Program Extraction from Nested Definitions

Kenji Miyamoto®*, Fredrik Nordvall Forsherg?***
and Helmut Schwichtenberg!

1 Ludwig Maximilian University, Munich
Swansea University, Wales
* Supported by the Marie Curie Initial Training Network in Mathematical Logic — MALOA — From MAthematical LOgic to
Applications, PITN-GA-2009-238381.
*% Supported by EPSRC grant EP/G033374/1, Theory and applications of induction-recursion.

26.07.2013
ITP 2013, Rennes

Il Forsberg and H. Schwichten Program Extraction from Nested Definitions

@ Proof assistant Minlog and the theory TCF behind it to study computational
meaning of proofs.

o Case study in exact real arithmetic.

Il Forsberg and H. Sch: Program Extraction from Nested Definitions

Note on listrev.scm

We inductively define predicate A of arity (Ln, Ln, Ln). Ay, v, w) means that the
append of u and v is w.

VLA, v, v), (A5)
Vu,v,wx(Alu, v, w) > A(x:iu, v, x:w)). (A

The above formulas are adopted as the introduction axioms of A.
We inductively define R of arity (Ln, Ln) as follows.

R, D (Ry")
Yu,v,wx(R(u, v) = A(v, x:[], w) = R(x::u, w)). (R)

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions

Note on listrev.scm

From the proof of the proposition V,3, R(v, w) we extracted a term
L L
Au(REY ul] A (RPN w (x:[]) Ay, ()

of type Ly — Ln-
We can export the term to Haskell.

module Main where

import Data.List

————— Algebras

type Nat = Integer

listRec :: [alpha] -> alphal ->
(alpha -> ([alpha] -> (alphal -> alphal))) ->
alphal

listRec [] a £ = a

listRec (b : z) a f = ((f b) z) (listRec z a f)

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions

Note on listrev.scm

cLA :: [Nat] -> [Nat] -> [Nat]
cLA \ vO => (\ vl -> (listRec v1 vO (\ x2 -> (\ v3 => (:) x2))))

cLR :: [Nat] -> [Nat]
cLR = \ vO -> (listRec vO [1 (\ x1 -> (\ v2 -> (cLA (x1 : [1)))))

rev :: [Nat] -> [Nat]
rev = cLR

apd :: [Nat]l -> [Nat] -> [Nat]
apd = cLA

main :: I0 ()
main = putStrLn ""

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions

Constants and axioms

The recursion operator Rf came from induction on lists.
(3

R{ la—=p—(a—>Lla—=p—p) —p,
Rfu [0 Mo My = My,
’Rfa (x::u) Mp My = My x u (’Rfa u My My).

We relate Rfa with the induction on list, which come from the totality predicate T .

Tl VRL(RE) = Tu(u) — Tilxw)), (Tu)g . (T

Vi (Teu — P[] = V3,(Q(x) — TLu — Pu— P(x::u)) — Pu). (Tu)~
where Q is a parameter predicate of arity (o). We refer to (Ty)™ by elimination
axiom or induction.

We formally relate a term and a formula via realizability r.
For example, we expect:

@ “Constructor” r “introduction axiom”,

o "Recursion operator” r “elimination axiom”,
Let A be a formula with proof M. We can compute:

o the type 7(A) of potential realizers of A.

o a realizer (extracted term) et(M)7(A) of A (program extraction).

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions

Realizability

Realizability is a way to think about a computational solution of a problem expressed
by a formula.

We work in first-order minimal logic with implication and universal quantifiers. The
realizability relation is:

trA— B:=Vy(xrA—t(x)rB), tr VA :=Vi(t(x) r A).
We consider non-computational variants of — and V.
tr A" Bi=Vi(xrA—tr B), tr VA =V (tr A).

We call — and V computational.

—, ¥V and ™€, V¢ are logically the same, but computationally different due to the
realizability relation. Conjunction, disjunction and the existential quantifier are defined
as inductive definitions.

In contrast to the BHK-interpretation we also consider concrete prime formulas,
namely, inductively defined predicates.

trls:=1"(¢,5).

where I is an inductive predicate, called a witnessing predicate, defined for each /.

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions

Witnessing predicates

Consider the predicate Ti whose arity is (La).
Tl (Tug
V;‘fu(Qx — TLu — Ti(x:w)). (T|_)fr

where Q is a predicate parameter of arity (a), an arbitrary type parameter.

The type of an inductive predicate /, namely, 7(/) is the algebra whose constructor
types are the types of the introduction axioms.

Consider Ty. By 7 the introduction axioms go to the constructor types

3 a—§—E,

which define the list algebra L.
We define the witnessing predicate T} of arity (7(TL),La) as follows.

