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Tutorial: closable operators, closure, closed operators

Let T be a linear operator on a Hilbert space H, defined on some subspace D(T ) ⊂ H, the domain
of T .

When, motivated by several important examples (e.g., the Hellinger-Toeplitz theorem, the position
operator on R [Exercise 47], the momentum operator [Problem 49], the kinetic energy operator
[Exercise 49], the Schrödinger Hamiltonians [Problem 48 (ii)], the fact that canonical commutation
relations cannot hold for bounded operators [Problem 50]), we want to relax boundedness and thus

we assume that ‖Tzn‖
n→∞−−−→ ∞ along a sequence of vectors zn ∈ H, ‖zn‖ = 1, then two phenomena

obviously occur:

1. we loose continuity (recall: linear bounded ⇔ linear continuous);

2. we loose bounded linear extension: since sup‖x‖=1 ‖Tx‖ = ∞ it is not possible any longer to
use the bounded linear extension theorem to extend T by continuity from D(T ) to a linear
operator defined on the closure D(T ). In particular, if T is densely defined we do not have a
bounded linear extension theorem any longer to extend T to the whole H. (WARNING: this
does not exclude that there exist operators on H that are unbounded and everywhere defined
(indeed there are, can you figure out an example?), it only means that we loose a useful tool,
the bounded linear extension by continuity.)

Both phenomena lead in a natural way to the notion of closable/closed operators.

Consider first the loss of continuity. It may happen that D(T ) 3 xn → x ∈ H but Txn has no limit,
or that D(T ) 3 xn → x, D(T ) 3 x̃n → x, but Txn and T x̃n have different limits. Moreover, if
x ∈ D(T ) it could be that Txn → y 6= Tx. Any of these possibilities prevents T to be extended “by
continuity” to all the limit points of D(T ), i.e., the whole H.

Sometimes, a “less problematic” situation occurs: not along all sequences D(T ) 3 xn → x ∈ H has
Txn a limit, nevertheless for all sequences in D(T ) converging to x along which T has a limit, this
limit is unique. This “not so bad” circumstance makes T closable.

Definition 1. T is closable if, given an arbitrary x ∈ H limit point of D, for all the approximating
sequences {xn}∞n=1 in D of x ∈ H such that Txn has a limit, such a limit is the same.

It T is closable, there is a natural candidate for its closure.

Definition 2. If T is closable, the closure of T is the operator T whose domain and action are

• D(T ) := {x ∈ H | ∃ y∈H such that, for any sequence {xn}∞n=1 in D(T ) with xn→x, Txn→y}

• Tx := y for any x ∈ D(T ).

In fact, one easily checks that the Definition 2 is well-posed because y is uniquely identified by x and
T defines a linear operator. Also, it is clear that T ⊂ T for every closable T , that is, D(T ) ⊂ D(T )
and Tx = Tx for all x ∈ D(T ) (just consider the sequence with xn = x ∀n).

Definition 3. T is closed if T = T . More precisely, T is closed when the following holds true:
if x ∈ H is a limit point of D(T ) such that D(T ) 3 xn → x and Txn → y for some y ∈ H, then
x ∈ D(T ) and Tx = y.

Consider the following three facts for a linear operator T on H:

(i) D(T ) 3 xn → x ∈ H, (ii) Txn → y ∈ H, (iii) Tx = y .

1



Then T is closed if (i)+(ii)⇒(iii), whereas T is (everywhere defined and) bounded if (i)⇒(ii)+(iii).
Thus, the notion of closed operator does not show up within B(H), the algebra of bounded operators
on H.

The above definitions can be rewritten in the language of the graph of T , i.e., the set

Γ(T ) = {(x, Tx) ∈ H ⊕H |x ∈ D(T )} .

Recall that H ⊕ H is naturally equipped with the direct sum topology, which makes it a Hilbert
space, induced by the scalar product

〈(z, w), (z̃, w̃)〉H⊕H = 〈z, z̃〉+ 〈w, w̃〉.

In particular, Γ(T ) denotes the closure of the graph of T in H⊕H. In this language, it is immediate
to recognise the following definitions to be equivalent to the previous ones.

Definition 1’. T is closable if Γ(T ) = Γ(S) for some linear operator S.

