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0 Introduction

The title refers to the following conjecture of E. Friedlander [12]:

Conjecture 1 For any algebraically closed field F , any reductive algebraic
F -group G and any prime ` different from char(F ) the natural ring homo-
morphism

H∗et(BG; Z/`)→ H∗(BG(F ); Z/`)

from the Z/`-étale cohomology of the simplicial classifying space of G to the
cohomology with Z/`-coefficients of the discrete group G(F ) is an isomor-
phism.

and with J. Milnor’s variant in the case F = C [35]:

Conjecture 2 For any Lie group G and any prime ` the natural ring ho-
momorphism

H∗sing(BG; Z/`)→ H∗(BGδ; Z/`)

from the Z/`-singular cohomology of the classifying space BG of the topolog-
ical group G to the Z/`-singular cohomology of the classifying space BGδ of
the discrete group Gδ underlying G is an isomorphism.

The two conjectures are equivalent for F = C and G a complex algebraic
Lie group by Grothendieck’s comparisons theorems between étale and sin-
gular cohomology, but each contains cases which are not reached by the other.

The aim of these conjectures is the computation of the right hand side
that is to say the mod ` cohomology of the (classifying space of the) discrete
group G(F ). Indeed, again by Grothendieck’s comparisons theorems the left
hand side of conjecture 1 is isomorphic to the singular mod ` cohomology
of the topological classifying space of the complex algebraic Lie group G(C)
of complex points of G. The singular cohomology of the classifying space
of a Lie group is in practice already computed (in most cases) by standard
technics of algebraic topology and should be considered as “simpler”. For
instance H∗sing(BSLn(C); Z/`) is known to be a polynomial ring with coeffi-
cients in Z/` on the Chern classes c2, ..., cn.

The main evidence for these conjectures is the result of Suslin [60, 61]
which establish the case G = SL∞ (which is not an algebraic group!) for each
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separably closed field F . Friedlander and Mislin also proved the conjecture
for G arbitrary and F the algebraic closure of a finite field [14]. Using Suslin’s
results [62] on stability properties of the homology for SLn one may deduce
the conjecture for SLn in (co-)homological degree ∗ small enough compared
to n. For the classical groups like the orthogonal and symplectic group, one
may as well deduce from Suslin Theorem partial results using stability prop-
erties; see for instance [29]. Except these cases obtained from Suslin’s result
by stabilization properties, the conjecture is basically unknown. For further
references the reader should check [30] and [50]. Up to now in particular,
there is no known split simple algebraic group G for which the conjecture
holds over any separably closed field F .

Let us start with the following result which establishes what we call “the
weak Friedlander-Milnor conjecture”:

Theorem 3 Let F be a separably closed field, let G be any reductive algebraic
F -group G and let ` be a prime different from char(F ). Then the natural
homomorphism

H∗et(BG; Z/`)→ H∗(B(G(∆•F )); Z/`)

is an isomorphism.

Here ∆•F denotes the cosimplicial affine F -scheme defined by ∆n
F :=

Spec(F [T0, . . . , Tn]/(
∑

i Ti − 1)) and with the standard cosimplicial struc-
ture. In the previous Theorem G(∆•F ) denotes the simplicial group obtained
by evaluating G on ∆•F , and BG(∆•F ) means its classifying space (as in [9] for
instance). Thus the right hand side of the previous isomorphism is the mod `
singular cohomology of classifying space of the simplicial group G(∆•F ). The
morphism itself comes from a commutative square of the form

H∗et(BSing
A1

• (G)); Z/`) → H∗(B(G(∆•F )); Z/`)
↓ o ↓

H∗et(BG; Z/`) → H∗(B(G(F )); Z/`)

in which SingA1

• (G) is the Suslin-Voevodsky construction on G (see below),
the left vertical morphism is an isomorphism and the bottom horizontal mor-
phism is the one appearing in the Friedlander conjecture. This diagram will
be discussed in Section 1.1 below.
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Remark 4 Classical devissage methods and Theorems for the structure of
algebraic groups over perfect fields allow one to extends the previous Theorem
to smooth F -groups scheme which can be defined over a perfect subfield of
F . The cases where G is an abelian variety, a smooth unipotent group
defined over a perfect subfield, a discrete finite group, or a split Torus are
straightforward to check. Thus the main point of the Theorem and of the
Friedlander-Milnor conjecture is the case where G is (semi-)simple.�

The following property depending on the smooth F -group G plays an
important role in relating Theorem 3 to the Friedlander conjecture through
the above diagram:

Definition 5 Assume F is an infinite field. Let G be a smooth algebraic
F -group and let ` be any prime different from char(F ). One says that G
satisfies the homotopy invariance of group cohomology at ` if for any integer
n ≥ 1 the natural ring homomorphism

H∗(BG(F [T1, . . . , Tn]); Z/`)→ H∗(BG(F ); Z/`)

is an isomorphism.

We observe (see [30, page 110]) that if F is finite the homotopy invariance
of group cohomology is false in general. The previous notion is relevant
because of the following consequence:

Corollary 6 Let F be a separably closed field, let G be any reductive alge-
braic F -group and ` be a prime different from char(F ). If G satisfies the
homotopy invariance of group cohomology at ` then the map of simplicial
sets:

BG(F )→ B(G(∆•F ))

induces an isomorphism on mod `-cohomology and consequently the Fried-
lander conjecture holds for G.

Proof. This follows by using the spectral sequences of the bisimplicial
set BG(∆•F ) of the form

Ep,q
1 = Hq(BG(∆p

F ); Z/`)⇒ Hp+q(BG(∆•F ); Z/`)
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together with the fact that each of the F -scheme ∆p
F is an affine F -space of

dimension p.�

From [24] it follows that the group SL2 doesn’t have the property of ho-
motopy invariance of group cohomology at `. The weak Friedlander-Milnor
conjecture reduces the Friedlander-Milnor conjecture for SL2 to the state-
ment that the morphism

BSL2(F )→ B(SL2(∆•F )) (0.1)

induces an isomorphism on mod ` homology for any separably closed field F
of characteristic 6= `.

The SL2 case should be quite special and we believe that each semi-simple
group, not containing the type SL2, should satisfy the homotopy invariance
of group cohomology at `, at least over a separably closed field F of charac-
teristic 6= `.

For the group SL3 the homotopy invariance for group cohomology is
proven in [30, Theorem 4.6.8] because for polynomial rings with coefficients
in a field F one knows that E3 agrees with SL3 by results of Suslin [59].
The Theorem of Knudson is an elaboration on the work [56] of Soulé who
proved the invariance property for each split semi-simple groups in the case
of polynomial rings in one variable. In [70] the technics of Knudson are
generalized to any split semi-simple group of rank 2. Moreover Wendt also
proved in [71] that SL4 has the homotopy invariance of group cohomology
at `. Consequently we get altogether:

Theorem 7 Let F be a separably closed field and let ` be a prime differ-
ent from char(F ). Let G be a split simple algebraic F -group of one of the
following type: SL3, SO5 or G2 and SL4. Then the natural homomorphism

H∗et(BG; Z/`)→ H∗(BG(F ); Z/`)

is an isomorphism.

Remark 8 In a work still in progress, we hope to fix the case of SL2 as well
by establishing that (0.1) induces an isomorphism on mod ` homology for
any separably closed field F of characteristic 6= `.�
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When F is the field of complex numbers, Grothendieck’s comparison theo-
rems give some cases of Milnor’s form of the conjecture for complex algebraic
Lie groups:

Corollary 9 For any complex algebraic Lie group G and any prime ` the
natural ring homomorphism

H∗sing(BG; Z/`)→ H∗(BG(∆•C)δ; Z/`)

is an isomorphism. Here G(∆n
C)δ means the discrete group of algebraic mor-

phisms ∆n
C → G, and BG means the classifying space of the topological group

underlying G. Consequently the morphism

H∗(BG; Z/`)→ H∗(BGδ; Z/`)

is an isomorphism if G is a complex simple algebraic group of type SL3, SO5,
G2 or SL4.

In Section A of the Appendix we give a direct treatment of the degree
2 case of the Friedlander conjecture, which relies on standard facts on cen-
tral extensions of algebraic groups and the theory of A1-universal coverings
developed in [41]. This should be compared to the results of [50]. Using a
slight elaboration of the technics of this work, one may in fact go one step
further and prove the conjecture for ∗ ≤ 3 for any group.

To explain our strategy for the weak Friedlander conjecture, alias Theo-
rem 3, let us recall that the Quillen algebraic K-theory groups Kn(F ) of a
field F (or of a regular ring) are isomorphic in degree n ≥ 1 to the Karoubi-
Villamayor K-theory groups KKV

n (F ) := πn(B(GL∞(∆•F )), see for instance
[17]. The argument of Suslin relies on the existence of certain transfers mor-
phisms in mod ` algebraic K-theory groups, which are used in a fundamental
way to prove the famous rigidity theorem.

Our approach will use extensively the Suslin-Voevodsky construction on
G, denoted by SingA1

• (G), that is to say the previous construction, but really
considered as a simplicial sheaf of groups

Smk 3 X 7→ SingA1

• (G)(X) := G(∆•k ×X)

on the category Smk of smooth k-schemes in the Nisnevich topology, where
k is a fixed perfect base field (like a prime field for instance). Recall [47, 44]
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that the Nisnevich topology has for covering families {Ui → X}i in Smk the
étal covering families with the property that for any point x ∈ X there is
an i and a point y in Ui lying over x with the same residue field. Except
otherwise stated, in this text we only use the Nisnevich topology on Smk.

To be more precise on our approach, we will study the “A1-homotopy
type” of its classifying space BSingA1

• (G), a simplicial sheaf of sets on Smk

in the Nisnevich topology, or a space in short, see [44]. The main obstruction
to adapt Suslin’s method to the space BSingA1

• (G) comes from the fact that
the correspondence F 7→ πn(BSingA1

• (G)(F )) doesn’t form a cohomology
theory and that there is no way, a priori, to endow it with suitable transfers,
as opposed to the above case G = SL∞.

To get round this difficulty we will introduce a rather new approach based
on A1-homotopy theory which proceeds roughly speaking in two fundamental
steps.

The first step reduces the Theorem 2 to checking a rigidity property for
the A1-chain complexes CA1

∗ ((Gm)∧n; Z) of the smash-powers of Gm’s for all
n’s. This reduction step is highly of homotopical nature, but also uses in an
essential the Bruhat decomposition for split groups, and also relies essentially
on some highly non trivial results from [41]. These results, and part of their
proof, contains, on the other hand, the “genes” of the notion of sheaves with
generalized transfers which is used in the second step.

Observe that as a consequence, the first step reduces Theorem 2 to a
statement which doesn’t depend on any group G, nor any field F .

The second step is to prove the expected rigidity property for these chain
complexes CA1

∗ ((Gm)∧n; Z): one has to understand why applying the “ab-
stract” A1-localization functor for chain complexes to Z((Gm)∧n) yields a
chain complex whose homology sheaves have the rigidity property at `; this
is done by observing that these homology sheaves are endowed with a struc-
ture of sheaves with generalized transfers, for which the one considered by
Voevodsky [67] are one of the examples. We conclude by a reduction at the
very end to the classical rigidity Theorem of [63].
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Let us give more details. From now on k is a fixed perfect field.

In Section 1 we give some recollection on the characterization of A1-local
spaces [44, 41] in terms of A1-homotopy sheaves; this is one of the result that
we use from [41]. We then prove that the classifying space BSingA1

• (G) is
A1-local for any split semi-simple group. It is moreover simply connected if
G is simply-connected in the sense of algebraic group theory.

In section 2 we observe along the classical lines, see [60, 63, 28, 30], that
Theorem 3 is a consequence of the “rigidity property at `” of the space
BSingA1

• (G). It is also well-known (see Knudson’s book [30] or Jardine’s
article [28]) that this rigidity property for the space BG itself implies di-
rectly Friedlander’s conjecture. However, though there is so far no known
method to prove it for BG directly, in contrast, we are able to prove it for
BSingA1

• (G). The latter space is a bit more flexible than BG, it should be
thought of as the +-construction in the A1-homotopy sense, and can thus be
reached by standard method of algebraic topology, in contrast to BG.

To prove the rigidity property at ` for BSingA1

• (G) we will use the fol-
lowing Theorem which we prove in Section 3:

Theorem 10 Let X be a pointed simply-connected A1-local space over the
base field k, ` be a prime different from char(k). If the A1-chain complexes
CA1

∗ (X n; Z/`), n ≥ 1, have the rigidity property at `, then the space X satis-
fies the rigidity property at `.

To prove the Theorem 10, we implement first in Section 3.1 the A1-lower
central series, which is constructed by analogy with [8, 9] from the classical
lower-central series filtration of the loop space. This gives a canonical ex-
pression of the pointed simply connected A1-local space X as the homotopy
inverse limit of a tower of simply connected pointed spaces

· · · → Ws(X )→ Ws−1(X )→ · · · → W1(X )→ ∗

in which the homotopy fiber ofWs(X )→ Ws−1(X ) is the generalized Eilenberg-
MacLane space B(Ls−1(KC∗(X )[−1])), whose loop space is the free Lie al-
gebra functor Ls−1 in weight s−1 applied to the loop space of the Eilenberg-
MacLane space KC∗(X ) associated to the chain complex C∗(X ) of X . Using
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[8] and the fundamental connectivity results from [41], we see that

Ls−1(KC∗(X )[−1])

gets highly and highly A1-connected as s increases.

The proof of Theorem 10 follows from this in Section 3.2 through a de-
vissage of the total A1-derived functor of the free Lie algebra functors Ls,
that is to say of A1-localization of spaces of the form Ls−1(KC∗), for C∗ a
complex of abelian sheaves (see [11, 10] for the notion of derived functors of
non additive functors in the classical case).

We prove that the A1-chain complexes CA1

∗ ((BSingA1

• (G))n; Z/`), n ≥ 1,
have the rigidity property at ` in Sections 4 and 5. Using general simple facts
on the A1-chain complexes, we show in Section 4 that the Bruhat decomposi-
tion for G reduces the rigidity property at ` for the space BSingA1

• (G) to the
rigidity property of the A1-chain complexes CA1

∗ ((Gm)∧n) of smash-products
of Gm’s. This finishes the first step of our proof.

