
Program Extraction from Nested Definitions

Kenji Miyamoto1,?, Fredrik Nordvall Forsberg2,?,??

and Helmut Schwichtenberg1

1 Ludwig-Maximilians-Universität München, Germany
2 Swansea University, UK

Abstract. Minlog is a proof assistant which automatically extracts
computational content in an extension of Gödel’s T from formalized proofs.
We report on extending Minlog to deal with predicates defined using a
particular combination of induction and coinduction, via so-called nested
definitions. In order to increase the efficiency of the extracted programs, we
have also implemented a feature to translate terms into Haskell programs.
To illustrate our theory and implementation, a formalisation of a theory
of uniformly continuous functions due to Berger is presented.

1 Introduction

Program extraction is a method for obtaining certified algorithms by extracting
the computational content hidden in proofs. To get successful algorithms, the
formalization of the proof is not a superficial issue but rather an essential one. The
Theory of Computable Functionals [24], TCF in short, has been developed in order
to provide a concrete framework for program extraction. TCF is implemented
straightforwardly in the Minlog [18] proof assistant. As available in TCF, Minlog
supports inductive and coinductive definitions and program extraction from
classical proofs as well as from constructive ones. The internal term language of
Minlog can be exported to general-purpose programming languages.

This paper reports on new contributions to TCF and Minlog, focusing on two
aspects. One is a certain combination of inductive and coinductive definitions,
called nested definitions [6]. We make use of such definitions in a case study on
exact real arithmetic. The other is a feature to translate Minlog algebras and
terms into Haskell programs. This makes efficient execution of the extracted
programs possible. Translation to a lazy language such as Haskell is especially
beneficial when computing with infinite objects, such as in our case study.

We first describe TCF, with an emphasis on nested definitions. Then an
application of TCF and program extraction from nested definitions to exact
real arithmetic is presented: a translation of the usual type-1 representation of
uniformly continuous functions into a type-0 representation. We also extract
a program which computes the definite integral of such functions. These case
studies are available in the Minlog distribution [18].

? The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme under grant agreement number 238381.

?? Supported by EPSRC grant EP/G033374/1.

2 Formal System

We study higher type functionals as well as functions and ground type objects.
Functionals in TCF are not necessarily total but partial in general. Based on
the understanding that evaluation must be finite, we assume two principles for
our notion of computability: the finite support principle and the monotonicity
principle. During the evaluation of some functional Φ, only finitely many inputs
ϕ0, . . ., ϕn−1 are used. Moreover, each of ϕi must be presented to Φ in a finite
form. This is the finite support principle. Assume Φ(ϕ0) evaluates to a value k
and let ϕ1 be more informative than ϕ0. Then Φ(ϕ1) results in k as well. This is
the monotonicity principle.

The notion of abstract computability is formulated as follows: an object
is computable when its set of finite approximations is primitive recursively
enumerable. In this section, we begin by making the notion of such computable
objects, called partial continuous functionals, concrete. Then we proceed to our
term calculus, its Haskell translation, and inductive/coinductive predicates.

2.1 Algebras and their total and cototal ideals

The formal term language of TCF is an extension of Gödel’s T, which is ap-
propriate for higher type computation involving functionals. Types are built
from base types by the formation of function types. The base types themselves
are formed by free algebras given by their constructors. For instance the list
algebra Lα, where α is a type parameter, is defined by the two constructors
empty list []

Lα and the “cons” operator ::α→Lα→Lα . Formally, a constructor
type is a type expression of the form τ0 → . . . → τn−1 → ξi, where each τi is

a type expression where all ~ξ appear strictly positively (i.e. not to the left of
an arrow). For any finite list of constructor types ~κ, we (simultaneously) define

algebras µ~ξ(~κ), provided there is at least one constructor type such that ~ξ does

not occur in ~τ (this ensures that all algebras are inhabited). For example, the
algebra of natural numbers N is defined by N = µξ(ξ, ξ → ξ). We also adopt the

notation Lα = µξ([]
ξ
, ::α→ξ→ξ) in order to specify constructor names. Another

example is the algebra of branching trees. We simultaneously define (Ts,T)
by µξ,ζ(Emptyξ,Tconsζ→ξ→ξ, Leafζ ,Branchξ→ζ). Using the list algebra, we can
define another algebra of branching trees without the simultaneity by defining
NT = µξ(Lf

ξ,BrLξ→ξ). This is an example of a nested algebra [6]. Support for
such algebras has recently been added to Minlog.

The intended semantics of the term language is based on Scott’s information
systems [25] (see also Schwichtenberg and Wainer [24]). Algebras are interpreted
as sets of ideals, i.e. consistent and deductively closed sets of tokens, which are
type correct constructor trees possibly involving the special symbol ∗, meaning
“no information”. Consider a constructor tree P (∗) with a distinguished occurrence
of ∗. An arbitrary P (C~∗), where C is a constructor, is called a one-step predecessor
of P (∗), written P (C~∗) �1 P (∗). Here P (C~∗) is obtained by substituting C~∗
for the distinguished ∗ in P (∗). Among ideals, we are especially interested in

total and cototal ideals. A cototal ideal x is an ideal whose every constructor
tree P (∗) ∈ x has a one-step predecessor P (C~∗) ∈ x. A total ideal is a cototal
ideal such that the relation �1 is well founded. For instance, the cototal ideal
{∗::∗, 0::∗, ∗::∗::∗, 0::∗::∗, ∗::1::∗, 0::1::∗, ∗::∗::∗::∗, . . .} denotes the non-well founded
list of natural numbers [0, 1, . . .].