Definition 2’. If T is closable, its closure is that linear operator T identified by Γ(T ) = Γ(T ).

Definition 3’. T is closed if Γ(T ) = Γ(T ).

Note that S in Definition 1’ is uniquely identified by T (if T is closable) because Γ(S) = Γ(S̃) ⇒
S = S̃. Thus, if T is closed according to Definition 3’, it is indeed true that T = T .

In the language of the graph it is also clear that if Γ(T ) ⊂ Γ(R) for some linear operator R then
T ⊂ R, i.e., R is an extension of T . Thus, once again we see that T ⊂ T for every closable operator
T .

Notice also the following (easy to prove). Γ(T ) ⊂ Γ(R) for some linear operator R means that T
admits linear extensions. If T is closable, in particular, T is an extension of T . It is a distinguished

extension, because it is closed (indeed Γ(T ) = Γ(T )) and because if R is any closed extension of T ,
i.e.,

T ⊂ R = R , or equivalently Γ(T ) ⊂ Γ(R) = Γ(R),

then necessarily R = T . In other words, the closure T of a closable operator T is the smallest closed
extension of T .

(Once again, not to overlook it: it could be that Γ(T ) is not the graph of a linear operator, in which
case T is not closable.)

In many contexts closable operators form the most reasonable class of unbounded operators to study.
Somehow non-closable operators are “too pathological”. For instance, we saw that a non-closable
operator has empty resolvent set (Problem 50).

Remarkably, “closablity” of T is rather encoded in T ∗. More precisely, let us quote the following
results from class.

Theorem. Let T be a densely defined operator on H. Then:

• T ∗ is closed. (Irrespectively of whether T is or not.)

• T is closable ⇔ T ∗ is densely defined, in which case T = T ∗∗.

• If T is closable, then T and T have the same adjoint: T ∗ = T
∗
.
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Comments.

(1) T ∗ is always closed. One may say that the construction of the adjoint produces an operator that
is “more stable” than T . Consider for example the operator (Problem 49)

Tk = −i
d

dt
on the domain D(Tk) = { f ∈ Ck([0, 1]) | f(0) = f(1) = 0 }

for k ∈ N. Clearly T1 ⊃ T2 ⊃ T3 ⊃ · · · , moreover (as a consequence of the discussion in Problem 49)
each Tk is closable but none of them is closed, and T1 = T2 = T3 = · · · ≡ T = −i d

dt
on the domain

D(T ) = {f ∈ AC[0, 1] | f(0) = f(1) = 0}, whereas T ∗
1 = T ∗

2 = T ∗
3 = · · · ≡ T ∗ = −i d

dt
on the domain

D(T ∗) = {f ∈ L2[0, 1] | f, f ′ ∈ AC[0, 1]}. Irrespectively of which Tk one starts from, it is T ∗ the
“important” operator, which in turn determines (via T ∗∗ = T ) the closure T .

(2) Mind the pitfall: T ∗ is always closed, this does not imply that T is. For the densely defined
operator T of Problem 47, for example, T ∗ is not densely defined (and is zero in D(T ∗)). T ∗ is closed
but since its domain is not dense then T cannot be closable.

(3) The double adjoint T ∗∗ is a restriction of the adjoint, T ∗∗ ⊂ T ∗, that for closable operator gives
precisely the closure T of T . Thus, T ∗∗ is the smallest closed extension of T , if T is closable. Note
that in the solution to Problem 49 (iii) the closure of the (closable) operator A0 is computed in two
alternative, equivalent ways: using the definition of closure, or (after computing A∗

0 and therefore
A∗∗

0 ) using the formula A0 = A∗∗
0 .

(4) A symmetric operator is always closable. Indeed, T symmetric means that T is densely defined
and T ⊂ T ∗, so T ∗ is densely defined too and by the theorem above T is closable. Its closure is
T = T ∗∗. A self-adjoint operator is always closed, because it coincides with its adjoint. Recap:

• T symmetric: T ⊂ T = T ∗∗ ⊂ T ∗,

• T symmetric and closed: T = T = T ∗∗ ⊂ T ∗,

• T essentially self-adjoint: T ⊂ T = T ∗∗ = T ∗,

• T self-adjoint: T = T = T ∗∗ = T ∗.

Alessandro
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