The rigidity property of the A1-chain complexes CA1

∗ ((Gm)∧n) is proven
in section 5. To do this we embed the free sheaf of abelian groups

Z(n) := Z((Gm)∧n)

on the n-th smash-power (Gm)∧n of Gm into an explicit sheaf Ztr(n) called
the transfer completion of Zn, such that by construction, for any finite field
extension K ⊂ L with a generator x ∈ L, there is a canonical transfer
morphism

TrLK : Z(n)(L)→ Ztr(n)(K)

This sheaf Ztr(n) must be thought of as the sheaf of finite correspondences
to A1 with coefficients in Z(n), in the spirit of [67].

We then prove in a very explicit way that the monomorphism

Z(n) ⊂ Ztr(n)

is an A1-quasi-isomorphism, that is to say that the A1-localization functor
LabA1(−) for chain complexes induces a quasi-isomorphism of chain complexes
of abelian groups on Smk

CA1

∗ ((Gm)∧n) = LabA1(Z(n)) ∼= LabA1(Ztr(n))
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Some general fact on A1-localization and base change imply that the above
transfers morphisms from Z(n)(L) to Ztr(n)(K) induce then actual transfers
morphisms on the homology sheaves of the chain complex CA1

∗ ((Gm)∧n).

The A1-homology sheaves of the A1-localizations are known [38, 41] to be
strictly A1-invariant sheaves. A strictly A1-invariant sheaf M is a sheaf of
abelian groups on Smk such that for any X ∈ Smk the map

H∗(X;M)→ H∗(A1 ×X;M)

is an isomorphism. Here the cohomology is computed in the Nisnevich topol-
ogy. These type of sheaves form an abelian category, and the structure of
transfers on those that we obtained is a new one, which we call strictly A1-
invariants sheaves with generalized transfers, see Section 5.2 for a precise
definition. To be slighlty more precise, this structure involves a structure of
sheaf of modules over the sheaf GW = KMW

0 of unramified Grothendieck-
Witt rings of symmetric non-degenerate bilinear forms constructed in [41] (it
is called there the Milnor-Witt K-theory ring in weight 0), which is compati-
ble in a tricky sense with the transfers. The structure of homotopy invariant
sheaves with transfers defined by Voevodsky [67] is exactly the particular case
where the GW-module structure is trivial, that is to say factors through the
rank homomorphism GW→ Z.

We conclude the proof of the rigidity property for the A1-chain complexes
CA1

∗ ((Gm)∧n) by observing first that for ` odd, when −1 is a square in the
base field, the GW-module structure on the mod ` homology sheaves has
to be trivial, thus giving homotopy invariant sheaves (of Z/`-vector spaces)
with transfers in the classical sense of Voevodsky. These sheaves have the
rigidity property by [63]. Theorem 3 for odd ` follows from this.

To prove the rigidity property at the prime ` = 2 requires a bit more
work. Roughly speaking we observe that for a strictly A1-invariant sheaf M
with generalized transfers, one may define a filtration

· · · ⊂ InM ⊂ · · · ⊂ IM ⊂M

by strictly A1-invariant sheaves stable under the transfers and the GW-
module structures which is directly induced by the filtration of GW by the
powers of the fundamental ideal I ⊂ GW. The successive subquotients
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InM/In+1M are thus homotopy invariant sheaves with transfers in the sense
of Voevodsky and thus satisfy the rigidity property at 2 as well.

To conclude in the case ` = 2 using this filtration, we observe that for
a strict henselization A of a (geometric) point in a smooth k-scheme with
fraction field F one has InM(F ) = 0 for n ≥ 2. One thus concludes from
the rigidity property of InM/In+1M for n = 0 and 1.

We also observe that just the existence of the subsheaf IM ⊂M is enough
to prove the rigidity property at 2 in the original sense of Suslin, that the
mod 2 homology H∗(BSing

A1

• (G)(F ); Z/2) doesn’t depend on the separably
closed field F . In finite characteristic this suffices to prove Theorem 3 by the
results of [14].�

Remark 11 Using the affirmation by Voevodsky of the Milnor conjectures,
which implies (see [2, Lemma 2.1]) that for a field F of finite type over its
prime field, In+1(F ) = 2In(F ) for n large enough, we get a much stronger
rigidity property, which holds for any henselization of a point of a smooth
k-scheme.�

The property that we actually can prove for the space BSingA1

• (G) is
indeed much stronger that just to imply the weak Friedlander conjecture. It
implies also in case −1 is a square in k that the canonical morphism

BSingA1

• (G)→ (BSingA1

• (G))∧µ

from the space to its motivic completion, obtained either by the method of
Sullivan [58] or directly as the Bousfield-Kan Tot construction [5] applied to
the cosimplicial space obtained by using the pair of adjoint functors “Voevod-
sky motive” and “motivic Eilenberg-MacLane space”, is a weak-equivalence
when evaluated at fields (or Henselian local rings). We will come back to this
point in a sequel to this work. One says then that BSingA1

• (G) is motivic
complete.

To emphasize our method, let us mention the following result which is a
generalization of Theorem 3 (obtained by taking for k an algebraic closure
of a prime field and X = BSingA1

• (G)):
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Theorem 12 Assume k is an algebraically closed field, ` is a prime number
different from char(k) and let X be a pointed A1-local simply connected space
over k. If the A1-chain complex1 of X is of mixed Tate type2, then X is
motivic complete, and in particular has the rigidity property at ` (see Section
2.1).

In particular, for any extension k ⊂ F with F separably closed, the mor-
phism of simplicial sets X (k)→ X (F ) induces an isomorphism

H∗(X (F ); Z/`) ∼= H∗(X (k); Z/`)

and moreover the natural ring homomorphism

H∗et(X ; Z/`)→ H∗(X (F ); Z/`)

from the Z/`-étale cohomology of the space X to the mod ` cohomology of
X (F ) is an isomorphism.

Remark 13 A further consequence of this result is that, when k is alge-
braically closed and G is a semi-simple k-group, the morphism of pro-`-
simplicial sets

(BSingA1

• (G)(k))̂` → (BSingA1

• (G))̂`,et = (BG)̂`,et

and also
(SingA1

• (G)(k))̂` → (SingA1

• (G))̂`,et = (G)̂`,et

obtained by applying the pro-` étale homotopy type functor (see for in-
stance [3, 13]) to the inclusions of spaces BSingA1

• (G)(k) ⊂ BSingA1

• (G)
or SingA1

• (G)(k) ⊂ SingA1

• (G) is an equivalence. Our technic may be used to
extend these results to the Suslin-Voevodsky construction on other smooth
k-schemes. For instance one gets a pro-` equivalence of the form

SingA1

• (Pn)(k)̂` ∼= (Pn)̂`,et

by applying the pro-` étale homotopy type functor to the inclusion of spaces
SingA1

• (Pn)(k)) ⊂ SingA1

• (Pn). More generally one may derive such equiva-
lences for the Suslin-Voevodsky construction SingA1

• (X) on various homoge-
neous varieties of the form X := G/H, where H is a k-subgroup of G.

This proves that under the previous assumptions, the “very naive” mod `
homology of the simplicial set SingA1

• (X)(k) coincides with the mod ` Suslin
homology of X as it follows from [63]. This result is also new.�

1see [39][41]
2see Section 4.1, this basically means that it is build out of CA1

∗ (G∧n
m )’s
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Conventions. For a field F , we let SmF denote the category of finite
type smooth F -schemes.

In the sequel, k denotes a fixed perfect field, G a fixed split semi-simple
k-group, and ` denotes a prime number different from char(k). We let Fk
denote the category of fields extensions of k which are of finite transcendence
degree over k.

If not otherwise stated, by sheaf we always mean a sheaf in the Nisnevich
topology on Smk and by a space we mean a simplicial sheaf of sets in the
Nisnevich topology on Smk.

We refer the reader to [44, 41] for the basic notions concerning the sim-
plicial and A1-homotopy theory of sheaves, the notion of chain complexes
and their corresponding Eilenberg-MacLane spaces, and the notions of A1-
homotopy sheaves, A1-homology sheaves and A1-chain complexes, which we
will use freely.

We will finally assume the reader is acquainted with the notion of essen-
tially smooth k-schemes, these are for us noetherian k-schemes obtained as
inverse limit of a system of smooth k-schemes in which the transitions mor-
phisms are étale and affine. For instance the spectrum of the local ring OX,x
of a smooth k-scheme X at a point x. Or its henselization OhX,x. For such an
essentially smooth k-scheme U = limαUα, and for X a space, we will denote
by X (U) the simplicial set obtained as the filtering colimit of the X (Uα)’s.
For instance, if F ∈ Fk, Spec(F ) is essentially smooth over k, and X (F ) is
the stalk of X at F .
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homotopy type of classifying spaces of algebraic groups started years ago,
aiming at understanding the Serre conjectures in Galois cohomology from
the point of view of A1-homotopy theory. I am grateful to Aravind Asok
for mentioning to me at some point the Friedlander conjecture. I want to
thank Vladimir Voevodsky for his interest during my stay at the Institute
for Advanced Studies in 2010. I also want to specially thank Mike Hopkins
for his interest in this work, for his support and for some helpful discussions.

The final idea which led to a very important simplification of a previous
construction, related to the construction of some transfers morphisms on the
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very gateful to the I.A.S. for his hospitality during this period January-May
2010, which allowed me to improved considerably the present work in many
aspects.
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1 The A1-local space BSingA1
• (G)

1.1 The Suslin-Voevodsky construction

For M : (Smk)
op → Set a presheaf of sets on the category of smooth k-

schemes, we may consider the simplicial presheaf of sets on Smk defined
by

U 7→ M(∆• × U)

where n 7→ ∆n
k = ∆n := Spec(k[T0, . . . , Tn]/

∑
Ti = 1) is the standard alge-

braic cosimplicial simplex over F [63]. IfM is a sheaf (in the Nisnevich topol-
ogy) on Smk, this simplicial presheaf is a simplicial sheaf of sets, which we
denote by SingA1

• (M). We will call this construction the Suslin-Voevodsky
construction on M.

We will be interested in the Suslin-Voevodsky construction SingA1

• (G) on
G itself. It is a simplicial sheaf of groups on Smk, in fact a sheaf in the étale
topology as well, but at this point we will ignore it. We may consider its
simplicial classifying space BSingA1

• (G) defined by the usual formulas (see for
instance [44, page 128]). It is a simplicial sheaf of sets on Smk and we have
a canonical inclusion of simplicial sheaves of sets (coming from the inclusion
G ⊂ SingA1

• (G) as the sheaf of 0-vertices)

BG→ BSingA1

• (G)

Let ` be a prime number different from char(F ) and let M be a lo-
cally constant sheaf of Z/`-torsion abelian groups on SmF ; the classical A1-
invariance property of H∗et(−;M) [23] and the argument of the proof of [44,
Corollary 3.8 p. 89] imply:

Theorem 1.1 The morphism BG→ BSingA1

• (G) induces an isomorphism

H∗et(BSing
A1

• (G);M) ∼= H∗et(BG;M)

Using the previous results, Theorem 3 for G and F is now clearly a
consequence of the following result, by taking for k the algebraic closure (in
F ) of the prime field:
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Theorem 1.2 Assume k is algebraically closed. Let F be a separably closed
field extension of k and let G be a semi-simple k-group. The natural ring
homomorphism

H∗et(BSing
A1

• (G); Z/`)→ H∗(BSingA1

• (G)(F ); Z/`)

is an isomorphism.

This is our starting point. We will refer to this result as the “weak
Friedlander conjecture”. The space BSingA1

• (G) is somehow much more
flexible than the simplicial classifying space BG as it will appear in the
next sections. For instance for G simply connected (as an algebraic k-group)
BSingA1

• (G) is a (A1-)simply connected space by Theorem 1.5 below, though
in contrast BG has for only non trivial simplicial homotopy sheaf its π1 which
is G itself! The space BSingA1

• (G) may be thought in some sense as the +-
construction on BG. The morphism

BG→ BSingA1

• (G)

induces an isomorphism on A1-homology (see below) and BSingA1

• (G) is
A1-simply connected. Its homotopy sheaves in contrast to that of BG are
unknown (expect the first one by the Hurewicz Theorem), but these are much
more flexible objects!

1.2 The A1-local space SingA1

• (G) and its classifying space

In [41] we proved that SingA1

• (SLn), for n ≥ 3, is A1-local. Recall from [44]
that a space X is A1-local if and only if the morphism to its A1-localization

X → LA1(X )

is a simplicial weak equivalence. We proved in fact a much stronger property
of SingA1

• (SLn): it has the affine A1-Brown-Gersten property in the Nisnevich
topology. This result has been generalized to any semi-simple k-group G by
Wendt [69], except for the type SL2, which has recently been settled by L.-F.
Moser. Thus:

Theorem 1.3 ([41] for SLn, n ≥ 3, Wendt [69] for type different of SL2,
Moser [45] for SLn, n ≥ 2) The Suslin-Voevodsky construction SingA1

• (G) of
a split semi-simple k-group is A1-local.
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Remark 1.4 1) Let X ∈ Smk. We will say that X is chain A1-local if the
Suslin-Voevodsky construction SingA1

• (X) on X is A1-local. In fact I do not
know any example of X which is not A1-chain local.

2) Let M be a sheaf of abelian groups with transfers in the sense of
Voevodsky [67]. Then one of the consequences of the results of Voevodsky
on sheaves with transfers [67][68] is that the spaces SingA1

• (M), BSingA1

• (M),
K(SingA1

• (M), n), etc... are A1-local. The difficulty in proving Theorem 1.3
is of course that the sheaf of groups G is not abelian and has no reasonable
structure of transfers.�

The following result is a non-trivial consequence of Theorem 1.3:

Theorem 1.5 1) The space BSingA1

• (G) is A1-local.

2) Assume furthermore that G is simply connected (and split semi-simple)
as an algebraic k-group. Then the A1-local space BSingA1

• (G) is A1-simply
connected.

Proof. The first statement follows from Theorem 1.3, [41, Thm 3.46]
and the Theorem A.2. Now if G is split semi-simple simply connected, G is
A1-connected by Theorem A.2 again, and thus BG is simply A1-connected.�

Remark 1.6 This is the only place where we use the assumption char(k) 6=
2. As so far Theorem 1.3 only holds in characteristic not 2.�

2 The Friedlander conjecture and the rigidity

property

2.1 The rigidity properties at `

We now introduce the rigidity property at ` concerning a space. A discussion
of rigidity properties and various implications towards the Friedlander-Milnor
conjecture may be found in [30, §5.3]. We consider 3 notions, inspired by the
rigidity Theorem of [63] and the approach of [28], though in fact we are able
to prove the strongest possible one.

