
Minlog – A Tool for Program Extraction

Supporting Algebras and Coalgebras

Ulrich Berger1, Kenji Miyamoto2∗, Helmut Schwichtenberg2,
and Monika Seisenberger1

1 Swansea University, Wales
2 Ludwig Maximilian University, Munich

∗ Supported by the Marie Curie Initial Training Network in Mathematical Logic – MALOA – From

MAthematical LOgic to Applications, PITN-GA-2009-238381

30.08.2011
CALCO-tools 2011

Contents of this talk

• Introduction
• Proof Assistant Minlog [Min]

• Theory of Computable Functionals (TCF in short) [SW11]

• Demo of Program Extraction Case Studies on Minlog
• Parser

• Input: a string of parentheses
• Output: True and the parse tree if the input is balanced

False and the empty parse tree if the input is not balanced

• Translator

• Input: a rational number
• Output: a real number representation of the input

Proof Assistant Minlog

• Implementation of TCF

• Program extraction supporting (co)induction

• Written in Scheme Language (R5RS)

• User’s work in Minlog is in Scheme as well

Example of a Minlog Proof

(load "~/minlog/init.scm")

(add-pvar-name "A" "B" (make-arity))

(set-goal "A -> B -> A")

(assume "HypA" "HypB")

(use "HypA")

(save "theorem")

Theory of Computable Functionals (TCF)

• First order minimal natural deduction
• Classical Logic as an Fragment of Minimal Logic

• Goedel’s T with extensions

• Semantics
• Scott-Ershov model of partial continuous functionals
• Free algebras as base types
• Algebras are domains of Scott’s information systems

• Program Extraction
• Kreisel’s modified realizability interpretation
• A-Translation and Dialectica Interpretation available for

classical proofs

Examples of Free Algebras

1 Par (Parentheses)

LPar ,RPar

2 N (Natural Numbers)

0N,SN→N

3 L(ρ) (List of type ρ)

Nilρ
L(ρ),Consρ

ρ→L(ρ)→L(ρ)

4 I (Interval [-1,1])

I I,C−1
I→I,C0

I→I,C1
I→I (Whole Interval, Left, Middle, Right)

5 O (Ordinal, non-finitary)

ZeroO,SuccO→O,Sup(O→O)→O

Totality and Cototality

Total ideals of a base type are in a finite constructor expression.

• True, False

• 0, S(S(S0))

• Nil, L::R:

Cototal ideals of a base type are total or in a non-wellfounded
constructor expression.

• True, False

• 0, S(S(S0)), S(S(S(S(S(S(S(. . .

• Nil, L::R:, L::R::L::R::L::R::. . .

f of a higher type σ → δ is total if: For any total xσ, fx is total.

Case Study on Parser

• Prove ∀x(Sx ∨ ¬Sx)
• x is a list of parentheses
• Sx says that x is balanced, predicate S inductively defined

• Extract a program from proofs

• Experiments

Extracted Parser in Goedel’s T

[x0]

Test 0 x0@

(Rec list par=>algState=>algS=>algS)

x0

([st1,b2][if st1 b2 ([b3,st4]CInitS)])

([par1,x2,f3,st4,b5]

[if par1

(f3(CApState b5 st4)CInitS)

[if st4 CInitS

([b6,st7]f3 st7(CApS b6(CParS b5)))]])

CInitState

CInitS

Experiments

• Input L :: L :: R :: R :

(pp (nt (mk-term-in-app-form parser-term

(pt "L::L::R::R:"))))

=⇒ True@CApS CInitS(CParS(CApS CInitS(CParS CInitS)))

• Input R :: L :

(pp (nt (mk-term-in-app-form parser-term

(pt "R::L:"))))

=⇒ False@CInitS

Computational Content from

(Co)Inductively Defined Predicates

• Defining Sx to tell that x is balanced
• S(Nil)
• ∀x(Sx → S(LxR))
• ∀xy(Sx → Sy → S(xy))

• Algebra ιS for parse trees obtained from S

• CInitSιS from S(Nil)
• CParSιS→ιS from ∀x(Sx → S(LxR))
• CApSιS→ιS→ιS from ∀x(Sx → Sy → S(xy))

In the next case study, we obtain the interval algebra from a
coinductively defined predicate.

