Minlog — A Tool for Program Extraction
Supporting Algebras and Coalgebras

Ulrich Berger!, Kenji Miyamoto?*, Helmut Schwichtenberg?,
and Monika Seisenberger!

1 Swansea University, Wales
2 Ludwig Maximilian University, Munich
* Supported by the Marie Curie Initial Training Network in Mathematical Logic — MALOA — From
MAthematical LOgic to Applications, PITN-GA-2009-238381

30.08.2011
CALCO-tools 2011

Contents of this talk

e Introduction
e Proof Assistant Minlog [Min]
e Theory of Computable Functionals (TCF in short) [SW11]
e Demo of Program Extraction Case Studies on Minlog
e Parser
® |nput: a string of parentheses
e Qutput: True and the parse tree if the input is balanced
False and the empty parse tree if the input is not balanced
e Translator
e Input: a rational number
e Qutput: a real number representation of the input

Proof Assistant Minlog

e Implementation of TCF
e Program extraction supporting (co)induction
e Written in Scheme Language (R5RS)

e User's work in Minlog is in Scheme as well

Example of a Minlog Proof

(load "~ /minlog/init.scm")
(add-pvar-name "A" "B" (make-arity))

(set-goal "A -> B -> A")
(assume "HypA" "HypB")
(use "HypA")

(save "theorem")

Theory of Computable Functionals (TCF)

First order minimal natural deduction
o (Classical Logic as an Fragment of Minimal Logic

Goedel's T with extensions

Semantics

e Scott-Ershov model of partial continuous functionals

o Free algebras as base types

o Algebras are domains of Scott’s information systems
Program Extraction

o Kreisel's modified realizability interpretation

e A-Translation and Dialectica Interpretation available for

classical proofs

Examples of Free Algebras
@ Par (Parentheses)

LPar RPar
® N (Natural Numbers)

oY, gN—N
® L(p) (List of type p)

N,'/pL(P)’ ConsppﬁL(p)*L(p)

O I (Interval [-1,1])

1Y, C_4"1 G G (Whole Interval, Left, Middle, Right)

® O (Ordinal, non-finitary)

Zero?, Succ®~9, Sup(@_’@))_’@

Totality and Cototality

Total ideals of a base type are in a finite constructor expression.
e True, False
e 0, S(5(S0))
e Nil, L::R:
Cototal ideals of a base type are total or in a non-wellfounded
constructor expression.
e True, False
e 0, S(5(S0)), S(S(S(S(S(S(S(. - -
e Nil, L::R:, L::R::L::R::L::R::. ..
f of a higher type o — 4 is total if: For any total x?, fx is total.

Case Study on Parser

e Prove Vx(S5x V —=5x)

e x is a list of parentheses
e Sx says that x is balanced, predicate S inductively defined

e Extract a program from proofs

e Experiments

Extracted Parser in Goedel's T

[x0]
Test 0 x0Q
(Rec 1list par=>algState=>algS=>algS)
x0
([st1,b2] [if stl b2 ([b3,st4]CInitS)])
([par1,x2,f3,st4,b5]
[if parl
(£3(CApState b5 st4)CInitS)
[if st4 CInitS
([b6,st7]1£3 st7(CApS b6(CParS b5)))11)
CInitState
CInitS

Experiments

elnputL::L:R:R:
(pp (nt (mk-term-in-app-form parser-term
(pt "L::L::R::R:"))))
— True@CApS ClnitS(CParS(CApS CInitS(CParS ClnitS)))
e Input R:: L:
(pp (nt (mk-term-in-app-form parser-term
(pt "R::L:"))))
—> False@ClInitS

Computational Content from
(Co)Inductively Defined Predicates

e Defining Sx to tell that x is balanced
o S(Nil)
e Vx(5x — S(LxR))
o Vxy(Sx — Sy — S(xy))
o Algebra 1s for parse trees obtained from S
e CInitS's from S(Nil)
e CParS*s—*s from Vx(5x — S(LxR))
e CApS's™ s from Vx(Sx — Sy — S(xy))

In the next case study, we obtain the interval algebra from a
coinductively defined predicate.

