\square

Winter Term 2011-2012

Functional Analysis II - Final Test, 4.02.2012
Funktionalanalysis II - Endklausur, 4.02.2012

Name:/ Name: \qquad
Matriculation number:/Matrikelnr.: \qquad Semester:/Fachsemester: \qquad

Credits needed for:/Anrechnung der Credit Points für das: Hauptfach Nebenfach (Bachelor/Master)
Extra solution sheets submitted:/Zusätzlich abgegebene Lösungsblätter: \quad Yes \square No

problem	1	2	3	4	5	6	\sum
total points	10	10	10	10	10	10	60
scored points							

| homework
 bonus | final test
 performance | total
 performance | FINAL | |
| :---: | :--- | :---: | :---: | :---: | :---: | :--- |

INSTRUCTIONS:

- This booklet is made of sixteen pages, including the cover, numbered from 1 to 16 . The test consists of six problems. Each problem is worth the number of points specified in the table above. 50 points are counted as 100% performance in this test. You are free to attempt any problem and collect partial credits.
- The only material that you are allowed to use is black or blue pens/pencils and one hand-written, two-sided, A4-paper "cheat sheet" (Spickzettel). You cannot use your own paper: should you need more paper, raise your hand and you will be given extra sheets.
- Prove all your statements or refer to the standard material discussed in class.
- Work individually. Write with legible handwriting. You may hand in your solution in English or in German. Put your name on every sheet you hand in.
- You have 120 minutes.

GOOD LUCK!

Fill in the form here below only if you need the certificate (Schein).

UNIVERSITÄT MÜNCHEN

ZEUGNIS

Er / Sie hat
schriftliche Arbeiten geliefert, die mit ihm / ihr besprochen wurden.

PROBLEM 1. (10 points)

Consider the bounded linear operator $T: L^{2}[0,1] \rightarrow L^{2}[0,1]$ defined by

$$
(T f)(x):=\int_{0}^{1}\left[4(\cos 2 \pi(x-y))^{3}-3 \cos 2 \pi(x-y)\right] f(y) \mathrm{d} y \quad \text { for a.e. } x \in[0,1] .
$$

(i) Prove that T is compact and self-adjoint.
(ii) Write a spectral decomposition of T, i.e., produce an orthonormal system $\left\{e_{n}\right\}_{n}$ of $L^{2}[0,1]$ and a collection $\left\{\lambda_{n}\right\}_{n}$ of non-zero numbers such that $T=\sum_{n} \lambda_{n}\left\langle e_{n}, \cdot\right\rangle e_{n}$.
(iii) Argue for which $\lambda \in \mathbb{C}$ the equation $T f=e^{2012 x}+\lambda f$ (as an identity in $L^{2}[0,1]$) admits solutions $f \in L^{2}[0,1]$. Prove your statement.

SOLUTION:

SOLUTION TO PROBLEM 1 (CONTINUATION):

PROBLEM 2. (10 points)

Let X be a Banach space and let $T: X \rightarrow X$ be a bounded linear map. Denote by T^{\prime} the Banach adjoint of T and by $\sigma_{\mathrm{p}}(T)$ and $\sigma_{\mathrm{r}}(T)$ respectively the point spectrum and residual spectrum of T.
(i) Prove that $\lambda \in \sigma_{\mathrm{r}}(T) \Rightarrow \lambda \in \sigma_{\mathrm{p}}\left(T^{\prime}\right)$.
(ii) Prove that $\lambda \in \sigma_{\mathrm{p}}(T) \Rightarrow$ either $\lambda \in \sigma_{\mathrm{p}}\left(T^{\prime}\right)$ or $\lambda \in \sigma_{\mathrm{r}}\left(T^{\prime}\right)$.

SOLUTION:

SOLUTION TO PROBLEM 2 (CONTINUATION):

PROBLEM 3. (10 points)

Let A be a bounded, self-adjoint linear operator on a Hilbert space \mathcal{H}. Assume that $[0,1] \subset$ $\sigma(A)$ and that A admits a cyclic vector in \mathcal{H}. Denote by $\left\{E_{\Omega}\right\}_{\Omega}$ the projection-valued measure associated with A. Compute $\left\|E_{\Omega} A\right\|$ when
(i) $\Omega=\left[\frac{1}{4}, \frac{1}{2}\right)$,
(ii) $\Omega=\left[\frac{1}{4}, \frac{1}{3}\right) \cup\left(\left(\frac{1}{3}, \frac{1}{2}\right] \cap \mathbb{Q}\right)$.

SOLUTION:

SOLUTION TO PROBLEM 3 (CONTINUATION):

PROBLEM 4 (10 points).

Let A be a bounded, self-adjoint linear operator on a Hilbert space \mathcal{H}. Denote by $\left\{E_{\Omega}\right\}_{\Omega}$ the projection-valued measure associated with A. Set $\Omega_{n}:=\left\{\lambda \in \mathbb{R}:|\lambda| \geqslant \frac{1}{n}\right\}, n \in \mathbb{N}$, and assume that $E_{\Omega_{n}}$ has finite rank $\forall n \in \mathbb{N}$, that is, $\operatorname{dim} R\left(E_{\Omega_{n}}\right)<\infty \forall n \in \mathbb{N}$. $(R(T)$ denotes the range of the operator T.) Prove that A is compact.

SOLUTION:

SOLUTION TO PROBLEM 4 (CONTINUATION):

Name

PROBLEM 5. (10 points)

On the Hilbert space $L^{2}[0,1]$ consider the operator A whose domain and action are

$$
\begin{aligned}
\mathcal{D}(A) & :=\left\{f \in C^{2}([0,1]): f(0)=f(1), f^{\prime}(0)=f^{\prime}(1)\right\}, \\
(A f)(x) & :=-f^{\prime \prime}(x) \quad \forall x \in[0,1] .
\end{aligned}
$$

(i) Prove that A is symmetric.
(ii) Find an orthonormal basis of $L^{2}[0,1]$ consisting of eigenfunctions of A.
(iii) Prove that A is essentially self-adjoint and find $\sigma(\bar{A})$ (the spectrum of the closure of A).

SOLUTION:

SOLUTION TO PROBLEM 5 (CONTINUATION):

Name

PROBLEM 6. (10 points)

Let A be a densely defined (possibly unbounded), self-adjoint operator in a Hilbert space \mathcal{H}. Denote by $\left\{E_{\Omega}\right\}_{\Omega}$ the projection-valued measure associated with A.
Let $\psi_{1}, \ldots, \psi_{N}$ be N linearly independent vectors in the domain of A and let $\mu \in \mathbb{R}$ be such that

$$
\langle\psi, A \psi\rangle<\mu\|\psi\|^{2}
$$

for any non-zero element $\psi \in \operatorname{span}\left\{\psi_{1}, \ldots, \psi_{N}\right\}$.
Show that $\operatorname{dim} \mathrm{R}\left(E_{(-\infty, \mu]}\right) \geqslant N .(R(T)$ denotes the range of an operator T.)

SOLUTION:

SOLUTION TO PROBLEM 6 (CONTINUATION):