Signed Digit Stream Representation of Real Numbers

• Representing real numbers in SDS [CDG06]

• SDS is a stream (or non-wellfounded list) of signed digits
−1, 0, 1

• Example. −1 :: 0 :: 1 :: 0 :: 1 :: 0 :: 1 :: . . .

• Represented as a cototal ideal in TCF

• SDS tells how to compute rational intervals as accurate as
required

• A real number represented by −1 :: 0 :: 1 :: 0 :: 1 :: 0 :: 1 :: . . .

An approximation of −1
3 .

Idea for the Translator

We construct an SDS from a real number.

• Take an appropriate signed digit for the given x ∈ [−1, 1]

1 If x is in the left, take −1 and let the next x be 2x + 1
2 If x is in the middle, take 0 and let the next x be 2x

3 If x is in the right, take 1 and let the next x be 2x − 1

• Since x ∈ [−1, 1], we can repeat it as many as required

Example. −1
3 in SDS

We obtain an SDS −1 :: 0 :: 1 :: . . .

Case Study on Translator

• Theorem: if rational a ∈ [−1, 1], a is approximable in SDS.

• Proof by coinduction

• Extracting a program from the proof

• Experiments

We describe the theorem in the following formula:

∀a(Q a →
co I a)

Q a holds if a ∈ [−1, 1]. co I is defined coinductively.

Coinductively Defined Predicate co
I

A predicate P to say that a is approximable.

• If P a holds

1 a is left and P(2a + 1) or
2 a is middle and P(2a) or
3 a is right and P(2a − 1)

Such a predicate can be defined by coinduction.

co I a → a = 0 ∨ ∃b(a =
b + 1

2
∧

co I b)

∨∃b(a =
b

2
∧

co I b)

∨∃b(a =
b − 1

2
∧

co I b)

This formula is also used as a coclosure axiom, written co I−.

Coinduction

Coinduction axiom co I+ is yielded from the definition of co I .
Set theoretically,

X ⊆ Φ(X) → X ⊆ νΦ (coinduction)

where Φ a monotone operator, ν the greatest fixed point operator.
In our setting, we give a GFP axiom:

∀a(P a → a = 0 ∨ ∃b(a =
b + 1

2
∧ P(b))

∨∃b(a =
b

2
∧ P(b))

∨∃b(a =
b − 1

2
∧ P(b)))

→ P a → co I a

P is an arbitrary predicate.

Proof Sketch
We show ∀a(Q a → co I a). Assume a. We prove Q a → co I a by
means of the following GFP axiom with substituting Q for P .

∀a(Q a → a = 0 ∨ ∃b(a =
b + 1

2
∧ Q(b))

∨∃b(a =
b

2
∧ Q(b)) ∨ ∃b(a =

b − 1

2
∧ Q(b)))

→ Q a →
co I a

What we have to show is the first premise

∀a(Q a → a = 0 ∨ ∃b(a =
b + 1

2
∧ Q(b))

∨∃b(a =
b

2
∧ Q(b)) ∨ ∃b(a =

b − 1

2
∧ Q(b)))

It is done by the case distinction on a

a ∈ [−1, 0] or a ∈ [−
1

2
,
1

2
] or a ∈ [0, 1]

Coinduction on Minlog

input> (set-goal "allnc a^(Q a^ -> CoI a^)")

;?_1:allnc a^(Q a^ -> CoI a^)

input> (assume "a^0")

;ok, we now have the new goal

;?_2:Q a^0 -> CoI a^0 from

; {a^0}

input> (coind)

;ok, ?_2 can be obtained from

;?_3:allnc a^(

; Q a^ ->

; a^ eqd 0 orr

; exr a^0(a^ eqd(a^0-1)/2 & (CoI a^0 ord Q a^0)) ord

; exr a^0(a^ eqd a^0/2 & (CoI a^0 ord Q a^0)) ord

; exr a^0(a^ eqd(a^0+1)/2 & (CoI a^0 ord Q a^0))) from

; {a^0} 1:Q a^0

Program Extraction via Realizability Interpretation

• Decoration of Logical Connectives
• →c , →nc , ∀c , ∀nc

•
c stands for computational, nc for non-computational

• Logically same, Computationally different

• Modified Realizability Interpretation
• t r (A →c B) := ∀x(x r A → tx r B)
• t r (A →nc B) := ∀x(x r A → t r B)
• t r ∀c

xA := ∀x(tx r A)
• t r ∀nc

x A := ∀x(t r A)