T), (TDo
v::fy,u,v(Q*(Y7 X) - TII(Vﬂ u) - TLr(y::v,x::u))_ (Ti)f—

where Q* is a predicate parameter of arity (7(Q),).

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions

Program extraction

The notion of proof is given in natural deduction, which is represented in lambda
terms. We define the program extraction et.

Definition (Program extraction)

Let MA be a proof A. We define et(MA) by induction on the construction of M4,

7(A)

et(u?) := x A~ where x4 is uniquely associated with A,

et(IF) := G, et(I7) = RT

(A AMEYAB) = A (e(M)), et(A4MPYA="P) = et (M),
et(MA= BNAY := et(M)et(N), et(MA= " BNA) .= et(M),
et((Axo MA)75A) = Apet(M), et((Axr MA)Y5AY = et (M),
et(MYANAN)Y) .= et(M)r, et((MY<ANAM)Y) .= et(M).

The following theorem claims that the program extraction finds a realizer.

Theorem (Soundness)

Let A be a formula and M be a proof of A under assumptions B; for i < k. Then,
there is a proof of et(M) r A under the assumptions u " fori < k.

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions

Branching trees

We consider arbitrarily branching trees based on the following nested algebra Nt.

Nt Lne— Nt
LNt rlmneoNe

We can think about the combinations of the finiteness and the infiniteness.
o finite branching / finite height,
@ infinite branching / finite height,
o finite branching / infinite height,
o infinite branching / infinite height.
We construct trees of finite branching / infinite height by using CO’Rﬁt, the corecursion
operator on Nt. The type of “Ry, and Ry, are:
Ry, P — (p— U+ Lnes,) — Nt,
Rie - Nt = p = (Lnexp = p) = p
~ Nt — (U—p) = (Lnexp = p) = p
~ Nt — (U + Lnexp — p) = p-

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions

Corecursion operators

The outcome is determined by the result of applying the second argument to the first
argument.

co’Rﬁt p— (p—» U+ I-Nt+p) — Nt,
R — Au,v(Case vu of inl () — Lf
inrx — Br(MTL‘tZ_’NtX[id, Az(“ORyezv)]))-
where for f*—% and g#—7 we define [f, g]*t#—7 by
[f,gl(inlx®) = f(x), [f,gl(inry”) = g(y).
The map operator M constructs subtrees at each branch.
M?\:Laa ‘L, > (p—>0) > Lg,
MEZE P F =110,
MEY (xu) f= f(x)2ME uf.
Destructors are given for each algebra as follows:

Dt : Nt — U + Ly,
Dy (LF) = inl (), Dni(Bru) = inru.

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions

Coinductive definitions

For an inductive predicate / we define its companion coinductive predicate “°/. Let
T, (Q) be a predicate stating a finite list of objects in Q.

Ti, []7 VE,CU(QX - T u— T, (x::u)).
Define Ty of arity (Nt) to be:
Tne(LF), (Tne)g
¥ (Tig (Tre) (u) = T (Bru)). (Tnw){

The coinductive predicate “Tiy of arity (Nt) is defined by the clause axiom “°Tyt, the
dual of (Tnt)d and (Tie)i -

V5(“Tne(a) = a = Lf v 3u(Ty (“Te) (1) A a = Bru)). (°Tne) ™
The greatest-fixed-point axiom (or coinduction) is given as follows:

V3¢ (Pa =V3¢(Pa — a = Lf v 3,(Ty, (“°Tne v P)(u) A a = Bru)) —

(°Tne)*
“Tni(a))-

It states that “°Ty, is bigger than any competitor P that looks like “°Tyyy in (€°Tne) ™.

The realizability relation is extended to coinductive definitions. The program

extraction is as well: et(°/7) := Dy, et(IT) := CO’Rﬁ(,).

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions

Summary and remark on Minlog and its theory

© Theory of computation
o Free algebras as base types.
o A term calculus with recursion, corecursion, general recursion, etc.
@ First order minimal logic (no A v —A) with inductive and coinductive definitions
o Framework for constructive mathematics.
o A language with —, V, —»"¢ and V"¢,
o Inductively and coinductively defined predicates can be introduced.
e Support of classical proofs by A-translation and Dialectica interpretation.

© Realizability interpretation
e Provide the notion of construction in the BHK-interpretation.

o Consider a relation r on a term t and a formula A, written as t r A.
o Intuitively means that t computationally solves the problem expressed by A.

@ Also possible to take t r A as a correctness notion.

o We give a program extraction transforming a proof M of A into a realizer t of A.
@ The type of t is computed from A.

Q@ Minlog

@ General purpose proof assistant.

@ It has been developed for 20+ years in LMU Munich.

@ We focus on a feature of program extraction.