A binary tree with a (possibly) infinite height is informally defined by a term
t := Br(t::t::[]) whose denotation is an NT-cototal LNT-total ideal (see also
Section 2.5). Total ideals of (Ts,T) are isomorphic (as information systems) to
pairs of LNT-total NT-total ideals and NT-total LNT-total ideals.

2.2 Corecursion

An arbitrary term in Gödel’s T is terminating and hence denotes a total ideal.
Constructors are used to construct total ideals whereas recursion operators are
used to inspect a total ideal from its leaves to the root. In order to accommodate
cototal as well as total ideals, we add to Gödel’s T two more kinds of constants,
namely destructors and corecursion operators, which this section describes. De-
structors, the dual of constructors, are used to inspect the structure of cototal
ideals, while corecursion operators give a way to construct cototal ideals.

As an example, we consider the algebra NT of nested trees. Define the disjoint
sum of α and β by α + β = µξ(inl

α→ξ, inrβ→ξ), and the unit type U = µξ(u
ξ).

The destructor DNT has the following type and conversion relation:

DNT : NT→ U + LNT

DNT Lf 7→ inl u, DNT (Br as) 7→ inr as.
(1)

Corecursion operators give a way to construct cototal ideals. The corecursion
operator coRτNT has the following type and conversion relation:

coRτNT : τ → (τ → U + LNT+τ)→ NT
coRτNTN M 7→ case MN of

inl u→ Lf

inr qs→ Br (MNT+τ→NT
λαLα

qs [id, λx(coRxM)]).

where [f, g]ρ+σ→τ is defined for fρ→τ and gσ→τ by

[f, g](inl xρ) 7→ fx, [f, g](inr yσ) 7→ gy,

and the map constant Mσ→ρ
λαLα

witnesses the functoriality of Lα. It has the
following type and conversion relation:

M : Lσ → (σ → ρ)→ Lρ

M [] f 7→ [], M (x ::xs) f 7→ fx :: (M xs f).

In the conversion rule for coRτNT, the first argument of the corecursion operator
is passed to the second functional argument. The result of this application

determines what the construction of the cototal ideal is. In the case of nested
algebras, the value algebra of corecursion operators occurs inside of other algebras
as a parameter. Map operators play a crucial role in reaching the value algebra
so that the corecursion operator can do its work.

2.3 Realizability

We now address the issue of extracting computational content from proofs. The
method of program extraction is based on modified realizability as introduced
by Kreisel [16] and described in detail in Schwichtenberg and Wainer [24]. In
short, from every constructive proof M of a non-Harrop formula A (in natural
deduction) one extracts a program et(M) “realizing” A, essentially by removing
computationally irrelevant parts from the proof (proofs of Harrop formulas have no
computational content). The extracted program has some simple type τ(A) which
depends solely on the logical shape of the proven formula A. In its original form
the extraction process is fairly straightforward, but often leads to unnecessarily
complex programs. In order to obtain better programs, proof assistants (for
instance Coq [9], Isabelle/HOL [13], Agda [1], Nuprl [21], Minlog [18]) offer
various optimizations of program extraction. Below we describe optimizations
implemented in Minlog [22], which are relevant for our present case study.

Quantifiers without computational content Besides the usual quantifiers,
∀ and ∃, Minlog has so-called non-computational quantifiers, ∀nc and ∃nc, which
allow for the extraction of simpler programs. These quantifiers, which were first
introduced by Berger [2], can be viewed as a refinement of the Set/Prop distinction
in constructive type systems like Coq. Intuitively, a proof of ∀ncx A(x) (A(x) non-
Harrop) represents a procedure that assigns to any x a proof M(x) of A(x)
where M(x) does not make “computational use” of x, i.e., the extracted program
et(M(x)) does not depend on x. Dually, a proof of ∃ncx A(x) is a proof of M(x) for
some x where the witness x is “hidden”, that is, not available for computational
use; in fact, ∃nc can be seen as inductively defined by the clause ∀ncx (A→ ∃ncx A).
The types of extracted programs for non-computational quantifiers are τ(∀ncxρA) =
τ(∃ncxρA) = τ(A) as opposed to τ(∀xρA) = ρ→ τ(A) and τ(∃xρA) = ρ×τ(A). The
extraction rules are, for example in the case of ∀nc-introduction and -elimination,
et((λxM

A(x))∀
nc
x A(x)) = et(M) and et((M∀

nc
x A(x)t)A(t)) = et(M) as opposed

to et((λxM
A(x))∀xA(x)) = et(λxM) and et((M∀xA(x)t)A(t)) = et(Mt). For the

extracted programs to be correct the variable condition for ∀nc-introduction must
be strengthened by additionally requiring that the abstracted variable x does
not occur in the extracted program et(M), and similarly for ∃nc. Note that for a
Harrop formula A the formulas ∀ncx A, ∀xA are equivalent.

2.4 Translation to a general-purpose programming language

The programs extracted from proofs in Minlog are once again represented as terms
in the internal term language. This has the advantage that a general soundness

theorem can be stated (and automatically proven) in the system. However, for
efficiency and interoperability reasons, it is sometimes beneficial to translate the
extracted terms into programs in a general-purpose programming language. We
now describe our new translation from Minlog terms into Haskell programs (there
is also limited support for translating into Scheme). Coq [17], Isabelle/HOL [5]
and Agda [26] provide similar features.

