
Program Extraction from Nested Definitions

Kenji Miyamoto1,˚, Fredrik Nordvall Forsberg2,˚,˚˚

and Helmut Schwichtenberg1

1 Ludwig Maximilian University, Munich
2 Swansea University, Wales

˚ Supported by the Marie Curie Initial Training Network in Mathematical Logic – MALOA – From MAthematical LOgic to
Applications, PITN-GA-2009-238381.

˚˚ Supported by EPSRC grant EP/G033374/1, Theory and applications of induction-recursion.

26.07.2013
ITP 2013, Rennes

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions



Outline

Proof assistant Minlog and the theory TCF behind it to study computational
meaning of proofs.

Case study in exact real arithmetic.

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions



Note on listrev.scm

We inductively define predicate A of arity pLN, LN, LNq. Apu, v ,wq means that the
append of u and v is w .

@vAprs, v , vq, (A`0 )

@u,v,w,x pApu, v ,wq Ñ Apx ::u, v , x ::wqq. (A`1 )

The above formulas are adopted as the introduction axioms of A.
We inductively define R of arity pLN, LNq as follows.

Rprs, rsq, (R`0 )

@u,v,w,x pRpu, vq Ñ Apv , x ::rs,wq Ñ Rpx ::u,wqq. (R`1 )

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions



Note on listrev.scm

From the proof of the proposition @vDwRpv ,wq we extracted a term

λupRLN
LN

u rsλx,v,w pRLN
LN

w px ::rsqλy, py ::qqq

of type LN Ñ LN.
We can export the term to Haskell.

module Main where

import Data.List

----- Algebras ------------------

type Nat = Integer

----- Recursion operators -------

listRec :: [alpha] -> alpha1 ->

(alpha -> ([alpha] -> (alpha1 -> alpha1))) ->

alpha1

listRec [] a f = a

listRec (b : z) a f = ((f b) z) (listRec z a f)

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions



Note on listrev.scm

----- Program constants ---------

cLA :: [Nat] -> [Nat] -> [Nat]

cLA = \ v0 -> (\ v1 -> (listRec v1 v0 (\ x2 -> (\ v3 -> (:) x2))))

cLR :: [Nat] -> [Nat]

cLR = \ v0 -> (listRec v0 [] (\ x1 -> (\ v2 -> (cLA (x1 : [])))))

---------------------------------

rev :: [Nat] -> [Nat]

rev = cLR

apd :: [Nat] -> [Nat] -> [Nat]

apd = cLA

---------------------------------

main :: IO ()

main = putStrLn ""

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions



Constants and axioms

The recursion operator Rρ
Lα

came from induction on lists.

Rρ
Lα

: Lα Ñ ρÑ pαÑ Lα Ñ ρÑ ρq Ñ ρ,

Rρ
Lα
rs M0 M1 “ M0,

Rρ
Lα
px ::uq M0 M1 “ M1 x u pRρ

Lα
u M0 M1q.

We relate Rρ
Lα

with the induction on list, which come from the totality predicate TL.

TLrs, @ncx,upQpxq Ñ TLpuq Ñ TLpx ::uqq, pTLq
`
0 , pTLq

`
1

@ncu pTLu Ñ Prs Ñ @ncx,upQpxq Ñ TLu Ñ Pu Ñ Ppx ::uqq Ñ Puq. pTLq
´

where Q is a parameter predicate of arity pαq. We refer to pTLq
´ by elimination

axiom or induction.
We formally relate a term and a formula via realizability r.
For example, we expect:

“Constructor” r “introduction axiom”,

“Recursion operator” r “elimination axiom”,

Let A be a formula with proof M. We can compute:

the type τpAq of potential realizers of A.

a realizer (extracted term) etpMqτpAq of A (program extraction).

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions



Realizability

Realizability is a way to think about a computational solution of a problem expressed
by a formula.
We work in first-order minimal logic with implication and universal quantifiers. The
realizability relation is:

t r AÑ B :“ @x px r AÑ tpxq r Bq, t r @xA :“ @x ptpxq r Aq.

We consider non-computational variants of Ñ and @.

t r AÑnc B :“ @x px r AÑ t r Bq, t r @ncx A :“ @x pt r Aq.

