensions A — B — C, [C : A| = [C : B][B : A] (proof: ezercise),

(K[x1,...,2p] =)Flxy] : K| = [Flzy] : F]-[F: K].

Since both factors on the right are finite, the total degree is finite. O
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