Terms of Gödel’s T – lambda abstraction, application, variables etc – are
translated to corresponding Haskell terms. For recursion and corecursion opera-
tors, polymorphic functions are generated. For example, the translation of the
corecursion operator coRτNT above is implemented as

ntCoRec :: a -> (a -> Maybe [Either NT a]) -> NT

ntCoRec e f = case (f e) of

Nothing -> Lf

Just z ->

Br (fmap (\ w -> case w of

Left x -> x

Right y -> ntCoRec y f) z)

Here Haskell’s lazy evaluation means that we do not need to worry about
guarding the recursive call. The occurrence of the map operator MNT+τ→NT

λαLα
gets translated to the fmap function from the Functor type class. In this case,
the list algebra from Minlog gets translated to the list data type in Haskell, which
already has a Functor instance. For custom data types, the instance is derived
automatically by GHC using the DeriveFunctor flag.

Lists, integers, rational numbers, sum types, product types and the unit
type are translated to their standard implementation in the Haskell prelude. For
efficiency reasons, natural numbers are translated to integers. Other algebras are
translated into algebraic data types.

Program constants and their computation rules are translated to functions
defined by pattern matching. Here some care must be taken for e.g. natural
numbers, since they are translated to integers, for which no pattern matching is
available. Instead guard conditions are used, as in the translation of the following
parity function for natural numbers:

parity :: Integer {-Nat-} -> Bool

parity 0 = True

parity 1 = False

parity n | n > 1 = parity (n - 2)

The realizer for ex-falso-quodlibet ff → A makes use of a canonical inhabitant
inhabτ(A) of type τ(A). This is justified since all types are inhabited in the
intended semantics, but not so in Haskell. Hence we define a type class

class Inhabited a where

inhab :: a

and ensure we generate instances and track inhabitedness constraints in the types
of the generated functions.

2.5 Inductive and coinductive definitions

We are particularly interested in dealing with a combination of induction and
coinduction in TCF. Starting from simultaneous inductive definitions, we describe
nested inductive definitions and furthermore nested inductive/coinductive defini-
tions. See e.g. Jacobs and Rutten [14] for a gentle introduction to coinduction.

As an example, consider the simultaneously defined algebras (Ts,T) =
µξ,ζ(Emptyξ,Tconsζ→ξ→ξ, Leafζ ,Branchξ→ζ) of finitely branching trees again.
The totality predicates (TTs, TT) of (Ts,T), of arity (Ts) and (T) respectively,
are simultaneously inductively defined by the following four clauses:

TTs Empty, ∀nca,as(TT a→ TTs as→ TTs (Tcons a as)),

TT Leaf, ∀ncas (TTs as→ TT (Branch as)).

From the above, a nested definition of branching trees is derived by removing the
simultaneity. This leads to the definition of the algebras Lα = µξ([]

ξ
, ::α→ξ→ξ)

and NT = µξ(Lf
ξ,BrLξ→ξ). To define the totality predicate for NT, we first

define the relativised totality predicate RTX for lists, with arity (Lα) for X
of arity (α). Relativised totality means the totality relative to the parameter
predicate X. It is given by the following clauses:

RTX [], ∀ncx,xs(Xx→ RTX xs→ RTX (x::xs)).

We can now define the totality predicate of nested trees using the relativised
totality predicate RTX of lists, with X instantiated to TNT:

TNT Lf, ∀as(RTTNT
as→ TNT (Br as)).

We call a predicate definition nested if the predicate to be defined occurs strictly
positively as a parameter of an already defined predicate in a clause formula.
Witnesses of nested predicates have nested algebras as their types.

Coinductive predicates arise as “duals” of inductive ones. For example, for
the totality predicate TNT we can define its companion predicate coTNT by the
single clause

∀nca (coTNTa→ a = Lf ∨ ∃ncas (RTcoTNT
as ∧ a = Bras)). (2)

We call such a companion predicate definition derived from an inductive one
a coinductive definition. A witness for a proposition coTNT a is an NT-cototal
LNT-total ideal, which is a finitely branching tree of (possibly) infinite height.
The computational content of (2) is the destructor DNT. We still need to express
that RTX is the least predicate satisfying the clauses, and that coTNT is the
greatest predicate satisfying the clause. The former is done by means of the
least-fixed-point axiom

∀ncxs (RTX xs→P []→
∀ncx,xs(Xx→ RTX xs→ P xs→ P x::xs)→
P xs).

(3)

The latter is done by means of the greatest-fixed-point axiom.

∀nca (Q a→∀nca (Q a→ a = Lf ∨ ∃ncas (RTcoTNT∨Q as ∧ a = Br as))→
coTNT a).

(4)

The predicates P and Q are called competitor predicates which satisfy the same
clause(s) as RTX and TNT, respectively. From (3) and (4), we see that P is a
superset of RTX and Q is a subset of coTNT.

The term extracted from (3) is Gödel’s (structural) recursion operator RLα ,
and the term extracted from (4) is the corecursion operator coRNT defined in
Section 2.2.

3 Case study: uniformly continuous functions

To illustrate program extraction in TCF, we formalize the theory of uniformly
continuous functions from constructive analysis [7,23]. Our first case study pro-
vides an alternative view of uniformly continuous functions of type-1 as a cototal
object of type-0; i.e. of ground type. We then extract a program which computes
the definite integral of a uniformly continuous function of type-0. This was first
studied by Berger [3] in the setting of program extraction. We now offer machine
extraction from formalized proofs of these results in Minlog. Before continuing,
we review representations of real numbers of type-1 and type-0. In this section,
we only consider real numbers and uniformly continuous functions in the interval
[−1, 1] in order to work with stream represented real numbers [8] and uniformly
continuous functions on them.

A real number of type-1 is a Cauchy real with a modulus, namely a pair
〈x,M〉, where x is a bounded function of type N→ Q and M : N→ N satisfies
the following Cauchy condition:

∀kN∀n,m≥Mk(|xn− xm| ≤ 2−k).