We call Ñ and @ computational.
Ñ, @ and Ñnc, @nc are logically the same, but computationally different due to the
realizability relation. Conjunction, disjunction and the existential quantifier are defined
as inductive definitions.
In contrast to the BHK-interpretation we also consider concrete prime formulas,
namely, inductively defined predicates.

t r I~s :“ I rpt, ~sq.

where I r is an inductive predicate, called a witnessing predicate, defined for each I .

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions



Witnessing predicates

Consider the predicate TL whose arity is pLαq.

TLrs, pTLq
`
0

@ncx,upQx Ñ TLu Ñ TLpx ::uqq. pTLq
`
1

where Q is a predicate parameter of arity pαq, an arbitrary type parameter.
The type of an inductive predicate I , namely, τpI q is the algebra whose constructor
types are the types of the introduction axioms.
Consider TL. By τ the introduction axioms go to the constructor types

ξ, αÑ ξ Ñ ξ,

which define the list algebra Lα.
We define the witnessing predicate T r

L of arity pτpTLq, Lαq as follows.

T r
Lprs, rsq, pT r

Lq
`
0

@ncx,y,u,v pQ
˚py , xq Ñ T r

Lpv , uq Ñ T r
Lpy ::v , x ::uqq. pT r

Lq
`
1

where Q˚ is a predicate parameter of arity pτpQq, αq.

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions



Program extraction

The notion of proof is given in natural deduction, which is represented in lambda
terms. We define the program extraction et.

Definition (Program extraction)

Let MA be a proof A. We define etpMAq by induction on the construction of MA.

etpuAq :“ x
τpAq

uA
where xuA is uniquely associated with uA,

etpI`i q :“ Ci , etpI´q :“ Rτ
ι ,

etppλuAM
BqAÑ

cBq :“ λ
x
τpAq
u

petpMqq, etppλuAM
BqAÑ

ncBq :“ etpMq,

etpMAÑcBNAq :“ etpMqetpNq, etpMAÑncBNAq :“ etpMq,

etppλxρM
Aq@

c
xAq :“ λxρetpMq, etppλxρM

Aq@
nc
x Aq :“ etpMq,

etppM@cxArqAprqq :“ etpMqr , etppM@ncx ArqAprqq :“ etpMq.

The following theorem claims that the program extraction finds a realizer.

Theorem (Soundness)

Let A be a formula and M be a proof of A under assumptions Bi for i ă k. Then,

there is a proof of etpMq r A under the assumptions u
Bi
i for i ă k.

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions



Branching trees

We consider arbitrarily branching trees based on the following nested algebra Nt.

LfNt, BrLNtÑNt.

We can think about the combinations of the finiteness and the infiniteness.

finite branching / finite height,

infinite branching / finite height,

finite branching / infinite height,

infinite branching / infinite height.

We construct trees of finite branching / infinite height by using coRρ
Nt, the corecursion

operator on Nt. The type of coRρ
Nt and Rρ

Nt are:

coRρ
Nt : ρÑ pρÑ U` LNt`ρq Ñ Nt,

Rρ
Nt : NtÑ ρÑ pLNtˆρ Ñ ρq Ñ ρ

« NtÑ pUÑ ρq Ñ pLNtˆρ Ñ ρq Ñ ρ

« NtÑ pU` LNtˆρ Ñ ρq Ñ ρ.

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions



Corecursion operators

The outcome is determined by the result of applying the second argument to the first
argument.

coRρ
Nt : ρÑ pρÑ U` LNt`ρq Ñ Nt,

coRτ
Nt ÞÑ λu,v pCase vu of inl pq Ñ Lf

inr x Ñ BrpMNt`τÑNt
λαLα

xrid, λz p
coRτ

Ntzvqsqq.

where for f αÑσ and gβÑσ we define rf , gsα`βÑσ by

rf , gspinl xαq “ f pxq, rf , gspinr yβq “ gpyq.

The map operator M constructs subtrees at each branch.

MρÑσ
λαLα

: Lρ Ñ pρÑ σq Ñ Lσ ,

MρÑσ
λαLα

rs
ρ f “ rsσ ,

MρÑσ
λαLα

px ::uq f “ f pxq::MρÑσ
λαLα

u f .

Destructors are given for each algebra as follows:

DNt : NtÑ U` LNt,

DNtpLfq “ inl pq, DNtpBr uq “ inr u.

