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Each exercise sheet is worth a full mark of 40 points. Correct an-
swers without proofs are not accepted. Each step should be justified.
You can hand in the solutions either in German or in English.

Exercise 13. (The Volterra integral operator on a Hilbert space – III)
Consider the operator V : L2[0, 1] → L2[0, 1], (Vf)(x) :=

∫ x

0
f(y)dy for almost all x ∈ [0, 1].

In this exercise you are asked to compute the resolvent (λ1− V )−1 (λ 6= 0) in two alternative
ways. You may use the results of Exercises 10 and 11 without re-proving them.
• First way:

(i) Let λ ∈ C\{0} and g ∈ C1([0, 1]). Show that the equation λf − Vf = g in L2[0, 1] has a
unique solution f ∈ L2[0, 1] and determine it.

(ii) Release the differentiability assumption on g in (i): take g ∈ L2[0, 1], λ 6= 0, and determine
the solution f to the problem λf−Vf = g in L2[0, 1], thus obtaining the explicit expression
for the action of the resolvent (λ1− V )−1. (Hint: a density argument.)

• Second way:

(iii) Let n ∈ N and f ∈ L2[0, 1]. Show that (V nf)(x) = 1
(n−1)!

∫ x

0
(x− y)n−1f(y) dy for a.e. x.

(iv) Compute the resolvent (λ1 − V )−1 ∀λ ∈ C \{0} by means of the resolvent identity
(λ1 − V )−1 =

∑∞
n=0 λ

−n−1V n. (Warning: this identity holds only for |λ| > ‖V ‖, make
sure your final result holds for all non-zero λ’s.)

Exercise 14. (Perturbation of the spectrum with compact operators.)

(i) Let X be a Banach space and let T, S ∈ B(X) be two operators such that their difference
T − S is compact. Show that their spectra are the same except for eigenvalues, i.e.,
σ(T )\σp(T ) ⊂ σ(S). (Hint: Fredholm alternative.)

(ii) Let H be a Hilbert space and let U ∈ B(H) be a unitary operator on H. Show that
σ(U) ⊂ {λ ∈ C | |λ| = 1}. (Hint: Problem 10 in class.)

(iii) The fact proved in (i) does not exclude that the two spectra look considerably different.
As an example, produce a bounded operator U and a compact operator K on a Hilbert
space H such that

• σ(U) ⊂ {λ ∈ C | |λ| = 1},
• K is compact,

• σ(U +K) = {λ ∈ C | |λ| 6 1}.

(Hint: part (ii) and Problem 8 in class.)

1



Exercise 15. (Canonical form of compact operators on a Hilbert space.)
Let H be a Hilbert space. Let A be a compact, self-adjoint operator on H. Consider the
collection of all eigenvalues of A.

(Recall that they form a discrete family, finite or infinite, they are all real (Problem 12(i)),
the non-zero ones (if any) have finite degeneracy (Exercise 7), and if they are infinite they
accumulate to zero only.)

Pick a (finite) orthonormal basis in each eigenspace with non-zero eigenvalue, and a (possibly
infinite, possibly uncountable) orthonormal basis in the kernel of A, if it is non-trivial. Denote
by {φn}n∈I the union of all such eigenvectors, i.e., Aφn = λnφn ∀n ∈ I and 〈φn, φm〉 = δn,m.

(Note that in this notation the λn’s are repeated with degeneracy and that n runs in an
index set I ⊃ {1, . . . , N}, where N is finite or infinite. I is uncountable if KerA is not
separable. Thus, in this notation {λn}n=I is a-priori uncountable, but it is still a fact
that there are at most countably many distinct λn’s.)

The set {φn}n∈I is by construction and by Problem 12(iii) an orthonormal system of H.

(i) LetM be the closure inH of the span of {φn}n∈I . Show thatAM ⊂ M andAM⊥ ⊂ M⊥.

(ii) Show that the spectrum of the operator A
∣∣
M⊥ : M⊥ → M⊥ is σ(A

∣∣
M⊥) = {0}.

(iii) Deduce from (ii) and from some other fact that M⊥ = {0} and therefore that {φn}n∈I is
an orthonormal basis of H.

This proves that a compact, self-adjoint operator on a Hilbert space admits an orthonormal
basis of eigenvectors. Note that this answers Exercise 11(ii) without the (somewhat tedious)
check by inspection that the closure of {φn}n∈I spans the whole H. (In that case KerV = {0}.)
Consider now a compact operator C on H.

(iv) Show that the non-zero eigenvalues of C∗C form a family {µn}Nn=1 of positive real numbers,
possibly repeated with degeneracy, where N can be finite or infinite.

(v) Show that there exist two orthonormal system {ψn}Nn=1 and {φn}Nn=1 in H and a collection
of positive numbers {λn}Nn=1, where N can be finite or infinite, such that

C =
N∑

n=1

λn 〈ψn, · 〉φn

(or C =
∑N

n=1 λn |ϕn〉〈ψn| in bra-ket notation) where if N = ∞ the series converges in
operator norm. (Hint: take {ψn}Nn=1 to be the family of normalised eigenvectors corre-
sponding to {µn}Nn=1 considered in (iv).)

Exercise 16. Consider the operator T : L2(S1) → L2(S1), (Tf)(x) = (h ∗ f)(x) for almost all

x ∈ [0, 2π] where h ∈ L2(S1) is given. Recall that (h ∗ f)(x) :=
∫ 2π

0
h(x− y)f(y) dy and that

in this case the integral makes sense almost everywhere in x thanks to Hölder’s inequality.

(i) Show that T is a bounded, compact operator on L2(S1).

(ii) Show that T is normal, i.e., T ∗T = TT ∗.

(iii) Find an explicit orthonormal system {φn}Nn=1 of H and a collection {λn}Nn=1 in C (where
N is finite or infinite depending on h) such that

T =
N∑

n=1

λn 〈φn, · 〉φn

(or T =
∑N

n=1 λn|φn〉〈φn| in bra-ket notation) where if N = ∞ the series converges in
operator norm.
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