Define the type of signed digits by SD = µξ(−1ξ, 0ξ, 1ξ). A real number of type-0
is a signed digit stream d0::d1:: . . ., where di is of type SD. Informally, the stream
d0::d1:: . . . denotes the real number

∑
i=0

di
2i+1 . We represent such an object by a

cototal ideal of LSD, which is a possibly infinite list of signed digits. An arbitrary
real number can be represented by a type-0 object, for example by a stream of
integers in {−9,−8, . . . , 8, 9} with a decimal point [27,28].

3.1 Data types of uniformly continuous functions

Consider a triple 〈h, α, ω〉, where h : Q→ N→ Q is a bounded function and α
and ω are of type N→ N. Suppose that it satisfies

∀aQ,kN,n≥α(k),m≥α(k)(|h an− h am| ≤ 2−k),

∀aQ,bQ,kN,n≥α(k)(|a− b| ≤ 2−ω(k)+1 → |h an− h b n| ≤ 2−k).

The first formula states the Cauchyness of 〈h a, α〉. Classically this can be stated
by the formula ∀a,k∃l∀n,m≥l(|h an − h am| ≤ 2−k), while constructively the
way to determine l has to be given, for instance by a Cauchy modulus α. The
second formula states the uniform continuity of 〈h, α〉, once again with explicit
modulus of uniform continuity ω for constructive reasons. Finally, we assume that
h is bounded between −1 to 1. We adopt objects of this kind as our uniformly
continuous functions of type-1, namely of first order function type. Application
of a type-1 uniformly continuous function 〈h, α, ω〉 to a Cauchy real 〈x,M〉 is
defined to be

〈λn(h (xn)n), λk max(α(k + 2),M(ω(k + 1)− 1))〉.

For our type-0 representation of uniformly continuous functions we adopt so-
called read-write machines [3] or stream processors [11,12]. These are W-cototal
RW-total ideals where

Rα := µξ(Put
SD→α→ξ,Getξ→ξ→ξ→ξ),

W := µξ(Stop
ξ,ContRξ→ξ).

A read-write machine is a potentially non-well founded tree with internal Put
nodes and branching at Get nodes. It intuitively represents a function from signed
digit streams to signed digit streams as follows: start at the root of the tree. If
we are at the node (Put d t), output the digit d and carry on with the tree t.
If we are at the node (Get t−1 t0 t1), read a digit d from the input stream and
continue with the tree td. If we reach a Stop node, we return the rest of the input
unprocessed as output. Because a read-write machine is a W-cototal RW-total
ideal, the output might be infinite, but RW-totality ensures that the machine
can only read finitely many input digits before producing another output digit;
the machine represents a continuous function.

3.2 Formalization

We work with the abstract theory of uniformly continuous functions. Suppose that
ϕ is a type variable representing abstract uniformly continuous functions. Due to
the use of non-computational connectives, any object of type ϕ appearing in the
proofs will disappear when a program is extracted. This theory is axiomatized in
Appendix A. Note that all axioms are non-computational.

Let f range over the type variable ϕ, and also p, q range over Q and k, l
range over N. We define a comprehension term C (for “continuous”) of abstract
uniformly continuous functions as follows.

C := {f |∀k∃lBl,kf}, where Bl,k := {f |∀p∃q(f [Ip,l] ⊆ Iq,k)}.

Here, Iq,k represents the interval [q − 2−k, q + 2−k] of length 21−k centered
at q, while f [Ip,l] represents the image of Ip,l under f ; the exact behavior is
axiomatized in Appendix A. We write I for the interval I0,0 = [−1, 1]. Witnesses

for Bl,kf and Cf are total ideals of type (an isomorphic copy of) Q → Q and
N → N × (Q → Q), respectively. The latter represents 〈h, α, ω〉 by a term
λn〈ω n, λa h a (αn)〉. Let (Outd ◦ f)(x) = 2f(x)− d, (f ◦ Ind)(x) = f(x+d2) and

Id = [d−12 , d+1
2] for each d ∈ {−1, 0, 1}. We call Id a basic interval. We inductively

define a predicate ReadX of arity (ϕ) by the following clauses

∀ncf ∀d(f [I] ⊆ Id → X(Outd ◦ f)→ ReadXf), (ReadX)+0

∀ncf (ReadX(f ◦ In−1)→ ReadX(f ◦ In0)→ ReadX(f ◦ In1)→
ReadXf).

(ReadX)+1

The least-fixed-point axiom (ReadX)− is defined to be

∀ncf (ReadXf →∀ncf ∀d(f [I] ⊆ Id → X(Outd ◦ f)→ Pf)→
∀ncf (ReadX(f ◦ In−1)→ P (f ◦ In−1)→

ReadX(f ◦ In0)→ P (f ◦ In0)→
ReadX(f ◦ In1)→ P (f ◦ In1)→ Pf)→

Pf).