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions



Coinductive definitions

For an inductive predicate I we define its companion coinductive predicate coI . Let
TLα pQq be a predicate stating a finite list of objects in Q.

TLα rs, @ncx,upQx Ñ TLαu Ñ TLα px ::uqq.

Define TNt of arity pNtq to be:

TNtpLfq, pTNtq
`
0

@ncu pTLNt
pTNtqpuq Ñ TNtpBruqq. pTNtq

`
1

The coinductive predicate coTNt of arity pNtq is defined by the clause axiom coTNt, the
dual of pTNtq

`
0 and pTNtq

`
1 .

@nca p
coTNtpaq Ñ a “ Lf _ DupTLNt

pcoTNtqpuq ^ a “ Bruqq. pcoTNtq
´

The greatest-fixed-point axiom (or coinduction) is given as follows:

@nca pPaÑ@
nc
a pPaÑ a “ Lf _ DupTLNt

pcoTNt _ Pqpuq ^ a “ Bruqq Ñ
coTNtpaqq.

pcoTNtq
`

It states that coTNt is bigger than any competitor P that looks like coTNt in pcoTNtq
´.

The realizability relation is extended to coinductive definitions. The program
extraction is as well: etpcoI´q :“ DτpIq, etpcoI`q :“ coRρ

τpIq
.

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions



Summary and remark on Minlog and its theory

1 Theory of computation
Free algebras as base types.
A term calculus with recursion, corecursion, general recursion, etc.

2 First order minimal logic (no A_ A) with inductive and coinductive definitions
Framework for constructive mathematics.
A language with Ñ, @, Ñnc and @nc.
Inductively and coinductively defined predicates can be introduced.
Support of classical proofs by A-translation and Dialectica interpretation.

3 Realizability interpretation
Provide the notion of construction in the BHK-interpretation.
Consider a relation r on a term t and a formula A, written as t r A.
Intuitively means that t computationally solves the problem expressed by A.

Also possible to take t r A as a correctness notion.

We give a program extraction transforming a proof M of A into a realizer t of A.

The type of t is computed from A.

4 Minlog
1 General purpose proof assistant.
2 It has been developed for 20+ years in LMU Munich.
3 We focus on a feature of program extraction.
4 Download: http://minlog-system.de/.

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions



Case study in exact real arithmetic

In the context of program extraction we study exact real arithmetic due to Ulrich
Berger in Minlog. Consider two representations of uniform continuous functions in
r´1, 1s:

functional representation,

infinite tree representation.

The latter one is done by corecursion in our setting.
Suppose we have the stream representation of real numbers.

Let SD be ´1, 0, 1. Informally, a stream ~d of SD represents a real number
ř

i“0
di

2i`1 .
The algebras of tree represented uniformly continuous functions are:

Rα: Put of type SDÑ αÑ R and Get of type RÑ RÑ RÑ R.

W: Stop of type W and Cont of type RW ÑW.

Define a term t (RW finite, W infinite) to be:

Cont

Get

Putp´1q

t

Putp0q

t

Putp1q

t

This is the identity function f pxq “ x .

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions



Cauchy reals and uniformly continuous functions in a constructive setting

A rational sequence panqn is a Cauchy real if @kDl@m,něl p|am ´ an| ď 2´k q.
These classical Cauchy reals are not suitable for computing, because we cannot find l
in general.
We adopt a constructive version of Cauchy reals.

Definition (Cauchy reals)

A Cauchy real is given by a pair xxNÑQ,MNÑNy such that

@k@m,něMpkqp|xpmq ´ xpnq| ď 2´k q.

Based on a similar idea, we define uniformly continuous functions by a triple.

Definition (Uniformly continuous functions)

A uniformly continuous function is given by a triple xhQÑNÑN, αNÑN, ωNÑNy (α is a
Cauchy modulus, ω a modulus of uniform continuity) such that

@k@a@m,něαpkqp|hpa,mq ´ hpa, nq| ď 2´k q,

@k@a,b@něαpkqp|a´ b| ď 2´ωpkq`1 Ñ |hpa, nq ´ hpb, nq| ď 2´k q.