Below we show that if the space BSingA1

• (G) has the rigidity property
then the weak Friedlander conjecture holds for G and any separably closed
field extension F of k.
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Definition 2.1 Let X be a space.

1) We will say that X has the weak rigidity property at ` if for any
extension k ⊂ F with F a separably closed field, the natural map of simplicial
sets X (ks)→ X (F ) induces an isomorphism in mod ` homology:

H∗(X (ks); Z/`) ∼= H∗(X (F ); Z/`)

(Here ks ⊂ F means the separable closure of k in F , which is of course sep-
arably closed itself.) When no confusion can occur on ` which is fixed, we
will just say “X has the weak rigidity property” instead of “X has the weak
rigidity property at `”.

2) We will say that X has the rigidity property at ` if for each strict
henselization OshX,x of the local ring of a point x ∈ X ∈ Smk with separably
closed residue field κ(x)s, the natural map of simplicial sets X (OshX,x) →
X (κ(x)s) induced by restriction to the closed point induces an isomorphism
in mod ` homology:

H∗(X (OshX,x); Z/`) ∼= H∗(X (κ(x)s); Z/`)

When no confusion can occur on `, we will just say “X has the rigidity prop-
erty” instead of “X has the rigidity property at `”.

3) We will say that X has the strong rigidity property at ` if for each
henselization OhX,x of the local ring of a point x ∈ X ∈ Smk with residue
field κ(x), the natural map of simplicial sets X (OhX,x)→ X (κ(x)) induced by
restriction to the closed point induces an isomorphism in mod ` homology:

H∗(X (OhX,x); Z/`) ∼= H∗(X (κ(x)); Z/`)

When no confusion can occur on `, we will just say “X has the strong rigidity
property” instead of “X has the strong rigidity property at `”.

Example 2.2 The simplicial classifying space BGm of the multiplicative
group Gm has the strong rigidity property at `. Indeed to check this we have
to prove that for each henselization A := OhX,x of a point x ∈ X ∈ Smk with
residue field κ = κ(x) the morphism “restriction to the closed point”

B(A×)→ B(κ×)
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induces an isomorphism on mod `-homology for ` different from the charac-
teristic of κ. It suffices to check that the kernel K of the surjective group
homomorphism A× → κ× has trivial mod `-homology; for this it suffices
to observe that K is uniquely `-divisible, which follows directly from the
classical definition of an henselian local ring.

Observe that Gm being A1-rigid, BGm = BSingA1

• (Gm)
Observe however that the multiplicative group Gm itself, considered as a

space (placed in simplicial degree 0) has not the rigidity property at `.�

Remark 2.3 1) The main result of this work is to prove that more gener-
ally, the space BSingA1

• (G) has the strong rigidity property at `, for G split
semi-simple (see Theorem 2.17).

2) It doesn’t follow that the space BG itself has the rigidity property
at `. It sounds reasonable to believe this anyway. This would follow from
our main result (Theorem 2.17) and from the following property of “homo-
topy invariance for group cohomology on henselian rings”: let OhX,x be the
Henselization of a point x ∈ X ∈ Smk then the morphism

H∗(BG(OhX,x); Z/`)→ H∗(BG(OhX,x[T1, . . . , Tn]); Z/`)

is an isomorphism for each n.�

The following Lemma will be useful:

Lemma 2.4 Assume that F → E → B is a simplicial fibration between
fibrant pointed spaces, with B connected. Assume that for any x ∈ X ∈ Smk

the action of π1(B(OhX,x)) on the mod `-homology of F((OhX,x)) is trivial (for
instance if B is simply connected or if the fibration is up to weak equivalence
a principal fibration with group G ∼= F connected). Then if two of B, E or F
have the rigidity property of type i ∈ {1, 2, 3}, then so has the third.

Proof. Indeed, let us do the case of type 3, the strong rigidity property.
For each point x ∈ X ∈ Smk with residue field κ(x) we may consider the
two Serre homology spectral sequences with mod ` coefficients of the two
fibrations sequences of simplicial sets F(OhX,x) → E(OhX,x) → B(OhX,x) and
F(κ(x)) → E(κ(x)) → B(κ(x)). From the assumptions, both E2 terms are
of the form H∗(B; Z/`) ⊗ H∗(F ; Z/`) (meaning that the local coefficients
systems are constant). Using the naturality of the Serre spectral sequence,
the rest of the argument is classical.�
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Remark 2.5 For instance, assume that F → E → B is a simplicial fibra-
tion between fibrant pointed spaces with B simply connected and E weakly
contractible. In other words F has the weak simplicial homotopy type of
the simplicial loop space Ω(B). Then the previous Lemma tells us that the
following properties are equivalent:

(1) B has the rigidity property of type i,
(2) Ω(B) has the rigidity property of type i.

Example 2.2 shows that in general the result (and thus Lemma 2.4)
doesn’t hold without assumptions on the π1 of B.�

Let us mention an application without proof:

Lemma 2.6 For any split semi-simple k-group G with universal covering
G̃ → G (in the sense of algebraic group theory), if BSingA1

• (G̃) has the
rigidity property, then BSingA1

• (G) has the rigidity property.

In what follows we give a not very surprising characterization of pointed
simply connected space X which have the rigidity property in term of their
simplicial homotopy sheaves. We leave to the reader to state and prove
the analogue statement involving the weak (resp. strong) rigidity property.
Recall that for M an abelian group we let respectively [`]M and M/` be
the kernel and the cokernel of the homomorphism “multiplication by `”:

M
`−→M .

Theorem 2.7 Let X be a pointed simply connected space. The following
conditions are equivalent:

(i) X has the rigidity property;

(ii) for each integer n ≥ 2 and for each henselization OhX,x of the local
ring of a point x ∈ X ∈ Smk with residue field κ(x), the kernel of the natural
epimorphism πn(X )(OhX,x)→ πn(X )(κ(x)) is uniquely `-divisible.

(iii) for each integer n ≥ 2 and for each henselization OhX,x of the local
ring of a point x ∈ X ∈ Smk with residue field κ(x), the two homorphisms

[`]πn(X )(OhX,x) → [`]πn(X )(κ(x)) and πn(X )(OhX,x)/` → πn(X )(κ(x))/` are
isomorphisms.
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Proof. The equivalence (ii) ⇔ (iii) is clear. The implication (ii) ⇒ (i)
is proven using the Postnikov tower {P (n)(X )}n of X and follows by in-
duction on n from the fact that for each n the map K(πn(X )(OhX,x), n) →
K(πn(X )(κ(x)), n) induces by assumption an isomorphism on mod ` homol-
ogy. To prove the converse implication (i) ⇒ (ii) one uses induction on r
and the Lemma 2.8 below.�

Lemma 2.8 Let f : K → L be a morphism of pointed simply connected sim-
plicial sets which admits a section in the pointed homotopy category, let ` be
a prime number and let r ≥ 1 be a natural number. The following conditions
are equivalent:

(i) the morphism f induces an isomorphism on H∗(−; Z/`) for ∗ ≤ r;
(ii) let Γ be the homotopy fiber of f ; then the homology H∗(Γ; Z/`) is

trivial for ∗ ≤ r;
(iii) the kernel of the (split) epimorphism πi(K) → πi(L) is uniquely `-

divisible for i ≤ r − 1 and `-divisible for i = r. In other words [`]πi(K) →
[`]πi(L) is an isomorphism for i ≤ r − 1 and πi(K)/` → πi(L)/` is an iso-
morphism for i ≤ r.

2.2 Reformulation of the rigidity property in term of
simplicial chain complex

We let Ab(k) denote the abelian category of sheaves of abelian groups in the
Nisnevich topology on Smk, and C∗(Ab(k)) the category of chain complexes
in Ab(k) (with differential of degree −1). Given a space X we let Z(X ) de-
note the free simplicial sheaf of abelian groups generated by X , that is to say
the sheafification of the presheaf U 7→ Z(X (U)) obtained by taking (degree-
wise) the free abelian group generated by the simplicial set X (U). This is a
simplicial sheaf of abelian groups, and we may associate to it its normalized
chain complex C∗(X ; Z) ∈ C∗(Ab(k)) (see for instance [9] for the definition
of normalized chain complex). This chain complex is called the simplicial
chain complex3 of X . We let C∗(X ; Z/`) be the mod ` version, which means
the tensor product C∗(X ; Z)⊗ Z/` = C∗(X ; Z)/`.

3as opposed to the A1-chain complex which will appear later
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The n-th homology sheaf of C∗(X ; Z) (resp. C∗(X : Z/`)) is called the
n-th simplicial homology sheaf of X with Z (resp. Z/`) coefficients and is
denoted by Hn(X ; Z) (resp. Hn(X ; Z/`)).

Definition 2.9 1) A chain complex C∗ of Z/`-modules will be said to have
the rigidity property (at `) if and only if for each henselization OhX,x of the
local ring of a point x ∈ X ∈ Smk with residue field κ(x), the natural mor-
phism of chain complexes of Z/`-modules

C∗(OhX,x)→ C∗(κ(x))

is a quasi-isomorphism.

2) A chain complex C∗ of abelian groups will be said to have the rigidity
property (at `) if and only if for each henselization OhX,x of the local ring of
a point x ∈ X ∈ Smk with residue field κ(x), the natural morphism of chain
complexes of Z/`-modules

C∗(OhX,x)⊗L Z/`→ C∗(κ(x))⊗L Z/`

is a quasi-isomorphism (in other words if C∗⊗LZ/` has the rigidity property).

Example 2.10 1) A complex of sheaves with transfers in the sense of Vo-
evodsky [67] whith A1-invariant homology sheaves has the rigidity property
at ` by [63].

2) Let M be a sheaf of Z/`-modules. Then the complex M (placed in
degree 0) has the rigidity property at ` if and only if for each henselization
OhX,x of the local ring of a point x ∈ X ∈ Smk with residue field κ(x), the
natural epimorphism of Z/`-modules M(OhX,x)→M(κ(x) is an isomorphism.

3) Let M be a sheaf of abelian groups. Then the complex M (placed
in degree 0) has the rigidity property at ` if and only if the sheaves M/`
and [`]M (kernel of the multiplication by `) have the rigidity property. Of
course as these two sheaves are sheaves of Z/`-modules, we may use the
characterization given in the preceding point.�

Lemma 2.11 1) Let X be a space. The following conditions are equivalent:
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(i) the space X has the rigidity property at `;
(ii) the chain complex C∗(X ; Z/`) has the rigidity property at `.

2) Let C∗ be a chain complex of sheaves of Z/`-modules and let KC∗ be
its corresponding Eilenberg-MacLane space. If H∗(C∗) = 0 for ∗ < 0, the
following conditions are equivalent:

(i) the space KC∗ has the rigidity property at `;
(ii) the chain complex C∗ has the rigidity property.

3) Let C∗ be a chain complex of sheaves of abelian groups and let KC∗
be its corresponding Eilenberg-MacLane space. If H∗(C∗) = 0 for ∗ ≤ 0, the
following conditions are equivalent:

(i) the space KC∗ has the rigidity property at `;
(ii) the chain complex C∗ has the rigidity property.

Proof. The point 1) is clear. The point 2) follows from the following
classical fact: a morphism A• → B• between two simplicial Z/`-modules is
a simplicial weak equivalence if and only if it induces a isomorphism in the
mod ` homology of the underlying simplicial sets. The third point follows
easily from this, taking into account the connectivity assumption.�

Remark 2.12 Observe that one can’t remove the assumption H∗(C∗) = 0
for ∗ ≤ 0 in the last point, as for instance the chain complex Gm itself has
the rigidity property at ` (compute H∗(Gm ⊗L Z/`) and check it!) but the
space Gm doesn’t have the rigidity property at `.

We may now prove:

Theorem 2.13 Assume k is algebraically closed and let X be a space which
has the rigidity property at `. Then the canonical morphism of complexes of
sheaves

C∗(X (k); Z/`)→ C∗(X ; Z/`)

is a quasi-isomorphism in the étale topology (where the left hand side means
the associated complex of constant sheaves). Equivalently, for any n ∈ N, the
sheaf Hn(X ; Z/`) is constant in the étale topology.
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Finally the natural ring homomorphism (see below for the precise defini-
tion):

H∗et(X ; Z/`)→ H∗(X (k); Z/`) (2.1)

is an isomorphism.

Proof. The first statement follows from the definition of the rigidity
property at `, Lemma 2.11 above and Lemma 2.15 below, just by using
the property of Definition 2.9 for henselization of closed points of smooth
k-schemes.

The last assertion follows from this and the fact that if we let Z/`et(k)
denote the abelian category of sheaves of Z/`-modules [23], and D(Z/`et(k))
its derived category, then for any space X , by the very definition of étale
cohomology, one has a canonical isomorphism

HomD(Z/`et(k))(C∗(X ; Z/`)et; Z/`[∗]) ∼= H∗et(X ; Z/`)

where C∗(X ; Z/`)et is the simplicial mod ` chain complex of X in the étale
topology, in other words the sheafification of C∗(X ; Z/`) in the étale topology.
The canonical (iso)morphism mentioned in the statement of the Theorem is
thus the composition:

H∗et(X ; Z/`) = HomD(Z/`et(k))(C∗(X ; Z/`)et; Z/`[∗]) ∼=

HomD(Z/`et(k))(C∗(X (k); Z/`)et; Z/`[∗]) = H∗et(X (k); Z/`) = H∗(X (k); Z/`)
induced by the (étale) quasi-isomorphism (2.1). The last identificationH∗et(X (k); Z/`) =
H∗(X (k); Z/`) follows from the fact that any constant sheaf of Z/`-modules
in the étale topology is projective (as k is algebraically closed).�

Remark 2.14 There is no obvious sheaf theoretic reformulation of the weak
or strong rigidity property. For instance observe that the sheaf KM

n , n ≥ 1
say, has the strong rigidity property. In particular the associated sheaf to
KM
n /` in the étale topology is indeed trivial (easy to check, any unit is an

`-power locally in the étale toplogy). However the strong rigidity property
tells us much more: for any henselization OhX,x of a point x in a smooth
k-scheme X the morphism

KM
n /`(OhX,x)→ KM

n /`(κ(x))

is an isomorphism.
We will only care on the rigidity property in this work as it is sufficient

to prove Theorem 3.�
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Lemma 2.15 Let M be a sheaf of abelian group in the étale topology on
Smk, k algebraically closed. Assume that for each henselization OhX,x of the
local ring of a closed point x ∈ X ∈ Smk (with residue field automatically k),
the morphism M(OhX,x) → M(k) is an isomorphism. Then M is a constant
sheaf in the étale topology, that is to say the morphism M(k)et → M is an
isomorphism.

