Mathematical Quantum Mechanics

TMP Programme Munich - winter term 2012/2013

PROBLEMS IN CLASS, WEEK 12.

Info: www.math.lmu.de/~michel/WS12_MQM.html

Problem 30. (The $f(x)g(\nabla)$ theorem.)

Notation: ^ denotes the Fourier transform, \(^{\text{V}}\) denotes the inverse Fourier transform.

(i) Let $f, g \in L^{\infty}(\mathbb{R}^d)$. For every $\psi \in L^2(\mathbb{R}^d)$ define

$$(f(x)g(-i\nabla)\psi)(x) := f(x) (g(2\pi \cdot)\widehat{\psi})^{\vee}(x). \tag{*}$$

Prove that (*) defines an element of $L^2(\mathbb{R}^d)$ and that the map $\psi \stackrel{T}{\longmapsto} f(x)g(-i\nabla)\psi$ is a bounded operator on $L^2(\mathbb{R}^d)$ with $||T|| \leq ||f||_{\infty} ||g||_{\infty}$.

- (ii) Let $f, g \in L^2(\mathbb{R}^d)$. Prove that (*) defines a Hilbert-Schmidt map $\psi \stackrel{T}{\longmapsto} f(x)g(-i\nabla)\psi$ with $||T||_{\mathrm{HS}} = (2\pi)^{-d/2}||f||_2 ||g||_2$.
- (iii) Let $f,g \in \overline{L^2(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d)}^{\parallel \parallel_\infty}$ (the closure in the L^∞ -norm). This is the case, for instance, when $f,g \in L^\infty(\mathbb{R}^d)$ and $f(x),g(x) \to 0$ as $|x| \to \infty$. Prove that (*) defines a compact operator $\psi \stackrel{T}{\longmapsto} f(x)g(-i\nabla)\psi$.