Algebra 2025/2026: Exercise sheet 1

Exercise 1.

Let G be a finite group. Show that if the order |G| of G is a prime number p, then G is isomorphic to \mathbb{Z}/p .

Exercise 2.

Let G be a group. Show that the map $\chi: G \to G$, $g \mapsto g^{-1}$ is a group homomorphism if and only if G is abelian.

Exercise 3.

For G a group, we denote by $Z(G) = \{g \in G | \forall h \in G, g.h = h.g\}$ the center of G. Show that Z(G) is an abelian subgroup of G.

Let K be a field and $n \ge 1$ be an integer. Show that $Z(GL_n(K))$ is the subgroup of homotheties, consisting of diagonal matrices with entry $\lambda \in K^{\times}$ on the diagonal.

Using an analog method, show that the center $Z(SL_n(K))$ is canonically isomorphic to the subgroup $\mu_n(K) \subset K^{\times}$ of the multiplicative group of K consisting of n-th root of unity in K.

Exercise 4.

- 1) (*) Let $H \subset G$ be be a subgroup of the group G. If the index [G : H] is 2, show that H is normal.
- 2) Consider S_4 as the group of permutations of the 4 vertices of a square in \mathbb{R}^2 . Show that the subgroup $D_4 \subset S_4$ consisting of isometries of the square (for the canonical euclidean structure) has 8 elements.
- 3) Show that if $D_4 \subset \mathcal{S}_4$ was a normal subgroup, it would be the kernel of a group homomorphism $\mathcal{S}_4 \to \mathbb{Z}/3$.
- 4) Conclude that S_4 has a subroup of index 3 which is not normal.