Proof. The morphism M(k)et →M is an injective morphism because for
X irreducible smooth over k, the morphism M(k)et →M(X) can be identi-
fied with the morphism M(k)→M(X) induced by the structural morphism
X → Spec(k). Thus we may replace M by the cokernel of this morphism and
assume that M(k) = 0. We thus have to prove that M = 0. Take α ∈M(X).
For each closed point x ∈ X(k), αx = 0 ∈ M(OhX,x) (because M(k) = 0).
This means that there is an étale morphism Vx → X whose image contains
x such that α|Vx = 0. But the family {Vx → X}x is a covering family of X
in the étale topology, so that α = 0.�

Remark 2.16 1) Let X be a pointed simply connected space. Let X → X [1
`
]

be the universal morphism obtained by inverting ` in the homotopy sheaves
of X (this is constructed as in [58]). The homotopy fiber X`−tor of the mor-
phism X → X [1

`
] is a space whose homotopy sheaves are `-torsion. If X

satisfies has the rigidity property at `, it is easy to check that X`−tor also
has the rigidity property at `. Moreover if k is algebraically closed, then
X`−tor(k) → X is a simplicial weak equivalence in the étale topology. In
other words, X`−tor becomes constant in the étale topology.

2) One may deduce from the Theorem that if a space X has the rigidity
property at `, the obvious morphism X (k) → X induces an equivalence of
pro-` spaces X (k)̂` → X̂`,et after taking the étale homotopy type functor
[3, 13], where the left hand side means the pro-`-completion of the simplicial
set X (k).�

Taking Theorem 2.13 into account, we have reduced the proof of Theorem
1.2 and thus of Theorem 3 to the following:

Theorem 2.17 For any perfect field k and any split semi-simple k-group G,
the space

BSingA1

• (G)

has the rigidity property.
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Remark 2.18 As we already mentioned, in fact, we may prove the strong
rigidity property. See [42][43].�

Now to start proving Theorem 2.17, we need at last to let the A1-chain
complex come in the game.

3 The rigidity property and the A1-chain com-

plex

3.1 A1-chain complexes and the A1-lower central series

We want now to connect the rigidity property of a space X , or equivalently
(see the previous section) of its simplicial chain complex C∗(X ), to the rigidity
property of its A1-chain complex CA1

∗ (X ). The latter is still a mysterious
object, obtained from C∗(X ) by applying a rather abstract functor LabA1 of
A1-localization of chain complexes. But on the other hand it appears also to
be more flexible. First it is clear that the morphism

CA1

∗ (BG)→ CA1

∗ (BSingA1

• (G))

is a quasi-isomorphism. At this point there is no difference between the two
spaces involved. One of the crucial steps in our approach is to be able to
observe that CA1

∗ (G), and then CA1

∗ (BSingA1

• (G)), lies in the thick subcate-
gory of chain complexes generated by the CA1

∗ ((Gm)∧n)’s, as it follows from
the Bruhat decomposition. This wouldn’t be possible if we would stay at the
level of simplicial chain complexes.

We start by giving some recollections on A1-chain complexes from [38, 41].
We let D(Ab(k)) be the derived category of Ab(k), that is to say the cat-
egory obtained from C∗(Ab(k)) by inverting the quasi-isomorphisms. This
category is the homotopy category of a model category structure [49] on
C∗(Ab(k)) with weak equivalences the quasi-isomorphisms and cofibrations
the monomorphisms4. In the case of the category of abelian sheaves in the

4The existence of this model category structure on the category of complexes in a
Grothendieck abelian category is due independently to several authors, amongst them A.
Joyal, and the author, but so far unpublished
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Nisnevich topology, which has a set of generators of finite cohomological di-
mension, this is well known, see [41, Section 3.2].

We let DA1−loc(Ab(k)) ⊂ D(Ab(k)) the full subcategory consisting of A1-
local chain complexes as defined in [41, Section 3.2 p. 94]. From loc. cit.
this inclusion admits a left adjoint called the A1-localization functor

LabA1 : D(Ab(k)) ⊂ DA1(Ab(k))

which induces an equivalence of categories DA1(Ab(k)) ∼= DA1−loc(Ab(k)),
where DA1(Ab(k)) is the A1-derived category.

The main result of [38] is that the functor LabA1 preserves connectivity of
chain complexes. As a consequence, we proved in loc. cit. that if AbA1(k) ⊂
Ab(k) denote the full subcategory of strictly A1-invariant sheaves, a chain
complex C∗ is A1-local if and only if its homology sheaves H∗(C∗) are in
AbA1(k).

Remark 3.1 If C∗ ∈ C∗(Ab(k)) has trivial homology sheaves in degrees ≤ 0,
it is proven5 in [41, Cor. 3.24 p. 100] that the morphism of spaces induced
by the A1-localization functor KC∗ → KLabA1C∗ is an A1-weak equivalence to
an A1-local space. Thus in that case the canonical morphism

LA1KC∗ → KLabA1C∗

is a simplicial weak equivalence.
However in general (if H0C∗ 6= 0) this is not true, and for this reason

we used different notations for the A1-localization functor for spaces and
for complexes. However in each of the situations we will meet the previous
result will imply that we may identify those using the previous simplicial
weak-equivalence. We will use frequently this identification.�

Let X be a space and let C∗(X ; Z) be its normalized chain complex, see
Section 2.2. The A1-localization LabA1(C∗(X ; Z)) is denoted by CA1

∗ (X ; Z), or

sometimes simply CA1

∗ (X ), and is called the A1-chain complex of X .

From the previous results, it follows that the homology sheaves HA1

i (X ; Z)
of CA1

∗ (X ; Z) are strictly A1-invariant sheaves and vanish for i < 0. This are
called the A1-homology sheaves of the space X .

5This is at this place that we need for the moment that char(k) 6= 2.
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Remark 3.2 Even if X is an A1-local space, the chain complex C∗(X ; Z)
has no reason to be A1-local! See Remark 3.11 below.�

When X is pointed, one may consider the reduced A1-chain complex
C̃A1

∗ (X ; Z), as well the reduced A1-homology sheaves H̃A1

∗ (X ; Z), by remov-
ing the factor Z in CA1

∗ (X ; Z) corresponding to the base point. We may
also consider as in the simplicial case the A1-chain complexes and homology
sheaves with Z/`-coefficients: CA1

∗ (X ; Z/`) and HA1

∗ (X ; Z/`).

Now we introduce one of the main new technical tool: the A1-lower central
series. Let us start by recalling the classical one.

The lower central series for sheaves of groups. We assume the reader
familiar with the usual lower central series for groups, which can be found
for instance in [9]. Let G be a sheaf of groups (on (Smk)Nis). Its “naive”
lower central series . . .ΓrG ⊂ Γr−1G ⊂ Γ1G = G is defined by sheafification
of the usual one on G. It is the smallest descending filtration · · · ⊂ Γr+1 ⊂
Γr ⊂ · · · ⊂ G of G by normal subgroups such that [G,Γr] ⊂ Γr+1.

It is well known (cf loc. cit.) that there is a structure of graded Lie algebra
on the associated graded (sheaf of) abelian group(s)Gr∗(G) = ⊕Γr(G)/Γr+1(G),
that Gr1(G) = Gab the abelianization of G, and that the induced morphism

L∗(Gab) � Gr∗(G)

from the free graded Lie algebra L∗(Gab) is an epimorphism, and an isomor-
phism for G stalkwise free, see Theorem 7.5 of [9].

The Kan construction G(X ). Let X be a reduced pointed space, mean-
ing that X0 is equal to the point. One denotes by G(X ) the sheafification of
the Kan G construction [9, Def 3.15 p. 133] on the presheaf U 7→ G(X (U)).
It is a simplicial sheaf of groups, stalkwise free.

Standard homotopical algebra provides a canonical isomorphism in the
pointed simplicial homotopy category of spaces between RΩ(X ) and G(X ).

Using the main results of [8] we get:
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Theorem 3.3 Let X be a simplicially 1-connected reduced pointed space.
Then for each r ≥ 1 the morphism

G(X )→ G(X )/Γr(G(X ))

is at least {1 + log2(r)} simplicially connected.

The fiber of the morphism G(X )/Γr(G(X )) → G(X )/Γr−1(G(X )) is of
course isomorphism as a simplicial sheaf of groups to Γr−1(G(X ))/Γr(G(X )).
From what we recall above, G(X ) being stalkwise free, this simplicial abelian
group is isomorphic to the simplicial sheaf of abelian groups

Fr := Lr−1(G(X )ab)

obtained by degreewise applying the free Lie algebra functor in degree r−1 to
the simplicial abelian group G(X )ab. This simplicial sheaf of abelian groups
Fr is also (approximatively) {1 + log2(r)} simplicially connected.

The A1-lower central series. We may now deduce from the unstable
A1-connectivity result of [41] the following:

Theorem 3.4 Let X be a 1-connected A1-local reduced pointed space. Then
for each r ≥ 1 the morphism

G(X ) ∼= LA1(G(X ))→ LA1(G(X )/Γr(G(X )))

is {1 + log2(r)}-connected.

Proof. From [41] the exact sequence of simplicial sheaf of groups Γr(G(X ))→
G(X ) → G(X )/Γr(G(X )) is automatically an A1-fibration sequence. Now
from loc. cit. the space Γr(G(X )) being simplicially {1+ log2(r)} connected,
is {1 + log2(r)} A1-connected.�

For a reduced Kan simplicial set K recall [9, p. 125] that its “path
complex” PK is the simplicial set with PKn := Kn+1 and di := di + 1,
si := si+1. The morphism d0 induces a Kan fibration PK → K with fiber
ΩK the loop space of K. This construction generalizes to reduced simplicial
sheaf of sets.

If X is a pointed space, we let Z̃(X ) be the free sheaf of abelian groups
generated by X modulo the relation ∗ = 0 (base point equals 0). In other
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words we have a canonical direct sum decomposition in the category of sim-
plicial sheaves of abelian groups of the form:

Z(X ) = Z⊕ Z̃(X )

The associated normalized chain complex to the simplicial sheaf of abelian
groups Z(X ) is called the reduced chain complex of X and is denoted by
C̃∗(X ) of X . The Dold-Kan correspondance gives an isomorphism of simpli-
cial sheaves of abelian groups (see [9])

Z̃(X ) ∼= K(C̃∗(X ))

An easy inspection in the previous definitions gives the following standard
fact:

Lemma 3.5 There exists canonical isomorphisms of simplicial sheaves of
abelian groups

G(X )ab ∼= Ω(Z̃(X )) ∼= ΩK(C̃∗(X )) ∼= K(C̃∗(X )[−1])

It follows that the space Fs considered above is in fact (up to canonical
isomorphism) Fs = Ls−1(K(C̃∗(X )[−1])), a functor of the reduced simplicial
chain complex C̃∗(X ). Let us denote by FA1

s the A1-localization of Fs. We
will use the simplicial fibration sequences

FA1

s → LA1(G(X )/Γs(G(X )))→ LA1(G(X )/Γs−1(G(X ))) (3.1)

It is (up to simplicial weak equivalence) a principal fibration sequence
with connected structural group

FA1

s
∼= LA1(Ls−1(K(C̃∗(X )[−1])))) (3.2)

An A1-quasi-isomorphism C∗ → D∗ is a morphism of chain complexes
which induces an isomorphism in the A1-derived category DA1(Ab(k)) or,
equivalently, which induces a quasi-isomorphism after applying the A1-localization
functor LabA1 . For instance C∗ → LabA1(C∗) is an A1-quasi isomorphism. The
following result may be proven along the “classical” lines (see [11]) for in-
stance.
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Theorem 3.6 Let s ≥ 1 be an integer and let φ : C∗ → D∗ be a morphism of
chain complexes both concentrated in positive degrees (i.e. with Hi(C∗) = 0
for i ≤ 0. If the morphism φ is an A1-quasi-isomorphism, that is to say ,
then for any s ≥ 1 the morphism of spaces

Ls(φ) : Ls(KC∗)→ Ls(KD∗)

is an A1-equivalence (of spaces).

For this reason the chain complexes (or spaces) of the form LA1(Ls(KC∗))
are called the total derived functors of the (non-additive) functor Ls.

Thus it follows that the above space FA1

s
∼= LA1(Ls−1(K(C̃∗(X )[−1]))))

is simplicially weakly equivalent to

FA1

s
∼= LA1(Ls−1(K(C̃A1

∗ (X )[−1]))))

The right hand side is called the total A1-derived functor of Ls−1 on C̃A1

∗ (X )[−1]),
see below for some properties of these.

Together with what we have done before, we may summarize the previous
results as follows. Let X be a 1-connected A1-local reduced pointed space.
For each s ≥ 1 set

Ws(X ) := B(LA1(G(X )/Γs(G(X )))) ∼= LA1(B(G(X )/Γs(G(X ))))

and γs(X ) := LA1BΓs(G(X ))) the homotopy fiber of the canonical morphism
X → Ws(X ) (in the simplicial homotopy category).

Theorem 3.7 Let X be a 1-connected A1-local reduced pointed space. Then
for any s ≥ 1 the A1-local space γs(X ) is {1 + log2(s)}-connected and in
particular the morphism

X → Ws(X )

is {1 + log2(s)}-A1-connected.
Moreover the morphism Ws → Ws−1 a principal fibration with group

BFA1

s
∼= BLA1(Ls−1(K(C̃∗(X )[−1]))) ∼= BLA1(Ls−1(K(C̃A1

∗ (X )[−1]))))

Clearly it follows:
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Corollary 3.8 Let X be a 1-connected A1-local pointed space. If for each
s ≥ 1 the space BLA1(Ls−1(K(C̃A1

∗ (X )[−1])))) has the rigidity property, then
X has the rigidity property.

The rigidity property of the space BLA1(Ls−1(K(C̃A1

∗ (X )[−1])))) is a
property concerning only the chain complex C̃A1

∗ (X ). We thus have reduced
the rigidity property for such 1-connected A1-local pointed spaces X to a
property involving only the reduced A1-chain complex C̃A1

∗ (X ). In the next
section we make this observation quite precise.