(ReadX)−

Furthermore, we give a nested inductive definition of a predicate Write of abstract
uniformly continuous functions by the following clauses

Write(Id), ∀ncf (ReadWritef →Writef),

where Id is the identity function. Witnesses for ReadXf and Writef are total
ideals of Rα and W, respectively. We define coWrite, a companion predicate of
Write, by the following clause

∀ncf (coWritef → f = Id ∨ ReadcoWritef). (coWrite)−

The greatest-fixed-point axiom (coWrite)+ of coWrite is

∀ncf (Qf → ∀ncf (Qf → f = Id ∨ ReadcoWrite∨Qf)→ coWrite f). (coWrite)+

A witness for coWritef is a W-cototal RW-total ideal. Intuitively, coWritef says
that f is productive as a function on signed digit representations. If we can use
axiom (ReadcoWrite)

+
0 , we know that the image of f is contained in an interval

of radius 1
2 centered at the digit d, so that the first output digit must be d

independently of the input. By using the function Outd ◦f , we remove the leading
digit and shift the input sequence one digit to the left. We continue to prove
that f is productive on the rest of the input sequence. If the image of f is not
contained in a basic interval, we can split the interval in three subintervals and
check that f is productive on all of them by using axiom (ReadcoWrite)

+
1 . This

corresponds to reading another input digit. Since ReadX is inductively defined,
we can only use (ReadcoWrite)

+
1 finitely many times before we are forced to use

(ReadcoWrite)
+
0 and another output digit is determined.

In our Minlog formalization, ϕ is given as a type variable, and Ind, Outd and
Id are defined as constants without computational meaning with value type ϕ.
This is not a problem, since all such constants will disappear in the program
extraction process due to careful use of non-computational connectives.

3.3 Informal proofs

We present informal proofs from which programs on uniformly continuous func-
tions are extracted. Formalized proofs can be found in the Minlog distribution in
the file examples/analysis/readwrite.scm.

For the first case study, Axiom 1 in Appendix A is used.

Theorem 1 (Type-1 u.c.f. into type-0 u.c.f.).

∀ncf (Cf → coWritef).

Proof. Let f be given and assume Cf . We prove coWritef by the greatest fixed
point axiom coWrite+ with C for the competitor. It suffices to prove ∀ncf (Cf →
f = Id ∨ReadcoWrite∨Cf). Again let f be given and assume Cf , i.e. in particular
Bl,2f for some l. By Lemma 2, the right disjunct of the goal holds. ut

The above proof considerably depends on the following lemma, which in turn
depends on the next ones.

Lemma 2. ∀l∀ncf (Bl,2f → Cf → ReadcoWrite∨Cf).

Proof. By induction on l. Base: l = 0. Let f be given, and assume B0,2f and Cf .
Applying Lemma 3, there is a d such that f [I] ⊆ Id. By Lemma 4, Cf implies
C(Outd ◦ f), hence (coWrite ∨ C)(Outd ◦ f). Now use the introduction axiom
(ReadcoWrite∨C)+0 . Step: l 7→ l + 1. Suppose the following induction hypothesis

∀ncf (Bl,2f → Cf → ReadcoWrite∨Cf), (5)

and prove ∀ncf (Bl+1,2f → Cf → ReadcoWrite∨Cf). Assume Bl+1,2f and Cf for
a given f . Our goal is ReadcoWrite∨Cf . By Lemma 4, we have Bl,2(f ◦ Ind) and
C(f ◦ Ind) for each d. The induction hypothesis (5) yields ReadcoWrite∨C(f ◦ Ind)
for each d, hence we can apply the introduction axiom (ReadcoWrite∨C)+1 to finish
the proof. ut

Lemma 3. ∀ncf (B0,2f → ∃d(f [I] ⊆ Id)).

Proof. Assume f and B0,2f . From the definition of Bl,k, f [I0,0] ⊆ Iq,2 for some
q holds. Because q is a rational number, either q ≤ − 1

4 , − 1
4 ≤ q ≤ 1

4 or 1
4 ≤ q.

Recall that our uniformly continuous function is bounded in [−1, 1]. It is possible
to determine either of Iq,2 ⊆ I−1, Iq,2 ⊆ I0 or Iq,2 ⊆ I1, hence ∃d(f [I] ⊆ Id). ut

Lemma 4. (i) ∀ncf,k,l∀d(f [I] ⊆ Id → Bl,k+1f → Bl,k(Outd ◦ f)).
(ii) ∀ncf ∀d(f [I] ⊆ Id → Cf → C(Outd ◦ f)).

(iii) ∀ncf,k,l∀d(Bl+1,kf → Bl,k(f ◦ Ind)).
(iv) ∀ncf ∀d(Cf → C(f ◦ Ind)). ut

We now turn to calculating the definite integral of uniformly continuous
functions to an arbitrary precision. In order to stay in the interval [−1, 1], we

compute the definite integral from −1 to 1 divided by two. We abbreviate 1
2

∫ 1

−1 f

by
∫ H

f (H for “half”). The properties we need of the integral and the real
numbers are axiomatized in Axiom 2 and Axiom 3 in Appendix A.

Theorem 5 (Definite integral from −1 to 1).

∀ncf (coWritef → ∀n∃p(
∫ H

f ∈ Ip,n)).

Proof. Let f be given and assume coWritef . We finish the proof by induction

on n. Case n = 0. Choose p to be 0; then
∫ H

f ∈ I0,0 by the axiom. Case

n 7→ n + 1. We prove ∃p(
∫ H

f ∈ Ip,n+1)). By (coWritef)−, we can do case
distinction on f = Id ∨ ReadcoWritef . Left case. Suppose f = Id. Let p be

0, then our goal is
∫ H

Id ∈ I0,n+1, which is clear by the axioms. Right case.
Suppose ReadcoWritef and use (ReadcoWrite)

−. Side base case. Let f and d be

given and assume f [I] ⊆ Id and coWrite(Outd ◦ f). We prove ∃p(
∫ H

f ∈ Ip,n+1).