Signed Digit Stream Representation of Real Numbers

Representing real numbers in SDS [CDG06]
SDS is a stream (or non-wellfounded list) of signed digits
-1,0,1
e Example. —1::0:1::0::1:0:1:...
Represented as a cototal ideal in TCF
SDS tells how to compute rational intervals as accurate as
required
A real number represented by —1::0::1: 010 1.,

.

-1 0
i 1
I T

-1/2
1] 1]]
I T T T 1

-3/4 -1/4
—t+—
—3i/8
-7/16 -5/16
H

. . 1
An approximation of —3.

Idea for the Translator

We construct an SDS from a real number.
e Take an appropriate signed digit for the given x € [—1,1]

@ If x is in the left, take —1 and let the next x be 2x + 1
@® If x is in the middle, take 0 and let the next x be 2x
© If x is in the right, take 1 and let the next x be 2x — 1

e Since x € [—1,1], we can repeat it as many as required
Example. —% in SDS

—
—+o
i E—

We obtain an SDS —1::0::1:: ...

Case Study on Translator

Theorem: if rational a € [—1,1], a is approximable in SDS.

Proof by coinduction

Extracting a program from the proof

e Experiments

We describe the theorem in the following formula:
Va(Q a— I a)

Q a holds if a € [-1,1]. </ is defined coinductively.

Coinductively Defined Predicate </

A predicate P to say that a is approximable.
e If P aholds

@ ais left and P(2a+1) or
@ ais middle and P(2a) or
© aisright and P(2a—1)

Such a predicate can be defined by coinduction.

b+1
C°Ia—>a:0\/5|b(a:%/\col b)
b co
V3s(a =2 A1 b)
b—1

V3p(a = =5— A1 b)

This formula is also used as a coclosure axiom, written <°/~.

Coinduction

Coinduction axiom /T is yielded from the definition of </.
Set theoretically,

X C®(X) — X Cvd (coinduction)

where ® a monotone operator, v the greatest fixed point operator.
In our setting, we give a GFP axiom:

1
Va(Paea:Ovﬂb(a:b%/\P(b))

v%@ngPw»

Vay(a= Lot AP(B))

—Pa—*°la

P is an arbitrary predicate.

Proof Sketch
We show Va(Q a — <°/ a). Assume a. We prove Q a — </ a by
means of the following GFP axiom with substituting @ for P.

¥a(Q 2 — a=0v 32 = 21 A (b))

Va(a= 2 A QD) V Ip(a = 2o A Q(B)
—- Qa—“la

What we have to show is the first premise

Va(Q a— a=0V3y(a % A Q(b))
Vas(a= 2 A QD) V Ip(a = 2ot A Q(E)

It is done by the case distinction on a

11
ae[-1,0]orac [—5,5] or a€ [0,1]

Coinduction on Minlog

input> (set-goal "allnc a~(Q a~ -> CoI a™)")
;?7_1:allnc a~(Q a~ -> Col a”)

input> (assume "a"0")

;0k, we now have the new goal
;7.2:Q a0 -=> Col a0 from

; {a"0}

input> (coind)

;0k, 7_2 can be obtained from

;7_3:allnc a~(

; Qa" —>

s a”~ eqd 0 orr

; exr a~0(a”~ eqd(a”0-1)/2 & (CoIl a~0 ord Q a~0)) ord

; exr a"0(a” eqd a"0/2 & (CoIl a"0 ord Q a~0)) ord

; exr a”0(a” eqd(a”0+1)/2 & (CoIl a"0 ord Q a~0))) from
; {a”0} 1:Q a"0

Program Extraction via Realizability Interpretation

e Decoration of Logical Connectives
° _>C' _>I1C' VC' \v/I'IC
e ¢ stands for computational, " for non-computational
e Logically same, Computationally different
e Modified Realizability Interpretation
r(A—°B) =V (xrA—txrB)
r (A—="B) :=V(xrA—trB)
trVSA =V (tx r A)
trVICA =V, (tr A)
e Extracted Term
et((AuM)*"8) = A, et(M)
et((AM)*~"F) := et(M)
et(/;) constructor)
(/
et(