3.2 A1-homological characterization of the rigidity prop-
erty

A1-Derived functor of the free Lie algebra functor Our aim here is to
prove the following Theorem, mentioned has Theorem 10 in the introduction:

Theorem 3.9 Let X be a pointed simply-connected A1-local space over the
base field k, ` be a prime different from char(k). If the A1-chain complexes
CA1

∗ (X n; Z/`), n ≥ 1, have the rigidity property at `, then the space X satis-
fies the rigidity property at `.

To explain the fineness of the previous Theorem 3.9 let us make some
observations.

Remark 3.10 We already observed that there exists an A1-localization func-
tor LA1 on spaces which commutes to finite products, thus takes simplicial
sheaves of Z/`-modules to simplicial sheaves of Z/`-modules. This follows
from [44] Theorem 1.66 p. 69 and Lemma 3.20 p. 93.

Given a chain complex of sheaves of abelian groups C∗ concentrated in
non negative degrees, the associated morphism of normalized chain complexes
C∗ → (LA1(KC∗))

N
∗ is an A1-quasi-isomorphism, but in general (LA1(KC∗))

N
∗

is not an A1-local complex in the sense of [41].
It is a non-trivial result [41, Corollary 3.24] that for a complex C∗ ∈

C≥0
∗ (k) which is 0-connected, the morphism

KC∗ → K(LabA1C∗)

is an A1-equivalence of spaces, which implies that the chain (LA1(KC∗))
N
∗ is

in that case canonically isomorphic to LabA1(C∗) in D(Ab(k)). Quickly said,
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we have a simplicial weak-equivalence

LA1(KC∗) ∼= K(LabA1C∗)

This is false in general if C∗ is not assumed to be 0-connected. For instance
take C∗ = Z(Gm). Then Z(Gm) = K(Z(Gm)) → K(LabA1Z(Gm)) is not an
A1-equivalence. This follows from the computations of loc. cit. and the fact
that the sheaf (and thus the space) Z(Gm) is A1-invariant and thus A1-local.
If the previous morphism were an A1-equivalence it would thus be a simplicial
weak-equivalence (between two A1-local spaces) but from [41, Theorem 2.37],
the sheaf πA1

0 of the space K(LabA1Z(Gm)) is the sheaf KMW
1 and the induced

morphism in degree 0, Z(Gm)→ KMW
1 is not an isomorphism.�

Remark 3.11 Let X be a space. The canonical morphism of chain com-
plexes

C∗(X )→ CA1

∗ (X )

from the simplicial chain complex to the A1-local chain complex of X is not
in general a quasi-isomorphism. Of course by the very definition it is an
A1-quasi isomorphism, as CA1

∗ (X ) is the A1-localization of C∗(X ). But even
if X is A1-local, C∗(X )→ CA1

∗ (X ) is also alsmost never a quasi-isomorphism!
In other words in general, the homology sheaves of C∗(X ) will not be strictly
A1-invariant even if X itself is A1-local.

For instance take X to be BGm, an A1-local space. Then H1(BGm) = Gm

and the morphism C∗(BGm) → CA1

∗ (BGm) is an isomorphism in homology
up to degree 1 included. But H2(BGm) = Λ2(Gm) can be shown not to be a
strictly A1-invariant sheaf; as a consequence, the previous morphism of chain
complexes is not an isomorphism on H2.

One should also notice that a product of finitely many spaces whith the
rigidity property has the rigidity property, and a (derived) tensor product
of finitely many chain complexes with the rigidity property has the rigidity
property, as it follows from the Künneth formula. However, a tensor product
of finitely many A1-local chain complexes will not be in general A1-local.

We end up this remark by the following questions: let X be a space with
the rigidity property is it true that its A1-localization LA1(X ) also has the
rigidity property ? Let C∗ be a chain complex with the rigidity property. Is
it true that its A1-localization LabA1(C∗) will have the rigidity property ?�
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Now we sketch the proof of Theorem 3.9. We first observe that to prove
Theorem 3.9 it suffices to establish:

Theorem 3.12 Let C∗ be a chain complex of Z/`-modules such that Hi(C∗) =
0 for i ≤ 0 and such that for each integer n ≥ 1 the A1-localization LabA1((C∗)

⊗n)
has the rigidity property at `. Then for each s ≥ 1 the space

LA1(Ls(K(C∗))

has the rigidity property at `.

Proof of Theorem 3.9 using Theorem 3.12. By Corollary 3.8 it is
sufficient to show that the spaces BLA1(Ls(K(C̃A1

∗ (X )[−1])))) have the rigid-
ity property at `, or equivalently that the spaces LA1(Ls(K(C̃A1

∗ (X )[−1])))
have the rigidity property at ` by Remark 2.5. By Theorem 3.6, we know
that

LA1(Ls(K(C̃∗(X )[−1])))→ LA1(Ls(K(C̃A1

∗ (X )[−1])))

is a simplicial weak equivalence, as well as

LA1(Ls(K(C̃∗(X ; Z/`)[−1])))→ LA1(Ls(K(C̃A1

∗ (X ; Z/`)[−1])))

Now we see that it suffices to check that the spaces LA1(Ls(K(C̃A1

∗ (X ; Z/`)[−1])))
have the rigidity property at `. Now this follows from Theorem 3.12 ap-
plied to the chain complex C∗ = C̃A1

∗ (X ; Z/`)[−1]); observe that the A1-
localization of the chain complexes (C̃A1

∗ (X ; Z/`)[−1]))⊗n is quasi-isomorphic
to the chain complex C̃A1

∗ (X ∧n; Z/`)[−n]), which, being a summand of CA1

∗ (X n; Z/`)[−n])
has the rigidity property by assumptions, which shows that C∗ satisfies the
assumption of Theorem 3.12.�

Now to get Theorem 3.12 we use some standard technics of devissage
together with the following remarks.

From [9, 51] the free Lie algebra of a direct sum V1 ⊕ V2 decomposes
canonically as:

⊕I∈BL∗(VI) ∼= L∗(V1 ⊕ V2)

where the index set B is the set of basic commutators B in two letters. This
means in particular that the above isomorphism is an isomorphism of func-
tors. This fact allows one for instance to control the statement of Theorem
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3.12 if we have a cofibration sequence of chain complexes.

Let us recall some notations for functors Ab → Ab. Tn will denote the
n-th tensor product functor A 7→ A⊗n, Sn will denote the n-th symmetric
tensor product functor A 7→ A⊗n/Σn . We will also have to use the `-cyclic
product functor A 7→ C`(A) := A⊗`/Z/` and more generally for H ⊂ Sm a
subgroup, we denote by SHm the functor A 7→ A⊗n/H . Observe that if [Sm : H]
is prime to `, the epimorphism SHm → Sm admits a section when restricted
(as functor) to the category of Z/`-modules. We extend these notations in
the obvious way to sheaves of abelian groups.

The remaining idea to prove the Theorem 3.12 is the following. Let C∗
be a chain complex of Z/`-modules such that Hi(C∗) = 0 for i ≤ 0 and such
that for each integer n ≥ 1 the A1-localization LabA1((C∗)

⊗n) has the rigidity
property. We deduce from this that the A1-localization LabA1(Sn((C∗)) have
the rigidity property by some standard homological algebra step. One pro-
ceed by induction on n. Then one observe that if ` divides n the functor Sn
can be expressed in term of functors Sn′ with n′ < n and the cyclic functor
C`. This one is understood in terms of the cohomology of Z/` with values in
T`.

Now we still have to deduce from these fact the rigidity property for the
LabA1(Ln(C∗))’s. The last idea is to use the Poincaré-Birkhoff-Witt Theorem.
For M a Z/`-module, the isomorphism L1(M) = T1(M) = M extends to
a canonical morphism L∗(M) → T∗(M), obtained by considering the tensor
algebra as a Lie algebra. This morphism is injective and more precisely, let
Ui(M)∗ ⊂ T∗(M) be the sub-Z/`-module generated by the products of j-
elements of L∗(M) for each j ≤ i. One thus gets an increasing filtration of
N-graded Z/`-modules

L∗(M) = U1(M)∗ ⊂ U2(M)∗ ⊂ · · · ⊂ Ui(M)∗ ⊂ · · · ⊂ T∗(M) (3.3)

The Poincaré-Birkhoff-Witt Theorem [4] asserts that the canonical morphism
of commutative graded (by i) algebras ⊕iSi(L∗(M))→ ⊕iUi(M)∗/Ui−1(M)∗
is an isomorphism.

In a given degree s this gives an increasing filtration

Ls(M) = U1(M)s ⊂ U2(M)s ⊂ · · · ⊂ Us−1(M)s ⊂ Us(M) = Ts(M) (3.4)
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such that the quotient Ui(M)s/Ui−1(M) is canonically isomorphic to the de-
gree i part of the symmetric algebra on the free Lie algebra over M . Using
the usual formula S∗(M ⊕ N) = S∗(M) ⊗ S∗(N), we see that for i ≥ 2,
Ui(M)s/Ui−1(M)s is as functor equal to the finite direct sum of the functors
of the form M 7→ Sj1(Lt1(M))⊗. . .⊗Sja(Lta(M)) with Σjbtb = s and Σjb = i.

This permits to finish the proof of Theorem 3.12 by induction on s. More
details may be found in [42].�

4 Reduction to the rigidity property for the

CA1
∗ ((Gm)∧n)’s

4.1 A1-chain complex of mixed Tate type

Definition 4.1 A full subcategory C ⊂ D≥0
A1 (k) is called a Class of complexes

if the following properties hold:

(1) C is stable under arbitrary direct sums (and thus contains the 0 com-
plex);

(2) For any exact triangle A→ B → C → A[1] in D≥0
A1 (k), if A ∈ C and

(B ∈ C) then (C ∈ C).

The class C is said to be multiplicative if moreover:

(3) For any A ∈ C and (B ∈ C) then A⊗B ∈ C.

We will say that a full subcategory C ⊂ D≥0
A1 (k) is a strict Class of com-

plexes if the following axiom holds in place of (1):

(1’) C is stable under finite direct sums (and thus contains the 0 complex)
and by direct summand.

Observe that a class is stable by telescopes and in particular by direct
summand. Also classes and strict classes are stable by suspension.

35



Example 4.2 If C ⊂ AbA1(k) is a Serre class in the abelian category AbA1(k)
in the usual sense then the full subcategory DC ⊂ D≥0

A1 (k) consisting of chain
complex with homology objects in C is a class of complexes in the previous
sense.

Example 4.3 The full subcategory DA1(Ab(k)) ⊂ D(Ab(k)) consisting of
A1-local chain complexes is a class of complex. Observe however it is not
multiplicative.

Example 4.4 An intersection of a family of classes is also a class of com-
plexes.

Let (C∗(i))i be a family of chain complexes inD≥0
A1 (k). We let C({C∗(i)}i) ⊂

D≥0
A1 (k) be the class generated by the C∗(i), i.e. the intersection of all classes

of complexes which contains this family. We may also introduce the strict
class of complexes generated by a family of complexes.

Define by induction on n an increasing family of full subcategories C(0) ⊂
C(1) ⊂ . . . C(n) · · · ⊂ D≥0

A1 (k) as follows: C(0) is the full subcategory with
objects the elements of the family (C∗(i))i. The category C(n) has for objects
the factors of the objects of C(n−1) and the cones of morphisms in C(n−1).
Clearly ⋃

n

C(n) = C({C∗(i)}i) ⊂ D≥0
A1 (k)

Example 4.5 If C ⊂ D≥0(Ab(k)) is a class of complexes, the full subcat-
egory CA1 ⊂ D≥0(Ab(k)) consisting of complexes C∗ whose A1-localization
LabA1(C∗) is in C is a class of complexes: this follows easily from the fact that
LabA1(−) is exact (and preserves connectivity).

Example 4.6 The full subcategory Crig,`,≥0 ⊂ D≥0(Ab(k)) consisting of A1-
local chain complexes which have the rigidity property at ` is a class of
complexes. This follows from Lemma 2.4.

It follows from Example 4.5 that the full subcategory Crig,`,≥0
A1 ⊂ D≥0(Ab(k))

consisting of chain complexes whose A1-localization has the rigidity property
at ` is a class of complexes.

The usual splitting of the sheaf Z((Gm)n) as

Z((Gm)n) ∼= ⊕I⊂{1,...,n}Z(G∧|I|m ) (4.1)
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induces a corresponding splitting of the A1-chain complex CA1

∗ ((Gm)n) as a
direct sum of CA1

∗ ((Gm)∧n)’s. Consequently, the class of complexes gen-
erated by the CA1

∗ ((Gm)∧i)}i)’s is the same as the one generated by the
CA1

∗ ((Gm)i)}i)’s.

Definition 4.7 The class of mixed Tate complexes is the class

CTateA1 (k) := C({CA1

∗ ((Gm)∧i)}i) = C({CA1

∗ ((Gm)i)}i)

generated by the A1-chain complexes of all the smash-power of Gm’s or equiv-
alently by all the split tori.

The class of strict mixed Tate complexes is the strict class Cstr.−TateA1 (k)
generated by the A1-chain complexes of all the smash-power of Gm’s.

Observe that Cstr.−TateA1 (k) ⊂ CTateA1 (k) are both multiplicative and con-
tained in the class of A1-local chain complexes.

4.2 Bruhat decomposition and A1-chain complex of G

In this section we deal with:

Theorem 4.8 Let G be a split semi-simple k-group. Then the A1-chain
complexes CA1

∗ (G) of G is of strict mixed Tate type and the A1-chain complex
CA1

∗ (BG) of BG is the suspension of a mixed Tate complex.
If furthermore G is simply connected, then CA1

∗ (G) is the suspension of a
strict mixed Tate complex.

Proof. The first statement follows from the Bruhat decomposition of
G. Let T ⊂ G be a split maximal torus, T ⊂ B ⊂ G a Borel subgroup
containing T . There is an increasing filtration of open subsets [55]

∅ = Ωs+1 ⊂ Ωs ⊂ Ωs−1 ⊂ · · · ⊂ Ω0 = G

and for each i an isomorphism of schemes

Ωi−1 − Ωi
∼= qw∈W |length(w)=iAi ×B

where length() is the length function on the Weyl group W of G, and s is the
maximal possible length. Observe that there is only one element of length s
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and that the “big cell” Ωs is an open subscheme isomorphic to As ×B.

