

MATHEMATISCHES INSTITUT

Winter Term 2011-2012

Functional Analysis II – Final Test, 4.02.2012

Funktionalanalysis II – Endklausur, 4.02.2012

Name:/Name:					
Matriculation number:/Matrikelnr.:		Semester:/Fachsemester:			
Degree course: / <i>Studiengang:</i>	 Bachelor PO 2007 Bachelor PO 2010 Diplom Master 	 Lehramt Gymnasium (modularisiert) Lehramt Gymnasium (nicht modularisiert) TMP 			
Major:/Hauptfach: 🗅 Mathema	tik 🛛 Wirtschaftsm.	🗅 Informatik 🗅 Physik	🗅 Statistik 🛛		
Minor:/Nebenfach: 🗅 Mathema	tik 🛛 Wirtschaftsm.	🗅 Informatik 🗅 Physik	🗅 Statistik 🛛		
Credits needed for:/Anrechnum	ng der Credit Points für	<i>das:</i> 🛛 Hauptfach 🗳 Ne	benfach (Bachelor/Master)		
Extra solution sheets submitte	ed:/Zusätzlich abgegebe	ene Lösungsblätter: 🛛 Yes	s 🖵 No		

problem	1	2	3	4	5	6	\sum
total points	10	10	10	10	10	10	60
scored points							

homework	final test	total	FINAL	
bonus	performance	performance	MARK	

INSTRUCTIONS:

- This booklet is made of sixteen pages, including the cover, numbered from 1 to 16. The test consists of six problems. Each problem is worth the number of points specified in the table above. 50 points are counted as 100% performance in this test. You are free to attempt any problem and collect partial credits.
- The only material that you are allowed to use is black or blue pens/pencils and one hand-written, two-sided, A4-paper "cheat sheet" (Spickzettel). You cannot use your own paper: should you need more paper, raise your hand and you will be given extra sheets.
- Prove all your statements or refer to the standard material discussed in class.
- Work individually. Write with legible handwriting. You may hand in your solution in English or in German. Put your name on every sheet you hand in.
- You have 120 minutes.

GOOD LUCK!

Fill in the form here below only if you need the certificate (Schein).

UNIVERSITÄT MÜNCHEN	Diese nach nach	r Leistungsnachv § Abs. § Abs.	veis entspri Nr. Nr.	cht auch den An Buchstabe Buchstabe	forderungen LPO I LPO I
ZEUGNIS					
Der / Die Studierende der Herr / Frau geboren am in	aus hat im _ WiSe _		Ialbjahr _	2011-2012	
meine Übungen zur Funktionalanalysis II mit Er / Sie hat					_ besucht.
schriftliche Arbeiten geliefert, die mit ihm / ihr	besprochen wurde	en			

MÜNCHEN, den <u>4 Februar 2012</u>

PROBLEM 1. (10 points)

Consider the bounded linear operator $T: L^2[0,1] \to L^2[0,1]$ defined by

$$(Tf)(x) := \int_0^1 \left[4 \left(\cos 2\pi (x-y) \right)^3 - 3 \cos 2\pi (x-y) \right] f(y) \, \mathrm{d}y \qquad \text{for a.e. } x \in [0,1]$$

- (i) Prove that T is compact and self-adjoint.
- (ii) Write a spectral decomposition of T, i.e., produce an orthonormal system $\{e_n\}_n$ of $L^2[0,1]$ and a collection $\{\lambda_n\}_n$ of non-zero numbers such that $T = \sum_n \lambda_n \langle e_n, \cdot \rangle e_n$.
- (iii) Argue for which $\lambda \in \mathbb{C}$ the equation $Tf = e^{2012x} + \lambda f$ (as an identity in $L^2[0, 1]$) admits solutions $f \in L^2[0, 1]$. Prove your statement.

SOLUTION TO PROBLEM 1 (CONTINUATION):

PROBLEM 2. (10 points)

Let X be a Banach space and let $T: X \to X$ be a bounded linear map. Denote by T' the Banach adjoint of T and by $\sigma_{\mathbf{p}}(T)$ and $\sigma_{\mathbf{r}}(T)$ respectively the point spectrum and residual spectrum of T.

- (i) Prove that $\lambda \in \sigma_{\mathbf{r}}(T) \Rightarrow \lambda \in \sigma_{\mathbf{p}}(T')$.
- (ii) Prove that $\lambda \in \sigma_{\mathbf{p}}(T) \Rightarrow$ either $\lambda \in \sigma_{\mathbf{p}}(T')$ or $\lambda \in \sigma_{\mathbf{r}}(T')$.

SOLUTION TO PROBLEM 2 (CONTINUATION):

PROBLEM 3. (10 points)

Let A be a bounded, self-adjoint linear operator on a Hilbert space \mathcal{H} . Assume that $[0,1] \subset \sigma(A)$ and that A admits a cyclic vector in \mathcal{H} . Denote by $\{E_{\Omega}\}_{\Omega}$ the projection-valued measure associated with A. Compute $||E_{\Omega}A||$ when

(i) $\Omega = [\frac{1}{4}, \frac{1}{2}),$ (ii) $\Omega = [\frac{1}{4}, \frac{1}{3}) \cup ((\frac{1}{3}, \frac{1}{2}] \cap \mathbb{Q}).$

SOLUTION TO PROBLEM 3 (CONTINUATION):

PROBLEM 4 (10 points).

Let A be a bounded, self-adjoint linear operator on a Hilbert space \mathcal{H} . Denote by $\{E_{\Omega}\}_{\Omega}$ the projection-valued measure associated with A. Set $\Omega_n := \{\lambda \in \mathbb{R} : |\lambda| \ge \frac{1}{n}\}, n \in \mathbb{N}$, and assume that E_{Ω_n} has finite rank $\forall n \in \mathbb{N}$, that is, dim $R(E_{\Omega_n}) < \infty \ \forall n \in \mathbb{N}$. (R(T) denotes the range of the operator T.) Prove that A is compact.

SOLUTION TO PROBLEM 4 (CONTINUATION):

PROBLEM 5. (10 points)

On the Hilbert space $L^2[0,1]$ consider the operator A whose domain and action are

$$\mathcal{D}(A) := \left\{ f \in C^2([0,1]) : f(0) = f(1), f'(0) = f'(1) \right\}, (Af)(x) := -f''(x) \quad \forall x \in [0,1].$$

- (i) Prove that A is symmetric.
- (ii) Find an orthonormal basis of $L^2[0,1]$ consisting of eigenfunctions of A.
- (iii) Prove that A is essentially self-adjoint and find $\sigma(\overline{A})$ (the spectrum of the closure of A).

SOLUTION TO PROBLEM 5 (CONTINUATION):

PROBLEM 6. (10 points)

Let A be a densely defined (possibly unbounded), self-adjoint operator in a Hilbert space \mathcal{H} . Denote by $\{E_{\Omega}\}_{\Omega}$ the projection-valued measure associated with A.

Let ψ_1, \ldots, ψ_N be N linearly independent vectors in the domain of A and let $\mu \in \mathbb{R}$ be such that

$$\langle \psi, A\psi \rangle < \mu \|\psi\|^2$$

for any non-zero element $\psi \in \operatorname{span}\{\psi_1, \ldots, \psi_N\}$.

Show that dim $\mathbb{R}(E_{(-\infty,\mu]}) \ge N$. (R(T) denotes the range of an operator T.)

SOLUTION TO PROBLEM 6 (CONTINUATION):