By i.h. there is a p′ such that
∫ H

(Outd ◦ f) ∈ Ip′,n, which implies
∫ H

f ∈
I p′+d

2 ,n+1
as desired. Side step case. Let f be given and assume side i.h. We prove

∃p(
∫ H

f ∈ Ip,n+1). By the side i.h., there are pd such that
∫ H

(f ◦ Ind) ∈ Ipd,n+1

for each d, thus 1
2 (
∫ H

(f ◦ In−1) +
∫ H

(f ◦ In1)) ∈ I p−1+p1
2 ,n+1

holds. This implies∫ H
f ∈ I p−1+p1

2 ,n+1
as desired. ut

3.4 Extraction

From a proof, Minlog extracts a term in an extension of Gödel’s T. In the next
stage, these, together with relevant algebras and program constants, can be
translated into a Haskell program using the term-to-haskell-program function
of Minlog. We present the Haskell programs obtained from our formalized proofs.
For aesthetic reasons, we present slightly formatted versions of the programs as
suggested by e.g. HLint [19].

The algebras involved get translated to the following Haskell data types:

data AlgB = CInitB (Rational -> Rational)

data AlgRead a = Put Sd a

| Get (AlgRead a) (AlgRead a) (AlgRead a)

deriving (Show, Read, Eq, Ord, Functor)

data AlgWrite = Stop | Cont (AlgRead AlgWrite)

deriving (Show, Read, Eq, Ord)

data Sd = L | M | R

deriving (Show, Read, Eq, Ord)

We see how AlgB is just an isomorphic copy of Rational -> Rational, and
how AlgRead has a type parameter a which gets instantiated to AlgWrite in the
constructor Cont.

The extracted program from Lemma 3 is

cLemmaThree :: AlgB -> Sd

cLemmaThree (CInitB g) =

if (numerator ((g 0) + (1/4)) > 0) then

if (numerator ((g 0) - (1/4)) > 0) then R else M

else L

This program computes a signed digit d such that the image of f – an abstract
function which does not appear in the extracted term – is contained in Id. It
takes a rational function g which realizes Bl,2 f as input; hence the image is
contained in an interval of length 1

2 , centered at g 0. The calculation of the
output is reduced to a simple decision of rational inequalities.

The extracted program from Lemma 2 is

cLemmaTwo :: Integer -> AlgB -> (Integer -> (Integer, AlgB)) ->

AlgRead (Either AlgWrite

(Integer -> (Integer, AlgB)))

cLemmaTwo n =

natRec n

(\ w h ->

Put (cLemmaThree w)

(Right (cLemmaFour_ii (cLemmaThree w) h)))

(\ n3 g w h ->

Get (g (cLemmaFour_iii L w) (cLemmaFour_iv L h))

(g (cLemmaFour_iii M w) (cLemmaFour_iv M h))

(g (cLemmaFour_iii R w) (cLemmaFour_iv R h)))

The extracted term cLemmaTwo takes as input a natural number n, a rational
function w and a function h : N → N × AlgB (in our application, we only call
cLemmaTwo with 〈n, w〉 = h 2). Using recursion over n, it computes an approxima-
tion of h by a complete tree of height n with 3n leaves – a RW+(N→N×AlgB)-total
ideal. At the leaves, a signed digit d – computed from w using cLemmaThree –
and the remainder of the approximation of h – computed by cLemmaFour_ii

below, using d – is stored. At internal branching nodes, we split the domain of
h into three subdomains – left, middle and right – modify w and h accordingly
(using cLemmaFour_iii and cLemmaFour_iv below), and recurse.

The above term involves terms extracted from Lemma 4. They work in the
following ways.

cLemmaFour_i :: Sd -> AlgB -> AlgB

cLemmaFour_i sd (CInitB h) =

CInitB (\ a -> (2 * h a) - (sDToInt sd % 1))

cLemmaFour_ii :: Sd -> (Integer -> (Integer, AlgB)) ->

Integer -> (Integer, AlgB)

cLemmaFour_ii sd g n = case g (n + 1) of

(n1, w1) -> (n1 , cLemmaFour_i sd w1)

cLemmaFour_iii :: Sd -> AlgB -> AlgB

cLemmaFour_iii sd (CInitB h) =

CInitB (\ a -> h ((a + (sDToInt sd % 1)) / 2))

cLemmaFour_iv :: Sd -> (Integer -> (Integer, AlgB)) ->

Integer -> (Integer, AlgB)

cLemmaFour_iv sd g n = case g n of

(n1, w) -> if n1 == 0 then (0, cLemmaFour_iii sd w)

else (n1 - 1, cLemmaFour_iii sd w)

The extracted term from Theorem 1 is

type1to0 :: (Integer -> (Integer, AlgB)) -> AlgWrite

type1to0 r = algWriteCoRec r

(\ h -> (Just (case h 2 of (n, w) -> cLemmaTwo n w h)))

This program corecursively constructs a W-cototal RW-total ideal by stacking
RW-total ideals computed by cLemmaTwo. It uses the modulus of continuity n

at precision 2 to calculate an approximation of s as an RW-total ideal, as in
Lemma 2. In fact, n is the number of input signed digits to be read to determine
one output signed digit. The extracted term from Theorem 5 is

integration :: AlgWrite -> Integer -> Rational

integration h n = natRec n (const 0)

(\ n1 t h1 ->

(case algWriteDestr h1 of

Nothing -> 0

Just s -> algReadRec s

(\ sd h2 -> (t h2 + (sDToInt sd % 1)) / 2)

(\ s1 a1 s2 a2 s3 a3 -> (a1 + a3) / 2)))

h

This program reads the given type-0 function to accumulate the possible output
digits to compute the definite integral. The second argument is a number n to
specify the bound of the computation in such a way that the program processes
the read-write machine from its root up to the nth RW-total ideals. At a branch,
the recursively computed integral on the middle interval, i.e. a2, is ignored
because it suffices to see value on the left and the right subintervals, i.e. [−1, 0]
and [0, 1]. At a leaf, the output digit is counted to contribute to the output with
its height in the tree.