• Extracted Term
• et((λuM)A→

cB) := λxu
et(M)

• et((λuM)A→
ncB) := et(M)

• et(I+
i) := Ci (constructor)

• et(I−) := R (recursion operator)
• et(co I−) := D (destructor)
• et(co I+) := coR (corecursion operator)

(Soundness) Let M be a proof of formula A, et(M) r A holds.

Unfolding Corecursion Operator

• From our GFP axiom the following corecursion operator
extracted

co

R
τ

I : (τ → U + τ + τ + τ) → τ → I

co

R
τ

I MN 7→ [λ I, λx(C−1(
co

R
τ

I Mx)),

λx(C0(
coRτ

I Mx)), λx (C1(
coRτ

I Mx))](MN)

• Function Mτ→U+τ+τ+τ determines which constructor should
be output.

1 If (MN)U+τ+τ+τ is the injection of U, coRIMN 7→ I

2 If (MN)U+τ+τ+τ is the injection of some τ ,
coRIMN 7→ Cd (coRIMN ′) for the corresponding d

Extracted Translator

[algQ0]

(CoRec algQ=>intv)algQ0

([algQ1]

[if algQ1

([a2]

[if (a2-(IntN 1#3))

([k3,p4]

[if k3

([p5]

[if (a2-(1#3))

([k6,p7])))))))))

Unfolding Corecursion Operator to Normalize

input> (pp

(nt

(undelay-delayed-corec

(make-term-in-app-form translator

(pt "CGenQ(IntN 1#3)"))

5)))

;CIntN

;(CIntZ

; (CIntP

; (CIntZ

; (CIntP

; ((CoRec algQ=>intv)(CGenQ(1#3))

; ([algQ0]

; [if algQ0]))))))

Output is −1 :: 0 :: 1 :: 0 :: 1 ::, which we already saw.

Conclusion

• TCF and its implementation Minlog
• Coinductive reasoning
• Program extraction

• Two Case Studies on Program Extraction
• Parsing Balanced Parentheses
• Translating a rational number into a real number

representation

Related Work

• Other Systems
• Coq has a different program extraction [Coq][Let03]

• Isabelle has a program extraction after Minlog [Isa]

• Agda has an experimental program extraction [Agd][Chu11]

• Our Case Study
• Cauchy Reals
• Extracted Flip Function on I, f : x 7→ −x
• Extracted Average Function on I, f : (x , y) 7→ x+y

2

Future Work

• Extracting Uniformly Continuous functions of I
n → I [BS10]

• Improving exact real arithmetic [BH08]

References

[Agd] Agda. http://wiki.portal.chalmers.se/agda/.
[BH08] U. Berger and T. Hou.

Coinduction for exact real number computation.
Theory of Computing Systems, 43:394–409, 2008.

[BS10] U. Berger and M. Seisenberger.
Proofs, programs, processes.
Programs, Proofs, Processes, CiE 2010, LNCS 6158, pp. 39–48, 2010.

[CDG06] A. Ciaffaglione and P. Di Gianantonio.
A certified, corecursive implementation of exact real numbers.
Theor. Comp. Sci., 351:39–51, 2006.

[Chu11] C. M. Chuang. Extraction of Programs for Exact Real

Number Computation Using Agda.
PhD thesis, Swansea University, Wales, 2011.

References (cont.)

[Coq] The Coq Proof Assistant. http://coq.inria.fr/.
[Isa] Isabelle. http://isabelle.in.tum.de/.
[Let] P. Letouzey. A New Extraction for Coq.

Types for Proofs and Programs, TYPES 2002, LNCS 2646, 2003.
[Min] The Minlog System. http://www.minlog-system.de.
[SW11] H. Schwichtenberg and S. S. Wainer. Proofs and Computations.

Perspectives in Logic. Assoc. Symb. Logic and Cambridge Univ. Press,
to appear, 2011.