@ Download: http://minlog-system.de/.

iyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions

Case study in exact real arithmetic

In the context of program extraction we study exact real arithmetic due to Ulrich
Berger in Minlog. Consider two representations of uniform continuous functions in
[-1,1]:

o functional representation,

o infinite tree representation.
The latter one is done by corecursion in our setting.
Suppose we have the stream representation of real numbers.
Let SD be —1,0, 1. Informally, a stream d of SD represents a real number Z,,O ST
The algebras of tree represented uniformly continuous functions are:

@ R,: Put of type SD — a — R and Get of type R > R —- R — R.

o W: Stop of type W and Cont of type Ry — W.
Define a term t (Rw finite, W infinite) to be:

t t t
| | |
Put(—1) Put(0) Put(1)
Get
\
Cont

This is the identity function f(x) = x.

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions

Cauchy reals and uniformly continuous functions in a constructive setting

A rational sequence (a,)n is a Cauchy real if ¥x3,¥m nsi(Jam — an| < 275).

These classical Cauchy reals are not suitable for computing, because we cannot find /
in general.

We adopt a constructive version of Cauchy reals.

Definition (Cauchy reals)

A Cauchy real is given by a pair (xN=Q MN=N> such that

ViV m, =Mk (Ix(m) = x(m)] < 275).

Based on a similar idea, we define uniformly continuous functions by a triple.

Definition (Uniformly continuous functions)

A uniformly continuous function is given by a triple (hQN=N NN N-NY (1 s 5

Cauchy modulus, w a modulus of uniform continuity) such that

[0}

kaQVm,nZOc(k)qh(a: m) - h(ar n)| < 2_k)7
Vi¥ab¥nsa (i (12— bl < 2790F1 — |h(a, n) — h(b, n)| < 27%).

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions

Our running example

Let f be a uniformly continuous function in [—1,1]. We prove that the continuity of
f, implies the productivity of f. We formulate
@ Abstract theory of uniformly continuous functions.

o Good for simplicity if we don’'t want computational meaning from them.
o Specify it by a type variable ¢ and axioms.
o Make use of —"¢ and V"°.

@ Predicate C for the continuity.

o I i=[p—2"",p+27"], Biuf := Vp3q(FIp)] S Igs).
o Let Cf be VkHIB/,kf.

© Predicate “°Write for the productivity.
o By a nested inductive conducive predicate.

Definition (Inductive predicate Readx and coinductive predicate “°Write)

Let X be a predicate variable of arity ¢. Also let (Outy o f)(x) be 2f(x) — d and
(f o Ing)(x) be £(>F<).

VIV (F[I] S Iy »™°X(Outy o f) — Readxf), (Read)§
V¢ (Readx (f o In_1) — Readx(f o Ing) — Readx(f o In;) — Readxf), (Read);"
V?C(COWritef —f=1Id v Readcowritef). (COWrite)*

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions

Continuity to productivity

Proposition (Continuity to productivity)
VEe(C f — “°Writef).

Proof.

Let f be given and assume C f. Use the greatest-fixed-point axiom for “°Write f. We
instantiate the competitor predicate P by C as follows.

VE¢(Cf - Vi¢(Cf — f =1d v Readcy cowrite) — “°Writef).

It suffices to prove the second premise of the above formula. Let f be given and
assume C f. Since Cf is same as V,3,B) «f, it implies 3,B >f. We prove the right
disjunct by the following lemma. O

Lemma

V/V?C(Blgf — Cf — Readcycowritef)-

Proof.
By induction on /. O

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions

Extracted program

Let M be our proof of Proposition. By program extraction, we get et(M) as a realizer

of ¥2¢(C f — ““Writef).
The extracted program t := et(M) is of type (N - N x (Q — Q)) — W where R,

and W are computed from “°“Write and Ready.
For a given uniformly continuous function (h, o, w), t computes a non-well founded

tree representing {h, o, w).
Defining f(x) = —x by h, a and w, t(Ap{w(n), Ash(a, a(n)))) gives the following tree.

FECEELEEEETIEE T
FF 4000 —F+++00+000000—~0————————

Figure : Type-0 representation of f(x) = —x.

In the figure —, 0 and + stands for —1, 0 and 1, respectively.

Program Extraction from Nested Definitions

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg

Concluding remarks

o Related work
o Program extraction from coinductive definitions by Tatsuta (1998).
o Program extraction from coind. defs. in typed setting by Berger (2009).
o Theory of computable functionals (the theory of Minlog) by S & Wainer (2012).
o Proof assistants: Coq, Isabelle, Nuprl, Agda, Matita, and so on.

o Case studies in exact real arithmetic running in Minlog

o Two representations of u.c.functions, application, composition and integration by M.
o Intermediate value theorem by S (2008, in functional representation).

o ODE solver from Picard-Lindeléf Thm. by Thilo Weghorn (2013, in fun. rep.).

e http://www.minlog-system.de/.

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Def