3.5 Experiment

As a first example, we instantiate the theorems to the function f(x) := −x. From
a type-1 representation of f , we compute a type-0 representation by means of
our extracted program. We define f by 〈h, α, ω〉 where h an := −a, αn := 0
and ω n := n + 1. The input of type1to0 is λn〈ωn, λa(ha(αn))〉 which turns
into the Haskell expression fIn = \ n -> (n+1, CInitB (\ x -> -x)). The

output type1to0 fIn is graphically presented in Figure 1, where Cont is omitted,
Get is a branching node and Put d is denoted by −, 0 or + respectively for
d = −1, 0 or 1.

+

+

...

+

...

+

...

+

+

...

+

...

+

...

+

+

...

0

...

0

...

+

+

...

0

...

0

...

+

0

...

0

...

0

...

+

0

...

−

...

−

...

+

0

...

−

...

−

...

0

+

...

+

...

+

...

0

+

...

0

...

0

...

+

0

...

−

...

−

...

0

+

...

+

...

+

...

0

+

...

0

...

0

...

0

+

...

0

...

0

...

0

0

...

0

...

0

...

0

0

...

−

...

−

...

0

0

...

−

...

−

...

−

+

...

+

...

+

...

−

+

...

0

...

0

...

0

0

...

−

...

−

...

−

+

...

+

...

+

...

−

+

...

0

...

0

...

−

+

...

0

...

0

...

−

0

...

0

...

0

...

−

0

...

−

...

−

...

−

0

...

−

...

−

...

−

−

...

−

...

−

...

−

−

...

−

...

−

...

Fig. 1. Type-0 representation of f(x) = −x.

In our next example, we compute half of the definite integral for the function
f(x) :=

√
x+ 2 − 1. This integrand is defined to be 〈h, α, ω〉, where h an :=

(RN n 1λ , b (
b+ a+2

b

2))−1, αn := n+1, and ω n := Predn where Pred : N→ N is
the predecessor function. Converting this to the Haskell function it represents, we
end up with \ n -> (Main.pred n, CInitB (\ x -> h x (n+1))). We give
two arguments to integration, a type-0 function and a natural number, the
accuracy. The first input to integration is computed by type1to0 from the
above type-1 function. Specifying 8 as the second argument, the output is 1633

% 4096 whose decimal expansion is 0.398681640625 · · ·. Comparing our result

with the manually calculated definite integral 1
2

∫ 1

−1 f(x)dx =
√

3− 4
3 , the error

is 0.00003583 · · · , which indeed is smaller than 2−8 = 0.00390625.

4 Conclusion

We presented the formal theory TCF and its implementation Minlog which
support nested inductive/coinductive definitions. Minlog extracts programs in an
extension of Gödel’s T from proofs involving nested definitions. Moreover, terms
in the extension of Gödel’s T can be translated into programs in programming
languages such as Haskell. We gave an application to the theory of uniformly
continuous functions as an illustration.

Related work Nested definitions are used by Ghani, Hancock and Pattinson [11,12]
to define uniformly continuous functions. They are also studied by Bird and
Meertens [6] from a purely programming perspective. Krebbers and Spitters [15]
give effective certified programs for exact real number computation. Berger and
Seisenberger [4] considers “pen and paper” program extraction for a system
with induction and coinduction. Berger [3] studies program extraction and its
application to exact real arithmetic. He manually extracts programs from proofs

dealing with uniformly continuous functions. Our case study is heavily based on
his results. More case studies based on Berger’s work, e.g. function application and
composition, are available in the Minlog distribution. Also other researchers have
studied the combination of induction and coinduction. Nakata and Uustalu [20]
study the semantics of interactive programs by means of induction nested into
coinduction, and give a formalization in Coq. Danielsson and Altenkirch [10]
study so-called mixed induction and coinduction, using Agda.

References

1. Agda. http://wiki.portal.chalmers.se/agda/.
2. U. Berger. Program extraction from normalization proofs. In M. Bezem and

J. Groote, editors, Typed Lambda Calculi and Applications, volume 664 of LNCS,
pages 91–106. Springer, 1993.

3. U. Berger. From coinductive proofs to exact real arithmetic: theory and applications.
Logical Methods in Computer Science, 7(1):1–24, 2011.

4. U. Berger and M. Seisenberger. Proofs, programs, processes. Theory of Computing
Systems, 51:313–329, 2012.

5. S. Berghofer and T. Nipkow. Executing higher order logic. In P. Callaghan, Z. Luo,
J. McKinna, and R. Pollack, editors, Types for Proofs and Programs (TYPES 2000),
volume 2277 of LNCS, pages 24–40. Springer, 2002.

6. R. Bird and L. Meertens. Nested datatypes. In Mathematics of program construction,
pages 52–67. Springer, 1998.

7. E. Bishop. Foundations of Constructive Analysis. McGraw-Hill, New York, 1967.
8. A. Ciaffaglione and P. D. Gianantonio. A co-inductive approach to real numbers.

In Types 1999, volume 1956 of LNCS, pages 114–130. Springer, 1999.
9. Coq. http://coq.inria.fr/.

10. N. A. Danielsson and T. Altenkirch. Mixing Induction and Coinduction. Draft,
2009.

11. N. Ghani, P. Hancock, and D. Pattinson. Continuous functions on final coalgebras.
In J. Power, editor, CMCS 2006, Electr. Notes in Theoret. Computer Science, 2006.

