Exercise sheet 4

Exercise 1.

Let k be a field, and Sch_k^{ft} be the category of finite type separated k-schemes. We considere the Zariski topology \mathcal{T}_{Zar} on Sch_k^{ft} formed by the open coverings. Let $n \geq 2$ be an integer. Show that the morphism of k-schemes

$$(-)^n:\mathbb{A}^1_k\to\mathbb{A}^1_k$$

corresponding to the morphims of k-algebras $k[T] \to k[T]$, $T \mapsto T^n$ (in the obvious way) doesn't induce an epimorphism of sheaves of sets in $Shv_{\mathcal{T}_{Zar}}(Sch_k^{ft})$. [Use that the in the Zariski topology the local rings of points of schemes correspond to points]

Give an example of short exact sequence of sheaves of abelian groups in $Shv_{\mathcal{T}_{flat}}(Sch_k^{ft})$ which is not an exact sequence of sheaves of abelian groups in $Shv_{\mathcal{T}_{Zar}}(Sch_k^{ft})$.

Exercise 2.

Let k be a field, and Sch_k^{ft} be the category of finite type separated k-schemes. We considere the Zariski topology \mathcal{T}_{Zar} on Sch_k^{ft} formed by the open coverings and also the flat topology \mathcal{T}_{flat} defined in the lecture. Let $n \geq 0$ be an integer. We consider the operation of the k-group scheme $(\mathbb{G}_m)_k$ on the punctured affine space $\mathbb{A}_k^{n+1} - \{0\}$ by "multiplication on the coordinates".

Show that in both topologies \mathcal{T}_{Zar} and \mathcal{T}_{flat} , the quotient sheaf of sets of $\mathbb{A}^{n+1} - \{0\}$ by the action of $(\mathbb{G}_m)_k$ is in both cases represented by the *n*-th projective space \mathbb{P}^n_k .

(***) Is the quotient of \mathbb{A}_k^{n+1} by the action of $(\mathbb{G}_m)_k$ represented by a scheme ? [Hint: prove that yes the quotient is a k-scheme, in fact isomorphic to Spec(k).... Reduce to the case n = 0...]

Exercise 3.

Let (C, T) be a site endowed with a topology. Let G be a sheaf of groups on (C, T), equivalently a group object in $Shv_{\mathcal{T}}(C)$. Let $X \in Shv_{\mathcal{T}}(C)$ be a sheaf of sets endowed with an action of G (in the obvious sense):

$$\mu: G \times X \to X$$

- 1) For any point $x = (x_*, x^*)$ of $(\mathcal{C}, \mathcal{T})$ and a sheaf $Y \in Shv_{\mathcal{T}}(\mathcal{C})$ simply denote by $Y_x = x^*(Y)$ the stalk of Y at x. Show that G_x is a group, and that it acts on X_x .
- 2) Define the quotient X/G of X by G in $Shv_{\mathcal{T}}(\mathcal{C})$ as a coequalizer. For any point $x=(x_*,x^*)$ of $(\mathcal{C},\mathcal{T})$ show that the stalk $(X/G)_x$ at x of the quotient is (canonically isomorphic) to X_x/G_x .
- 3) We say that the action of G on X is free if the morphism in $Shv_{\mathcal{T}}(\mathcal{C}): G \times X \to X \times X$, equal to μ on factor and the projection to X on the other is a monomorphism. Show that if G acts freely on X, for any point $x = (x_*, x^*)$ of $(\mathcal{C}, \mathcal{T})$ the group G_x acts freely on X_x , and that this characterizes free action if the site has enough points. The corresponding diagram $G \Rightarrow X \to Y = X/G$ is called a G-torsor over Y.
- 4) Give an example of G torsor in $Shv_{Zar}(Sch_k^{tf})$ (one is already on this sheet...).