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Each ezercise sheet is worth a full mark of 40 points. Correct an-
swers without proofs are not accepted. Each step should be justified.
You can hand in the solutions either in German or in English.

Exercise 37. Let ‘H be a Hilbert space and let A, B be bounded self-adjoint operators on .
(i) Assume that A < B. Show that C*AC < C*BC for all C € B(H).
(ii) Assume that O < A < B. Show that ||A] < || B].
>

)
(iii) Assume that A > Q. Show that A is invertible if and only if A > ¢1 for some ¢ > 0.
)

(iv) Assume that O < A < B. Show that for every A > 0 A+ Al and B + A1 are positive and
invertible and (B + A1)™! < (A+ A1)7!

(v) Assume that O < A < B and that A is invertible. Show that B is invertible too and
B~ < A7, (Hint: (iii) and (iv) above.)

Exercise 38. (Absolute value, positive, negative part of a self-adjoint operator: with and
without the functional calculus.)

Let H be a Hilbert space and let A = A* € B(H).

(i) Explain why the operator |A| = v/ A*A constructed with Hilbert space techniques (see,
e.g., Problem 22) and the operator |A| constructed by means of the continuous functional
calculus are actually the same.

(ii) Show that the limit, in operator norm, of a sequence of positive operators on H is positive.

(ili) Show that A, := 2(21 + (|A]—A)?)~*(JA|—A)?|A] is bounded and positive in B(H) for
every n € N. (Hint: the operators A, |A], (31 + (|A|—A4)%)~' commute and the latter
is positive, then use the same argument as in Exercise 37 (i). No functional calculus
argument is needed here, although it would help.)

(iv) Show that A, LN |A|— A and deduce by (ii) that A < |A|.
n—oo

(v) Re-prove that A < |A| using the continuous functional calculus.

(vi) Show that there is a unique pair of positive operators A, A_ in B(H) such that A; A_ =
Oand A=A, —A_. (Hint: both to prove that A, > 0, A_ > 0, and to prove uniqueness,
you need A < |Al.)



Exercise 39. (Operator monotone functions.)

A continuous, real-valued function f on an interval I is said OPERATOR MONOTONE (on the

interval I) if A < B = f(A) < f(B) for every bounded, self-adjoint operators A, B on a
Hilbert space #H such that o(A) C I, o(B) C I.

(i) Show that the function f,(t) = is operator monotone on R if o > 0.

1+ at)
(ii) Show that the function f,(t) considered in (i) is operator monotone on [0, 1] if « € (—1,0].

(iii) Let A, B be bounded self-adjoint operators on a Hilbert space H such that O < A < B.
Show that O < VA < VB, in other words, z — \/T is operator monotone on R*.

T dA A )
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(iv) Same assumption as in (iii). Show that O < A* < B® Va € [0,1]. (Hint: same strategy

: o g
as in (iil), use now z® = Smﬂaﬂ /0 )\:\a 5 i . valid Vz > 0, Va € (0,1).)

(v) Produce a counterexample to the conclusion in (iv) when o > 1.

1
(Hint: Exercise 37 (iv) and the identity /x = — /
T™Jo

Exercise 40. (Functional calculus at work.)

(i) Let A be a bounded, self-adjoint, and positive operator on L?[0, 1] such that

(A2 f(z) = ef(z) + e/omf(y) dy Vf € L*[0,1] and a.e. x € [0,1].

Find o(A). (Hint: spectral mapping theorem.)

(ii) Let A be a bounded self-adjoint operator on a Hilbert space H such that O < A < 1.
Find a sequence {P,}22 , of pairwise commuting orthogonal projections on H such that

A= f;z—npn.

(Hint: reconstruct the function f(z) = x as a sum of step functions.)

(ili) For every € > 0 consider the function G defined on = € R by

Gelz) ::$LA Qp-é+m)_x—4;—mﬂdt

Consider also the operator A of part (i). Show that G.(A) is a well-defined bounded
operator on L?[0,1] and that

G.(A)f 2y ¢ Vf e L2[0,1].

e—0

Christmas puzzle. (Not to be marked.) Determine all operators A and B in B(H) (H being
a Hilbert space) such that B is invertible and A™ — B as n — oc.