By the theorem of Quillen-Suslin, and its generalization to rings of Lau-
rent polynomials [32, Corollary 4.9 p. 146], the normal bundle of the closed
immersion Ωi−1 − Ωi → Ωi−1 is trivial and of rank s − i (remember that as
a k-variety B is the product of T and an affine space [55].

Now using the homotopy purity theorem of [44], the quotients sheaves
Ωi−1/Ωi are canonically isomorphic in the A1-homotopy category to the
Thom space of the trivial bundle, which means a pointed space of the form
Ss−i ∧ (Gm)∧s−i ∧ (Ai × B+). As T → B is an A1-homotopy equivalence,
it follows that the quotient sheaves Ωi−1/Ωi are indeed isomorphic in the
pointed A1-homotopy category to Ss−i ∧ (Gm)∧s−i ∧ (T+).

It follows at once that the A1-chain complex G is of mixed Tate type. The
statement concerning CA1

∗ (BG) follows from this, the fact that the class of
mixed Tate complexes is multiplicative, by considering the usual skeletal fil-
tration of BG, ∗ = F 0(BG) ⊂ F 1(BG) = S1∧G ⊂ · · · ⊂ F s(BG) ⊂ . . . BG,
whose quotients are F s(BG)/F s−1(BG) ∼= Si ∧G∧i.

To prove the last statement, we observe by the Bruhat decomposition
that the cone C of T ⊂ G (do no confound with the homogeneous variety
G/T ) is always the suspension of a strict mixed Tate type.

Now we saw in Theorem 1.5 that if G is simply connected it is A1-
connected. It follows from the results in [41] that the morphism T → G
is then trivial in the pointed A1-homotopy category. Thus the cone C is
isomorphic to the wedge G ∨ Σ(T ) which proves the last property.�

Remark 4.9 Observe that becauseBG→ BSingA1

• (G) is an A1-weak equiv-
alence, it follows that the morphism of chain complexes

CA1

∗ (BG)→ CA1

∗ (BSingA1

• (G))

is a quasi-isomorphism.�

It follows from all what we have been doing so far, that for G a split semi-
simple and simply connected algebraic k-group, to check that the pointed
A1-local simply connected space

BSingA1

• (G)
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has the rigidity property at ` it suffices to prove that for each n ≥ 1, the
chain complex CA1

∗ ((Gm)∧n; Z/`) has the rigidity property. This follows from
Remark 4.6, Theorem 3.9 and Theorem 4.8.

Thus Theorem 3 for G is a consequence of the following Theorem, which
by the way, doesn’t depend on G. It is proven in Section 5 below.

Theorem 4.10 Assume k is a prime field6. For any n ≥ 0 the chain complex

LabA1Z((Gm)∧n) = CA1

∗ (G∧nm )

has the rigidity property.

Remark 4.11 We already mentioned that in fact we can prove the strong
rigidity property for these complexes. See [43].

Some further questions concerning the CA1

∗ ((Gm)∧n)’s. We now men-
tion some concrete consequences of the Theorem 4.10.

Corollary 4.12 For each n ≥ 1 the chain complex CA1

∗ ((Gm)∧n; Z/`) is lo-
cally constant in the étale topology and thus the canonical morphism between
A1-local complexes

CA1

∗ ((Gm)∧n; Z/`)→ Z/`(n)[n]

is an isomorphism in the étale topology, where the complex Z/`(n) is the mod
` motivic complex in weight n defined by Suslin-Voevodsky [67].

Proof. Theorem 4.10 implies that CA1

∗ ((Gm)∧n; Z) and thus CA1

∗ ((Gm)∧n; Z/`)
have the rigidity property at `. This is also true for Z/`(n)[n] by [67, Prop.
3.3.3 p. 215]. Thus both complexes are locally constant in the étale topol-
ogy. Thus it suffices to prove that working over an algebraic closure F of
k, and given M a constant sheaf of Z/`-vector spaces over SmF , the mor-
phisms in the derived category of étale sheaves of Z/`-vector spaces on Smk

to the shifts M [∗] from both complexes are equal. The group of morphisms
from CA1

∗ ((Gm)∧n; Z/`) to M [∗] in the étale topology over F is by definition
H̃∗et((Gm)∧nF ;M). By [67, Prop. 3.3.3 p. 215] the complex Z/`(n)[n] is over
F isomorphic to (µ`)

⊗n[n] in the étale topology. We see that we get the same

6of characteristic 6= 2
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answer by the usual computation of étale cohomology of Gn
m.�

In fact we conjecture the following. Let KMW
n be the sheaf of unramified

Milnor-Witt K-theory defined in [41]. There is a canonical epimorphism
KMW
n → KM

n and we let ZA1
(n) be the chain complex of sheaves of abelian

groups on Smk in the Nisnevich topology defined as the fiber product

ZA1

(n) := Z(n)×KM
n [−n] KMW

n [−n]

From [41] there exists a canonical morphism

CA1

∗ (G∧nm )→ ZA1

(n)[n]

which induces the isomorphismHA1

0 (G∧nm ) = KMW
n on the 0 homology sheaves.

The following conjecture is a refinement of Corollary 4.12:

Conjecture 4.13 For any field k, the morphism

CA1

∗ (G∧nm )→ ZA1

(n)[n]

is a quasi-isomorphism.

Indeed the fiber of the above morphism is a complex concentrated in
degree 0, equal by [41] and the Milnor conjecture to the sheaf In+1 by [37];
now the sheaves In are zero in the étale topology for n ≥ 1.

5 The rigidity property for the CA1
∗ ((Gm)∧n)’s

In this section we prove that the chain complexes CA1

∗ ((Gm)∧n) have the
rigidity property, completing thus the proof of Theorem 3 and Corollary 6.

Our method is to endow the homology sheaves of CA1

∗ ((Gm)∧n) with a
natural structure of sheaf with transfers in a slightly more general (or weaker)
sense as the notion of Voevodsky [67]. In Section 5.2 below we achieve
the proof of Theorem 3 by showing that this new kind of sheaves have the
rigidity property at ` by reducing to the classical rigidity theorem from [63].
These structure on the homology sheaves are coming in fact from transfers
morphisms at the chain complexes level:

RCA1

∗ ((Gm)n)L → RCA1

∗ ((Gm)n)K
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where K ⊂ L is a monogenous finite extension between finite type fields
extension of k, and the notation RCS

∗ denotes the derived internal functional
complex. This is done in details in [43].

Remark 5.1 Contrary to our first belief, the construction of the above
transfer morphisms on the A1-localization of the Z((Gm)∧n) are not directly
related to the transfers morphisms on the sheaf Gn

m. It is not so clear to
formalize our construction and to write down a minimal list of axioms for
a sheaf M that guaranties that the homology sheaves of the chain complex
LabA1(Z(M)) will have this type of structure. It seems that a good general
candidate for is a sheaf of the form Z(Gm)⊗M where M is any reasonable
sheaf. This is still an open question.

On the converse, even ifM be a strictly A1-invariant sheaf with transfers
in the sense of Voevodsky then in general the chain complex LabA1(Z(M))
has not the rigidity property at `. In particular it has no suitable transfers
structure in general. For instance take the free sheaf of abelian groups Z(E)
on the sheaf with transfersM = E given by an elliptic curve E over k. Then
the sheaf Z(E) itself is a strictly A1-invariant sheaf, and is thus equal to its
own A1-localization. One may check that it has not the rigidity property at
`.�

5.1 The Transfers morphisms on the A1-localization of
the Z(G∧n

m )’s

We consider the free pointed sheaf of abelian groups Z(n) := Z(G∧nm ) on the
smash-product G∧nm (this means that we impose the relation “base point”
= 0). We define below an explicit inclusion of sheaves of abelian groups on
Smk of the form:

0→ Z(n) ⊂ Ztr(n)

with two basic properties:

1) For each monogenous finite extension K ⊂ L of fields of finite type
over k, there is a canonical transfer morphism

Z(n)(L)→ Ztr(n)(K)

with nice natural properties; Ztr(n) is more or less the universal sheaf with
this property, it is defined as the sheaf of finite correspondences to A1 with
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coefficients in Z(n) in the spririt of [67].

2) The inclusion Z(n)→ Ztr(n) is is an A1-equivalence, in a quite explicit
way. In particular applying the A1-localization functor to Z(n) → Ztr(n)
yields a quasi isomorphism of the form:

CA1

∗ (G∧nm ) = LabA1(Z(n)) ∼= LabA1(Ẑ(n))

The transfers morphisms from 1) and some general fact on A1-localization
of derived functional complexes allow one to construct the transfers mor-
phisms on each of the homology sheaves HA1

∗ (G∧nm ) of CA1

∗ (G∧nm ) which will en-
dow these homology sheaves with a structure of strictly A1-invariant sheaves
with generalized transfers that we describe and use in the next Section 5.2
below, in which we also prove a rigidity theorem.

Remark 5.2 The transfers morphisms we get are the “correct” ones. For
instance the transfers we get in this way on HA1

0 ((Gm)∧n) which is the un-
ramified sheaf of Milnor-Witt K-theory in weight n, KMW

n described in [41],
are the “usual” ones, and are indeed compatible with both the transfers in
Milnor K-theory KM

n and with the canonical transfers in the n-th power of
the fundamental ideal In [1][53] through the canonical epimorphisms

KMW
n → KM

n

↓
In �

In the sequel, we simply denote the sheaf Z(n) by Z when no confusion
can arise on n, which is fixed everywhere from now on. The sheaf of abelian
groups Z has many good properties. It is an unramified sheaf of abelian
groups in the sense of [41], which means that its value on a smooth irre-
ducible k-scheme X with function field K is the intersection in Z(K) of the
Z(OX,x) where x runs over the set X(1) of points of codimension 1 in X.
It is moreover A1-invariant. However Z is not a strictly A1-invariant sheaf
though the sheaf Gn

m has this property; this is the whole point of the story
of course!

We start by observing that the sheaf Z admits a canonical structure of
Z[Gm]-module. Here Z[Gm] is the free sheaf of abelian groups on the sheaf
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of groups Gm (no condition on the base point) and as such is indeed a sheaf
of commutative rings. We take the multiplication

Z[Gm]× Z((Gm)∧n)→ Z((Gm)∧n)

(U, {α1, . . . , αn})→ {Uα1, α2, . . . , αn} − {U, α2 . . . , αn}

(the correcting term is there to garanty that the map factors through the
smash product.)

For any integer n ∈ N, we set [n]ε =
∑n−1

i=0 {(−1)i} which we consider as
an element of Z[Gm](k) = Z[k×]. Observe that one has the easy formula

[n]ε.[m]ε = [nm]ε (5.1)

The above Z[Gm]-structure will a priori play a little role in the con-
structions below, only through the action of the [n]ε. However, to check the
property of the transfers morphims it will be essential. See Section 5.2 below.

If X is a smooth k-scheme we let C(X; A1) be the set of points y ∈ A1×X
such that the closure y (an irreducible closed integral subscheme in A1×X)
is finite over X and dominate an irreducible component of X (see [67]). We
now define the sheaf Ztr. Its values on a smooth k-scheme X is the abelian
group:

Ztr(X) := ⊕y∈C(X,A1)Z(y)

One of the hidden points of this definition is that we may actually define
Z(y), which means that Z as a presheaf can be extended to singular k-
schemes of the type y.

Observe also that if X is irreducible with function field K one has a
canonical inclusion Ztr(X) ⊂ Ztr(K). This follows from the fact that Y ×X
Spec(K)→ Y induces an injection Z(Y ) ⊂ Z(Y ×X Spec(K)).

Now we turn this definition into a presheaf on Smk as follows. Let f :
X ′ → X be a morphism in Smk. We want to define Ztr(f) : Ztr(X) →
Z(X ′). Clearly if X = X1 q X2 the group Ztr(X) splits accordingly as
Ztr(X1)⊕Ztr(X2). To define Ztr(f) we may thus assume that X ′ and X are
irreducible.
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Assume first that f is dominant. Let K be the function field of X and L
that of X ′. As Ztr(X) ⊂ Ztr(K) and Ztr(X ′) ⊂ Ztr(L) we need first to define
the morphism Ztr(K)→ Ztr(L) induced by the field extension φ : K ⊂ L.

Given y ∈ C(Spec(K); A1) = (A1
K)(1), we denote by {z|y} the finite set of

closed points in A1
L which map to y through the induced morphism A1

L → A1
K

and we write z|y to mean z ∈ {z|y}. In other words, the set of such z is
exactly the set of points in the closed subscheme Spec(κ(y) ⊗E F ) of A1

F .
For each z|y we let λ(z|y) ∈ N denote the lenght of z in κ(y) ⊗E F . Then
we take for morphism Ztr(K)→ Ztr(L) the direct sum indexed by the y’s of
the following homomorphism whose source is the factor Z(κ(y)) of Ztr(K)
and the target the summand ⊕z|yZ(κ(z)) of Ztr(L):∑

z|y

[λ(z|y)]ε . Z(φz) : Z(κ(y))→ ⊕z|yZ(κ(z))

Here φz is the induced fields extension κ(y) ⊂ κ(z) and Z(φz) : Z(κ(y)) →
Z(κ(z)) the induced group homomorphism.

One checks that this construction induces a functor ( ˜Smk)
op → Ab from

smooth k-schemes and dominant morphisms to that of abelian groups. It
remains to extends this to a functor (Smk)

op → Ab and for this we first
define restriction morphisms

Ztr(X)→ Ztr(Z)

for any closed immersion Z ⊂ X in Smk everywhere of codimension 1.

One may reduce to X being the localization of the generic point of Z,
that is to say X = Spec(A) where A is a geometric discrete valuation ring
with residue field κ the function field of Z. In that case given y ∈ C(X,A1)
we let µy be the length of the finite κ-scheme y ×X Spec(κ). Let also t(y) ∈
C(Spec(κ),A1) the image of y in A1

κ. We take for morphism

Ztr(X) = Ztr(Spec(A))→ Ztr(Spec(κ)) = Ztr(Z)

the direct sum over the y’s of the morphisms of the form:

[µ]ε : Z(y)→ Z(κ(t(y)))

induced by the restriction morphisms on Z. One may check:
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Theorem 5.3 The previous construction extends uniquely to a presheaf of
Z[Gm]-modules Ztr on Smk. This presheaf is a sheaf in the Nisnevich topol-
ogy. Moreover the natural transformation Z → Ztr which corresponds to the
zero section 0 ∈ C(−,A1) is a monomorphism of sheaves (of Z[Gm]-modules).