12. P. Hancock, D. Pattinson, and N. Ghani. Representations of stream processors
using nested fixed points. Logical Methods in Computer Science, 5(3), 2009.

13. Isabelle. http://isabelle.in.tum.de/.
14. B. Jacobs and J. Rutten. An introduction to (co)algebras and (co)induction.

In D. Sangiorgi and J. Rutten, editors, Advanced Topics in Bisimulation and
Coinduction, volume 52, pages 38–99. Cambridge University Press, 2011.

15. R. Krebbers and B. Spitters. Type classes for efficient exact real arithmetic in Coq.
Logical Methods in Computer Science, 9(1), 2013.

16. G. Kreisel. Interpretation of analysis by means of constructive functionals of
finite types. In A. Heyting, editor, Constructivity in Mathematics, pages 101–128.
North-Holland, Amsterdam, 1959.

17. P. Letouzey. Coq extraction, an overview. In A. Beckmann, C. Dimitracopoulos,
and B. Löwe, editors, CiE 2008, volume 5028 of LNCS. Springer, 2008.

18. The Minlog System. http://www.minlog-system.de.
19. N. Mitchell. HLint. http://community.haskell.org/~ndm/hlint/.
20. K. Nakata and T. Uustalu. Resumptions, weak bisimilarity and big-step semantics

for while with interactive I/O: An exercise in mixed induction-coinduction. In
L. Aceto and P. Sobocinski, editors, SOS, volume 32 of EPTCS, pages 57–75, 2010.

http://wiki.portal.chalmers.se/agda/
http://coq.inria.fr/
http://isabelle.in.tum.de/
http://www.minlog-system.de
http://community.haskell.org/~ndm/hlint/

21. Nuprl. http://www.nuprl.org/.
22. H. Schwichtenberg. Minlog. In F. Wiedijk, editor, The Seventeen Provers of the

World, volume 3600 of LNAI, pages 151–157. Springer, 2006.
23. H. Schwichtenberg. Constructive analysis with witnesses. Manuscript, April 2012.

http://www.math.lmu.de/~schwicht/seminars/semws11/constr11.pdf.
24. H. Schwichtenberg and S. S. Wainer. Proofs and Computations. Perspectives in

Logic. Association for Symbolic Logic and Cambridge University Press, 2012.
25. D. Scott. Domains for denotational semantics. In M. Nielsen and E. Schmidt,

editors, Automata, Languages and Programming, volume 140 of LNCS, pages
577–610. Springer, 1982.

26. M. Takeyama. A new compiler MAlonzo. https://lists.chalmers.se/pipermail/
agda/2008/000219.html.

27. E. Wiedmer. Exaktes Rechnen mit reellen Zahlen und anderen unendlichen Objekten.
PhD thesis, ETH Zürich, 1977.

28. E. Wiedmer. Computing with infinite objects. Theoretical Comput. Sci., 10:133–155,
1980.

A Axioms

Axiom 1 (Abstract Theory of Uniformly Continuous Functions)

∀f,d,p,l,q,k(f [I] ⊆ Id → Outd ◦ f [Ip,l] ⊆ Iq,k → f [Ip,l] ⊆ I q+d
2

,k+1
), (OutElim)

∀f,d,p,l,q,k(f [I] ⊆ Id → f [Ip,l] ⊆ I q+d
2

,k+1
→ Outd ◦ f [Ip,l] ⊆ Iq,k), (OutIntro)

∀f,d,p,l,q,k(f ◦ Ind[Ip,l] ⊆ Iq,k → f [I p+d
2

,l+1
] ⊆ Iq,k), (InElim)

∀f,d,p,l,q,k(f [I p+d
2

,l+1
] ⊆ Iq,k → f ◦ Ind[Ip,l] ⊆ Iq,k), (InIntro)

∀f,p(f [Ip,0] ⊆ I), (UcfBound)

∀p,l(Id[Ip,l] ⊆ Ip,l), (UcfId)

∀f,p,l,q,k(f [Ip,l] ⊆ Iq,k → f [Ip,l+1] ⊆ Iq,k), (UcfInputSucc)

∀f,q(q ≤ − 1
4
→ f [I] ⊆ Iq,2 → f [I] ⊆ I−1), (UcfLeft)

∀f,q(− 1
4
≤ q ≤ 1

4
→ f [I] ⊆ Iq,2 → f [I] ⊆ I0), (UcfMiddle)

∀f,q(1
4
≤ q → f [I] ⊆ Iq,2 → f [I] ⊆ I1). (UcfRight)

Axiom 2 (Abstract Theory of Real Numbers)

∀n(0 ∈ I0,n), (RealZero)

∀x,p,n,d(x ∈ Ip,n → x+d
2
∈ I p+d

2
,n+1

), (AvIntro)

∀x,y,p,q,n(x ∈ Ip,n → y ∈ Iq,n → x+y
2
∈ I p+q

2
,n

). (RealAvrg)

Axiom 3 (Abstract Theory of Integration)

∀f,d(
∫ H

f = 1
2
(
∫ H

(Outd ◦ f) + d)), (HIntOut)

∀f (
∫ H

f = 1
2
(
∫ H

(f ◦ In−1) +
∫ H

(f ◦ In1))), (HIntIn)∫ H
Id = 0, (HIntId)

∀f (
∫ H

f ∈ I0,0). (HIntBound)

http://www.nuprl.org/
http://www.math.lmu.de/~schwicht/seminars/semws11/constr11.pdf
https://lists.chalmers.se/pipermail/agda/2008/000219.html
https://lists.chalmers.se/pipermail/agda/2008/000219.html

	Program Extraction from Nested Definitions