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions



Our running example

Let f be a uniformly continuous function in r´1, 1s. We prove that the continuity of
f , implies the productivity of f . We formulate

1 Abstract theory of uniformly continuous functions.
Good for simplicity if we don’t want computational meaning from them.
Specify it by a type variable φ and axioms.
Make use of Ñnc and @nc.

2 Predicate C for the continuity.

Ip,l :“ rp ´ 2´l , p ` 2´l
s, Bl,k f :“ @pDqpf rIp,l s Ď Iq,kq.

Let C f be @kDlBl,k f .

3 Predicate coWrite for the productivity.
By a nested inductive conducive predicate.

Definition (Inductive predicate ReadX and coinductive predicate coWrite)

Let X be a predicate variable of arity φ. Also let pOutd ˝ f qpxq be 2f pxq ´ d and

pf ˝ Ind qpxq be f p x`d
2
q.

@ncf @d pf rIs Ď Id ÑncX pOutd ˝ f q Ñ ReadX f q, pReadq`0

@ncf pReadX pf ˝ In´1q Ñ ReadX pf ˝ In0q Ñ ReadX pf ˝ In1q Ñ ReadX f q, pReadq`1

@ncf p
coWritef Ñ f “ Id_ ReadcoWritef q. pcoWriteq´

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions



Continuity to productivity

Proposition (Continuity to productivity)

@ncf pC f Ñ coWritef q.

Proof.

Let f be given and assume C f . Use the greatest-fixed-point axiom for coWrite f . We
instantiate the competitor predicate P by C as follows.

@ncf pC f Ñ @ncf pC f Ñ f “ Id_ ReadC_coWritef q Ñ
coWritef q.

It suffices to prove the second premise of the above formula. Let f be given and
assume C f . Since C f is same as @kDlBl,k f , it implies DlBl,2f . We prove the right
disjunct by the following lemma.

Lemma

@l@
nc
f pBl,2f Ñ C f Ñ ReadC_coWritef q.

Proof.

By induction on l .

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions



Extracted program

Let M be our proof of Proposition. By program extraction, we get etpMq as a realizer
of @ncf pC f Ñ coWritef q.
The extracted program t :“ etpMq is of type pNÑ Nˆ pQÑ Qqq ÑW where Rα
and W are computed from coWrite and ReadX .
For a given uniformly continuous function xh, α, ωy, t computes a non-well founded
tree representing xh, α, ωy.
Defining f pxq “ ´x by h, α and ω, tpλnxωpnq, λahpa, αpnqqyq gives the following tree.

`

`

...

`

...

`

...

`

`

...

`

...

`

...

`

`

...

0

...

0

...

`

`

...

0

...

0

...

`

0

...

0

...

0

...

`

0

...

´

...

´

...

`

0

...

´

...

´

...

0

`

...

`

...

`

...

0

`

...

0

...

0

...

`

0

...

´

...

´

...

0

`

...

`

...

`

...

0

`

...

0

...

0

...

0

`

...

0

...

0

...

0

0

...

0

...

0

...

0

0

...

´

...

´

...

0

0

...

´

...

´

...

´

`

...

`

...

`

...

´

`

...

0

...

0

...

0

0

...

´

...

´

...

´

`

...

`

...

`

...

´

`

...

0

...

0

...

´

`

...

0

...

0

...

´

0

...

0

...

0

...

´

0

...

´

...

´

...

´

0

...

´

...

´

...

´

´

...

´

...

´

...

´

´

...

´

...

´

...

Figure : Type-0 representation of f pxq “ ´x .

In the figure ´, 0 and ` stands for ´1, 0 and 1, respectively.

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions



Concluding remarks

Related work
Program extraction from coinductive definitions by Tatsuta (1998).
Program extraction from coind. defs. in typed setting by Berger (2009).
Theory of computable functionals (the theory of Minlog) by S & Wainer (2012).
Proof assistants: Coq, Isabelle, Nuprl, Agda, Matita, and so on.

Case studies in exact real arithmetic running in Minlog
Two representations of u.c.functions, application, composition and integration by M.
Intermediate value theorem by S (2008, in functional representation).
ODE solver from Picard-Lindelöf Thm. by Thilo Weghorn (2013, in fun. rep.).
http://www.minlog-system.de/.

K. Miyamoto, F. Nordvall Forsberg and H. Schwichtenberg Program Extraction from Nested Definitions