Now we prove that the inclusion Z → Ztr is an A1-equivalence. The proof
is completely explicit and proceeds in several steps (basically 3). First we ob-
serve that Ztr contains a canonical subsheaf which we denote by c(−; A1)⊗̃Z
whose values on the henselization A of a point in a smooth k-scheme is equal
to

c(Spec(A); A1)⊗Z(A) = ⊕y∈C(Spec(A),A1)Z(A)

It is straithforward to check that these form a subsheaf of Ztr. The notation
c(−; A1)⊗̃Z means that the sheaf is not exactly the tensor product, as the
restriction morphisms use the multiplication by the [n]ε’s at some point.

Now the obvious A1-homotopy on c(−,A1) “multilplication by the scalar”
which gives an A1-deformation of c(−,A1) onto the constant sheaf Z extends
to induce an A1-deformation of c(−; A1)⊗̃Z onto Z. Thus, using the factor-
ization Z ⊂ c(−; A1)⊗̃Z ⊂ Ztr of the inclusion Z ⊂ Ztr, we see that it suf-
fices to prove that the last inclusion c(−; A1)⊗̃Z ⊂ Ztr is an A1-equivalence,
or in other words that the cokernel Z tr of the latter inclusion is A1-equivalent
to 0.

To prove that Z tr is A1-trivial we will embedd it into an other sheaf of
abelian groups Z and we will show that both Z tr and the cokernel Ẑ :=
Z/Z tr admit an explicit A1-homotopy to zero.

Now the cokernel Z tr has the following values on the henselization A of
a point in a smooth k-scheme

Z tr(A) = ⊕y∈C(Spec(A),A1)(Z(y)/Z(A))

where Z(y)/Z(A) is the cokernel of the injective morphism

Z(A) ⊂ Z(y)

The sheaf Z will have values on Spec(A) the group

Z(A) = ⊕x∈(A1
F )(1)(Z(A[x])/Z(A))
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where F is the fraction field of A, and for each closed point x of A1
F we let

A[x] ⊂ κ(x) be the sub-A-algebra of the residue field κ(x) of x generated by
x itself, viewed as a function Spec(κ(x))→ A1

F . We will write in the sequel
Z0(A[x]) for Z(A[x])/Z(A).

Observe that though κ(x) is a finite extension of F , in general x is not
integral over A and A[x] is not a finite type A-module. The x which have
this property are exactly the one integral over A which corresponds exactly
to the y ∈ C(Spec(A),A1) and gives the inclusion

Z tr ⊂ Z

The only problem to construct Z as a sheaf is to define the reduction mor-
phisms

Z(A)→ Z(B)

where A � B is the morphism corresponding to a closed essentially smooth
k-scubscheme Spec(B) ⊂ Spec(A). The basic idea is simple. Take an x as
above. The kernel of the epimorphism A[X] � A[x], X 7→ x is of course
generated by a primitive Polynomial P0 = anX

n + an−1X
n−1 + · · · + a0 ∈

A[X] such that 1
an
P0 ∈ F [X] is the minimal polynomial P of x over F .

Given an epimorphism A � B as above, one wants to define the reduction
morphism on the summand Z0(A[x]) by using the epimorphism from the
algebra A[X]/(P0) ∼= A[x] onto B[X]/(P 0), where P 0 ∈ B[X] is the reduction
of P0. We proceed as follows. If P 0 6= 0 ∈ B[X], as B is also a UFD, one
may write

P 0 = cΠiQ
ni
i

for some primitive irreducible polynomials Qi of B[X], and c ∈ B − {0}.
We write xi for the closed point in A1

K corresponding to Qi, where K is the
fraction field of B. For each i we have a canonical epimorphism of A-algebras

A[x] � B[xi]

We then define the reduction morphism on the summand Z0(A[x]) as the
sum

Σi[ni]εZ0(A[x] � B[xi]) : Z0(A[x])→ ⊕iZ0(B[xi])

If P 0 = 0 ∈ B[X], we just take 0 for the reduction morphism on the
summand Z0(A[x]).

Lemma 5.4 The previous definition can be extended in a unique way to a
sheaf of abelian groups in the Nisnevich topology (Smk)

op 3 X 7→ Z(X).
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The proof is straightwforward. This construction works only because we
work with the sum of the Z0(A[x]). There is no way to define a sheaf struc-
ture whose values on A would be ⊕x∈(A1

F )(1)Z(A[x]). The main obstruction

is when the reduction of P0 in B[X] vanishes (see above) one doesn’t know
where to send Z(A[x]). Killing the Z(A)’s everywhere kills precisely this
obstruction; for the details see [43].�

Now it remains to explicit on both Z and the quotient Ẑ = Z/Z tr an
A1-homotopy to zero. For the first one we proceed as follows. For F a field
extension of k, we have the obvious action of F on Z(F ) = ⊕x∈(A1

F )(1)Z0(κ(x))

which let 0 acts by the zero morphism and which let f ∈ F× acts by per-
muting the x’s by x 7→ x

f
.

Lemma 5.5 The previous construction extends uniquely to a morphism of
sheaves A1 × Z → Z which defines an A1-homotopy between the Identity
morphism and the zero morphism.

Proof. One has basically to check that given an henselization A of
a point in a smooth k-scheme the multiplication by f : Z(F ) → Z(F )
preserves Z(A) and induces f : Z(A) → Z(A) and that moreover given an
epimorphism A � B as above, that the obvious diagram

Z(A)
f→ Z(A)

↓ ↓
Z(B)

f→ Z(B)

commutes. To check this one may reduce to the case Spec(B) ⊂ Spec(A)
is of codimension one, and then by localization also to the case B is a field.
This now can be hand checked: if f is a unit it is clear, if not we may reduce
to the case where f is an irreducible element of A, that is to say when f
generates the maximal ideal of A. But then given a point x, in the sequence
f i.x of points (related by the multiplication by f), there exists one and only
one i ∈ Z such that f i.x ∈ κ(x) is integral over A and f i−1.x is not. In that
case each summand Z0(A[f j.x]), j 6= i, will reduce to 0 in Z0(B) (as the
point f j.x specializes to 0 for j > i and to ∞ for j < i). This implies clearly
the claim as both composition morphisms in the diagram are then zero.�

47



We know claim that the sheaf Ẑ is aslo A1-contractible by an explicit
A1-homotopy to 0. More precisely for A the henselization of a point in a
smooth k-scheme, with field of fractions F and residue field κ, we have

Ẑ(A) = ⊕x∈(A1
F )(1)|x∞ 6=∅Z0(A(x))

where we mean x∞ 6= ∅ if and only if P 0 is constant in κ[X] (observe that
this holds exactly when the closure x ⊂ P1

A of the point x meets the section
at infinity Spec(A) ⊂ P1

A).

We take the action of A on Ẑ(A) which let 0 acts by the zero morphism
and which let f ∈ A− {0} acts by mapping (again) x to x

f
. This defines an

A1-homotopy of the identity of Ẑ to 0 and proves the claim.�

Remark 5.6 Contrary to the appearances, this homotopy, though very close
to the previous one, is not compatible with the one on Z, and the epimor-
phism Z � Ẑ doesn’t preserve the A1-homotopy. In fact most probably,
there is no A1-homotopy of the identity morphism of Z tr to 0.�

5.2 Transfers structures on the HA1

∗ ((Gm)n)’s and rigid-
ity

We now write down explicitely the structures that we get on the homology
sheaves HA1

∗ ((Gm)n)’s by the construction of the previous section.

First, the Z[Gm]-module structure can be seen to induce a structure of
bGW -modules on these. Recall that GW denotes the sheaf of unramified
Grothendieck-Witt groups on Smk [41]. This is the strictly A1-invariant
sheaf of unramified Milnor-Witt K-theory KMW

0 in weight 0 constructed
in [41]. This is a sheaf of commutative rings and its sections on a field
F ∈ Fk is the ring of non-degenerated symmetric bilinear forms over F de-
fined and studied in [36]. We denote as usual by < a >∈ GW (F ) the form
of rank 1 associated to a unit a ∈ F×. There is an induced rank homo-
morphism GW → Z. If M is a sheaf of GW-modules and a ∈ F× a unit,
< a >: M(F ) → M(F ), µ 7→< a > µ is thus the multiplication by the class
< a >∈ GW (F ).
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For any integer n ∈ N, we set

[n]ε =
n−1∑
i=0

< (−1)i >∈ GW (κ)

If n = 2m is even then [n]ε = m.h with h = 1+ < −1 > being the hyperbolic
plane. If n = 2m+ 1 is odd, then [n]ε = 1 +m.h.

We will need the following notion7 in the next definition. Given a field
K of characteristic p and a unitary irreducible polynomial P ∈ K[X] we
may write canonically P as P0(Xpm

) where P0 is a unitary irreducible sepa-
rable polynomial and m ∈ N an integer. This corresponds to the canonical
factorization of K ⊂ L = k[X]/P as K ⊂ Lsep ⊂ L where K ⊂ Lsep is
separable and Lsep ⊂ L purely inseparable. m is thus the smallest integer
with xp

m ∈ Lsep and [L : Lsep] = pm. P0 is the minimal polynomial of xp
m

over K. We will denote by P ′0 the derivative of P0; thus P ′0 6= 0.
If char(K) = 0 then we just take P = P0 and m = 0. Observe that

if one has a root x of P in an extension K ⊂ L then P ′0(x) ∈ L× in any
characteristic.

Definition 5.7 Let M be a sheaf of GW-modules. A structure of general-
ized transfers on M consists of the following Datum:

(D) For each finite extension φ : K ⊂ L in Fk a morphism:

Tr(φ) = TrLK : M(L)→M(K)

called the transfer morphism from L to K.

This Datum should satisfy the following 4 axioms:

(A0) Functoriality. TrKK = IdM(K) : M(K) → M(K) and for any fi-
nite extensions K ⊂ F ⊂ L in Fk then one has TrFK ◦TrLF = TrLK : M(L)→
M(K).

(A1) Projection Formulas. Let φ : K ⊂ L in Fk be a finite exten-
sion. For a ∈ K× and µ ∈ M(L) one has TrLK(< φ(a) > µ) =< a >

7The reader who doesn’t want to care about inseparability problem in finite character-
istic might ignore these and asume everywhere that the fields (or rings) are perfect
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TrLK(µ) ∈ M(K). In the same way, if a ∈ L× and µ ∈ M(F ) then one has
TrLK(< a > .φ(µ)) = TrLK(< a >).µ ∈ M(K), where TrLK(< a >) ∈ GW (K)
is the usual transfer from < a >.

(A2) Let φ : K ⊂ L be a finite extension in Fk and ψ : K ⊂ E be an
extension in Fk. Let R be the tensor product E ⊗K L, a finite E-algebra.
For x ∈ Spec(R) let φx : E ⊂ κ(x) and ψx : L ⊂ κ(x) be the corresponding
extensions in Fk, with φx : E ⊂ κ(x) finite. Let λx be the length of the local
ring Rx. Then

M(ψ) ◦ TrLK =
∑

x∈Spec(R)

[λx]ε Tr
κ(x)
E ◦M(ψx)

(A3) Let φ : K ⊂ L be a finite extension in Fk, let A ⊂ K be a geometric
discrete valuation ring of K with residue field κ. We assume that the integral
closure B of A in L is also a discrete valuation ring with residue field λ. Let
κ ⊂ λ be the induced residue fields extension and let e ∈ N be the ramification
index. We let sB : M(B)→M(λ) and sA : M(A)→M(κ) be the restriction
maps.

(A3)(1) If e = 1 that is to say [λ : κ] = [L : K], then TrLK maps
M(B) ⊂ M(L) into M(A) ⊂ M(K). Denote by TrBA : M(B) → M(A) the
induced morphism. Then moreover the following diagram commutes

M(B)
sB→ M(λ))

TrBA ↓ ↓ Trλκ
M(A)

sA→ M(κ)

(A3)(2) If Spec(B)→ Spec(A) is monogenous, let x ∈ B be a generator
of B over A and let P be its minimal polynomial. Let Q ∈ κ[X] be the
minimal polynomial of the image x of x in λ; observe that x is a generator
of λ over κ and that the mod κ reduction P of P is equal to Qe. Then

the composition M(L)
<P ′0(x)>
−→ M(L)

TrL
K→ M(K) maps M(B) in M(A). Let

τBA (x) : M(B) → M(A) be the induced morphism and denote τλκ (x) the

composition M(λ)
<Q′0(x)>
−→ M(λ)

TrL
K→ M(κ). Then moreover the following

diagram commutes

M(B)
sB→ M(λ)

τBA (x) ↓ ↓ [e]ε τ
λ
κ (x)

M(A)
sA→ M(κ)
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Example 5.8 For a given integer n ∈ Z the sheaves KMW
n may be shown

to have such a structure, in a canonical way. The transfers morphisms are
compatible with the one in Milnor K-theory through the projection KMW

n →
KM
n and to the canonical transfers in In (see [53]) through the projection

KMW
n → In.�

Remark 5.9 An A1-invariant sheaf with transfers M in the sense of Vo-
evodsky defines such a structure of generalized transfers, in which the GW-
module structure in Data (D2) is taken to be the trivial one, that is to say
GW acts through the rank GW → Z, and in which the Data (D1) comes
by evaluating the transfers on the fields. We will see below in Theorem 5.16
that the converse holds.�

Remark 5.10 For any P1 (or T ) spectrum E the homotopy sheaves πA1

n (E)
do have this structure. In fact a more careful (and non trivial) analysis shows
that for any strictly A1-invariant sheaf M the sheaf M−1 admits a canonical
structure of generalized transfers. It is still an open question to kow if the
converse holds. Is it true that any strictly A1-invariant sheaf with generalized
transfers is of the form M−1 ?�

Remark 5.11 From Axiom (A3)(1) it follows that in particular any finite
étale morphism Y → X between smooth k-schemes the morphism TrLK :
M(L)→M(K) induces a canonical transfer morphism M(B)→M(A).

Note that the two parts of Axiom (A3) are not independant. For instance
(A3)(2) in the case e = 1 implies (A3)(1) for a monogenous extension A ⊂
B. An other particular case of Axiom (A3)(2) is when Spec(B)→ Spec(A)
is totally ramified that is to say e = [L : K] and κ ⊂ λ is an isomorphism.