G (
et(/~) ;=R (recursion operator)
I7) := D (destructor)
et(C°/+) = °°R (corecursion operator)

(Soundness) Let M be a proof of formula A, et(M) r A holds.

co

Unfolding Corecursion Operator

e From our GFP axiom the following corecursion operator
extracted

R :(r—=U+74+74+7)>7—>1
ORTMN > A1, Ae(C_1(©RT Mx)),
Ax(Co(°Rf Mx)), Ax(C1(“Rf Mx))](MN)

e Function M™~U+7+7+7 determines which constructor should
be output.
@ If (MN)UF7+7F7 is the injection of U, ““RyMN + |
@® If (MN)U+7+7+7 s the injection of some 7,
CORIMN — Cy4(°RiMN’) for the corresponding d

Extracted Translator

[algQoO]
(CoRec algQ=>intv)algQO
([algQ1il
[if algQ1
([a2]
[if (a2-(IntN 1#3))
([x3,p4]
[if k3
([p5]
[if (a2-(1#3))
([k6,p7])))))))))

Unfolding Corecursion Operator to Normalize

input> (pp
(nt
(undelay-delayed-corec
(make-term-in-app-form translator
(pt "CGenQ(IntN 1#3)"))
5)))
;CIntN
; (CIntZ
; (CIntP
; (CIntZ
; (CIntP
; ((CoRec algQ=>intv) (CGenQ(1#3))
; ([algQo]
; [if algQ0 IDDRDDY)

Outputis =1 ::0::1::0::1:: ..., which we already saw.

Conclusion

e TCF and its implementation Minlog
e Coinductive reasoning
e Program extraction
e Two Case Studies on Program Extraction
e Parsing Balanced Parentheses
e Translating a rational number into a real number
representation

Related Work

e Other Systems
e Coq has a different program extraction [Coq][Let03]
e Isabelle has a program extraction after Minlog [lsa]
e Agda has an experimental program extraction [Agd][Chull]

e QOur Case Study
e Cauchy Reals

e Extracted Flip Functionon I, f : x — —x
o Extracted Average Function on I, f : (x,y) — ¥

Future Work

e Extracting Uniformly Continuous functions of 17 — I [BS10]

e Improving exact real arithmetic [BH08]

References

[Agd] Agda. http://wiki.portal.chalmers.se/agda/.
[BHO8] U. Berger and T. Hou.
Coinduction for exact real number computation.
Theory of Computing Systems, 43:394-409, 2008.
[BS10] U. Berger and M. Seisenberger.
Proofs, programs, processes.
Programs, Proofs, Processes, CiE 2010, LNCS 6158, pp. 39-48, 2010.
[CDGO6] A. Ciaffaglione and P. Di Gianantonio.
A certified, corecursive implementation of exact real numbers.
Theor. Comp. Sci., 351:39-51, 2006.
[Chull] C. M. Chuang. Extraction of Programs for Exact Real
Number Computation Using Agda.
PhD thesis, Swansea University, Wales, 2011.

References (cont.)

[Coq] The Coq Proof Assistant. http://coq.inria.fr/.

[Isa] Isabelle. http://isabelle.in.tum.de/.

[Let] P. Letouzey. A New Extraction for Coq.
Types for Proofs and Programs, TYPES 2002, LNCS 2646, 2003.

[Min] The Minlog System. http://www.minlog-systemn.de.

[SW11] H. Schwichtenberg and S. S. Wainer. Proofs and Computations.
Perspectives in Logic. Assoc. Symb. Logic and Cambridge Univ. Press,
to appear, 2011.