In characteristic 0 the two previous cases (e = 1 and e = [L : K]) are
sufficient to characterize the generalized transfer structure. In finite charac-
teristic it is a bit more tricky.

For a more conceptual approach on these Axioms involving modules of
Kähler differential forms see [41, 43]. We gave the previous list of axioms,
which doesn’t seem “conceptual” because it is exactly the way we are going
to check the properties by hands on the A1-complexes of tori in [43]. It would
be interesting to have a more conceptual proof of these facts.�

Here is for us the most interesting example:
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Theorem 5.12 Let n be an integer. Let k be a perfect field. The Z[Gm]-
module structure and the transfers morphisms induced on the sheaves

HA1

∗ ((Gm)∧n) = H∗(L
A1

∗ (Z((Gm)∧n)

by the constructions of the previous section define a structure of strictly A1-
invariant sheaves with generalized transfers in the previous sense.

The proof is straightforward though quite lenghty [43].�

The rigidity Theorem. We now state and prove a rigidity theorem for
strictly A1-invariant sheaves with generalized transfers. The proof reduces
to the “classical” rigidity Theorem of [63].

Theorem 5.13 Let M be a strictly A1-invariant sheaf of abelian groups with
generalized transfers. Then M satisfies the rigidity property at `.

Proof of Theorem 3. From Theorem 5.12 and the previous Theorem,
applied to the field k being a prime field, we get Theorem 4.10 which we
already know implies Theorem 3 as well.�

Let us mention a stronger form of Theorem 5.13 which is not really needed
as far as the Friedlander-Milnor conjecture is concerned:

Theorem 5.14 Assume that if ` = 2 then any field F ∈ Fk is of finite
virtual cohomological 2-dimension. Let M be a strictly A1-invariant sheaf of
abelian groups with generalized transfers. Then M satisfies the strong rigidity
property at `.

For the case ` 6= 2, in fact the proof of 5.13 follows directly from the
classical rigidity theorem [63] and the following observation (observe that to
prove Theorem 5.13 we may always assume that −1 is a square):

Lemma 5.15 Assume −1 is a square in k. Let M be a strictly A1-invariant
sheaf of Z[1

2
]-modules with generalized transfers. Then the GW-module struc-

ture is trivial and thus M is in fact a sheaf with transfers in the sense of
Voevodsky by Theorem 5.16 below.
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Proof. By Theorem 5.16 it suffices to prove that the GW-module struc-
ture is trivial. But as −1 is a square, 1+ < −1 >= 2 is 0 in I(k). The
sheaf I is thus a sheaf of Z/2-modules, which automatically acts trivially on
a Z[1

2
]-module. Thus the GW-module structure is indeed trivial.�

The following establishes a converse to Remark 5.9.

Theorem 5.16 Let M be a strictly A1-invariant sheaf of abelian groups
with a structure of generalized transfers. Assume that the structure of GW-
modules is trivial in the previous sense. Then there exists a unique structure
of sheaf with transfers on M in the sense of Voevodsky which induces the
structure of generalized transfers.

To treat the case ` = 2 (as well as the more general Theorem 5.14) we
will have to work a bit more. More precisely we observe:

Theorem 5.17 [43] Let M be a strictly A1-invariant sheaf M with gener-
alized transfers. There exists a unique sub-sheaf IM ⊂ M which has the
following properties:

1) the group of sections IM(F ) on a field F ∈ Fk is the sub-GW (F )-
module generated by the images TrLK(I(L).M(L)) of the I(L).M(L) through
the transfer morphism TrLK : M(L) → M(K) where L runs over each finite
extensions of K;

2) IM is strictly A1-invariant;

Moreover, IM is stable both by the structure of GW-module and the
structure of generalized transfers.

Remark 5.18 In general, it is not true that for a field IM(F ) is just
I(F ).M(F ). This is true in the case of the sheaves of the form In for in-
stance by one of the results of [1].�

From what we have seen up to now we get:

Corollary 5.19 Let M be a strictly A1-invariant sheaf M with generalized
transfers. Then the quotient sheaf

M/IM
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is in a canonical way a sheaf with transfers in the sense of Voevodsky, and
as a consequence has the strong rigidity property.

Proof. By the previous Theorem M/IM is a strictly A1-invariant sheaf
with generalized transfers in which the GW-module structure is trivial. The
result follows now from Theorem 5.16.�

Proof of Theorem 5.13. Let M be a strictly A1-invariant sheaf M
with generalized transfers. We may assume that ` = 2 and that M is a sheaf
of Z/2-modules (by Lemma 5.15). Let A be the (strict) henselization of a
geometric point x in a smooth k-scheme X.

We claim that the filtration . . . InM(A) ⊂ In−1M(A) . . . is finite. This
follows from the previous Theorem, the affirmation by Voevodsky of the
Milnor conjectures which implies (see [2, Lemma 2.1]) that for a field F of
finite type over its prime field, In+1(F ) = 2In(F ) for n large enough.

Thus to prove that the rigidty property it suffices to check that each of the
morphism InM/In+1M(A)→ InM/In+1M(κ) is an isomorphism, where κ is
residue field. But this follows from the previous corollary and the classical
rigidity property [63].�

A A1-coverings and Friedlander conjecture in

degree 2

In this section we give a proof of the Friedlander conjecture in degree 2.

A.1 A1-coverings and central extensions of algebraic
groups

Recall that G denotes a split semi-simple k-group. We want to study a bit the
sheaf πA1

0 (G) defined in [44]. It is clearly a sheaf of groups in the Nisnevich
topology.

If moreover G is assumed to be simply connected then for each field exten-
sion F/k the group G(F ) is generated by the images of the homomorphisms
Ga → G over F , where Ga is the additive group see [65, §1.1.2]. Consequently
G is weakly 0-connected and thus A1-connected by [38, Lemma 6.1.3], which
means that:

54



Lemma A.1 Let G be a split simply connected semi-simple k-group, then

πA1

0 (G) = ∗

Now we will use this result to study the πA1

0 (G) for G an arbitrary split
semi-simple k-group. Let T ⊂ G be a split maximal Torus. Let G̃ → G be
the universal covering in the sense of algebraic groups theory. Let C ⊂ G̃
be the kernel; it is a finite central abelian group and the morphism a Galois
étale covering with Galois group C. Let T̃ ⊂ G̃ be the inverse image of T . It
is a split maximal torus. Let us denote by T/NisT̃ the quotient sheaf in the
Nisnevich topology. This is an A1-invariant sheaf with transfers in the sense
of Voevodsky. The étale short exact sequence 0 → C → T̃ → T → 0 and
Hilbert Theorem 90 (T̃ being also split) gives an isomorphism of sheaves in
the Nisnevich topology

T/NisT̃ → H1
et(C)

where H1
et(C) is the associated sheaf to X 7→ H1

et(X;C).

Theorem A.2 Keeping the above notations and assumptions, the morphism
of sheaves T → πA1

0 (G) induced by the inclusion T ⊂ G is onto and induces
an isomorphism

T/NisT̃ ∼= πA1

0 (G)

Moreover this sheaf clearly vanishes in the étale topology.

Proof. It follows from the following commutative diagram of smooth
k-schemes

C = C
↓ ↓
T̃ ⊂ G̃
↓ ↓
T ⊂ G

whose bottom square is cartesian. First it induces a isomorphism of quotient
smooth k-schemes G̃/T̃ ∼= G/T . Now by the previous Theorem, G̃ being
simply connected (in the sense of algebraic group theory) is A1-connected.
But the morphism G̃ → G̃/T̃ is Zariski (thus Nisnevich) locally trivial and
induces an isomorphism on the πA1

0 . Thus G/T is A1-connected.
As G̃ → G̃/T̃ and G → G/T are A1-coverings (being a Zariski locally

trivial T -torsor, with T split) [41] we get long exact sequences of A1-homotopy
sheaves.
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The one for G→ G/T gives an exact sequence (in the Nisnevich topology)
of the form

πA1

1 (G/T )→ T → πA1

0 (G)→ 0

and the second one gives that πA1

1 (G/T ) ∼= πA1

1 (G̃/T̃ )→ T̃ → πA1

0 (G̃) = 0 is
onto. This clearly implies the claim.�

Remark A.3 In the case G = SO′n (split) for instance the quotient sheaf
T/NisT

′ is isomorphic to the sheaf Gm/(Gm)2 and the morphism SO′n →
πA1

0 (SO′n) = Gm/(Gm)2 is the spinor norm.�

Let G(0) ⊂ G be the kernel of G→ πA1

0 (G).

Lemma A.4 The induced morphism G̃ → G(0) is an epimorphism in the
Nisnevich topology.

Proof. One use the short exact sequence in the étale topology 0 →
C → G̃→ G to get for any smooth F -scheme X an associated long exact of
cohomology groups/sets

G̃(X)→ G(X)→ H1
et(X;C)→ . . .

by sheafifying in the Nisnevich topology we get the exact sequence:

G̃→ G→ H1
et(C)

which easily implie the claim taking the above isomorphism πA1

0 (G) ∼= H1
et(C)

into account.�

By construction G(0) is an A1-connected space with a base point (the
neutral element). Thus it admits by [41] a universal A1-covering G̃A1 → G(0)

which is easily seen as usual to define a central extension in the Nisnevich
topology of the form

0→ πA1

1 (G)→ G̃A1 → G(0) → 1 (A.1)

If G is simply connected, it follows from the previous Theorem that
πA1

0 (G) = ∗ and that the previous extension gives a central extension in
the Nisnevich topology8 of the form

0→ πA1

1 (G)→ G̃A1 → G→ 1 (A.2)

8actually in the Zariski topology as well
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Now for G general (non necessarily simply connected) we see that the
associated morphism of sheaves in the étale topology to G(0) → G is an
isomorphism as this follows from Theorem A.2 above. Consequently the
associated central extension to (A.1) in the étale topology has the following
form

0→ πA1

1 (G)et → G̃A1

et → G→ 1 (A.3)

This extension has the following universal property:

Theorem A.5 Given a central extension in the étale topology

0→M → E → G→ 1

such that M is a locally constant étale sheaf of torsion prime to char(k),
then there exists one and only one morphism of sheaves in the étale topology
πA1

1 (G)et →M which induces the given extension from (A.3). In other words:

H2
et(G;M) ∼= HomAb(k)(π

A1

1 (G),M)

where Ab(k) means the category of sheaves of abelian groups in the Nisnevich
topology on Smk.

Proof. Given a central extension in the étale topology 0 → M → E →
G → 1 with M as above, the morphism E → G is an A1-covering [41].
From the universal property of the universal A1-covering, we get a morphism

G
A1

→ E; the associated morphism in the étale topology has the required
property. Uniqueness is easy to establish along the same lines.�

Remark A.6 The previous Theorem can be strenghened as follows: say
that a sheaf of abelian groups M is the étale topology is strictly étale A1-
invariant if X 7→ H i

et(X;M) is A1-invariant for any i ∈ N. For instance
any A1-invariant étale sheaf of Z[1

p
]-modules9 with transfers in the sense

of Voevodsky is strictly étale A1-invariant by [68, Cor. 5.29 p.136]. Then
one may prove that πA1

1 (G)[1
p
]et is srongly étale A1-invariant and that the

“induced” central extension

0→ πA1

1 (G)[
1

p
]et → G̃′et → G→ 1

is the universal central extension with kernel a strictly étale A1-invariant
sheaf of Z[1

p
]-modules.�

9here p is the characteristic exponent of F
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A.2 Proof of the Friedlander conjecture in degree 2

In this section we give a proof of the Friedlander conjecture in degree 2 using
the construction of the previous section. Using the classical devissage and
reductions, we see that it suffices to check the case G is simple and simply
connected (in the sense of algebraic group theory), and F is separably closed.

The left hand side of the Friedlander conjecture is the group H2
et(BG; Z/`)

that is to say the group of isomorphism classes of central extensions

0→ Z/`→ E → G→ 1

of sheaves of groups in the étale topology. From the Theorem A.5, this group
is isomorphic to HomAb(k)(π

A1

1 (G),Z/`).
On the other hands, the right hand side is the group H2(BG(F ); Z/`) of

isomorphism classes of central extensions

0→ Z/`→ E → G(F )→ 1

The group G(F ) is known to be perfect, F being infinite, so it admits a
universal central extension of the form10

0→ H2(BG(F ))→ G̃(F )
alg

→ G(F )→ 1

and H2(BG(F ); Z/`) ∼= Hom(H2(BG(F ),Z/`). We now claim the following,
which establish the Friedlander conjecture in degree 2.

Lemma A.7 With G as above and F separably closed,

Hom(H2(BG(F ),Z/`) = HomAb(k)(π
A1

1 (G),Z/`) = 0

Proof. Hom(H2(BG(F )),Z/`) = 0 follows from the classical computa-
tions of Matsumoto [33] which shows that H2(BG(F )) ∼= KM

2 (F ) and thus
is `-divisible. The vanishing of HomAb(k)(π

A1

1 (G),Z/`) follows from the fact
that the inclusion SL2 → G coming from a root of maximal length induces
an epimorphism of sheaves (in the Nisnevich topology):

KMW
2
∼= πA1

1 (SL2) � πA1

1 (G)

This can be done using for instance [57, Theorem 4.1].�

10to avoid notational contradictions, we choosed to write H2(BG(F )) for the group
which is often denoted by H2(G(F ))
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Remark A.8 It can be shown that for G a split simply connected abso-
lutely simple F -group, F arbitrary, then the previous epimorphism KMW

2
∼=

πA1

1 (SL2) � πA1

1 (G) induces an isomorphism of sheaves

KM
2
∼= πA1

1 (G)

except when G is of symplectic type, in which case

KMW
2
∼= πA1

1 (G)

is an isomorphism. Also it can be shown that the central extension

0→ KM
2 → E → G→ 1

induced by (A.2) and the epimorphism KMW
2 � πA1

1 (G) is the one con-
structed [6], at least for F infinite.

Evaluting the universal extension (A.2) on F and comparing with the
previous one of G(F ), we get a canonical homomorphism H2(BG(F )) →
πA1

1 (G)(F ). It is also possible to show in fact that it is always an isomor-
phism (except maybe for very small finite fields). In other words we get an
isomorphism, for any infinite field F

H2(BG(F )) ∼= HA1

2 (BG)(F ) = πA1

1 (G)(F )

This is a stronger result as the Friedlander conjecture in degree 2.�
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