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Exercise 33. (A toy model for the Epstein-Glaser renormalisation.)

Consider the measurable function f : R4 → R, f(x) = |x|−4. Note that f /∈ L1
loc(R4) and

therefore it cannot be viewed as a distribution Tf on the test functions D(R4) in the canonical
way.

(i) Consider the subspace D0(R4) := {g ∈ D(R4) | g(0) = 0} and the map Tf : D0(R4) → C
defined by

Tf (φ) :=

∫
R4

dx
φ(x)

|x|4
.

Prove that Tf (φ) is finite for every φ ∈ D0(R4) and that the map Tf is linear and
continuous in the topology of distributions.

(ii) Let w ∈ D(R4) be such that w(0) = 1 and define the map T̃
(w)
f : D(R4) → C by

T̃
(w)
f (φ) :=

∫
R4

dx
φ(x)− w(x)φ(0)

|x|4
.

Prove that T̃
(w)
f ∈ D′(R4) (i.e., T̃

(w)
f is a distribution) and that T̃

(w)
f ≡ Tf on D0(R4) (i.e.,

T̃
(w)
f is an extension of Tf ).

(iii) Let λ > 0 and consider the scaling transformation Dλ : D(R4) → D(R4), (Dλφ)(x) :=
φ(λx). Prove that D0(R4) is scale-invariant and so is Tf , i.e.,

Tf ◦Dλ = Tf on D0(R4),

and compute the quantity T̃
(w)
f (Dλφ)− T̃

(w)
f (φ) for a generic φ ∈ D(R4).

Exercise 34. (Duhamel’s two-point function: thermal expectation and Bogolubov inequality.)

Consider the C∗-algebra A = M(n × n,C), n ∈ N, a Hamiltonian H = H∗ ∈ A, the corre-
sponding Gibbs state ωβ, and the Duhamel’s two-point function

⟨A,B⟩β :=
1

Z(β)

∫ 1

0

Tr
(
e−sβHAe−(1−s)βHB

)
ds

where β > 0 and A,B ∈ A.
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(i) Prove that

⟨A,B⟩β = ⟨B,A⟩β ,
|⟨A,B⟩β|2 ⩽ ⟨A∗, A⟩β ⟨B∗, B⟩β

for all A,B ∈ A. Is the thermal two-point function ωβ(A,B) also symmetric?

(ii) Express the thermal expectation value ωβ(A) using the Duhamel’s two-point function.
Conversely, set τt(A) := eitHAe−itH , t ∈ R, A ∈ A and denote by τz the analytic contin-
uation of τt to the strip |Im z| ⩽ 1. Prove that

⟨A,B⟩β =

∫ 1

0

ωβ(Bτisβ(A)) ds .

(iii) Prove, for all A ∈ A, that

⟨A∗, A⟩β ⩽ 1

2
ωβ(A

∗A+ AA∗) .

(Hint: use a convexity argument for the function hβ(s) := Tr(e−sβHA∗ e−(1−s)βHA).)

(iv) Prove, for all A,B ∈ A, that

ωβ([A,B]) = ⟨[A, βH], B⟩β

and deduce Bogolubov’s inequality

|ωβ([A,B])|2 ⩽ β

2
ωβ([A

∗, [H,A]])ωβ(B
∗B +BB∗) .

Exercise 35. (Reflection positivity and the Laplacian)

Consider

• the quantity

E(f, g) :=

∫∫
R3×R3

dx dy f(x)
1

|x− y|
g(y) , f, g ∈ C∞

0 (R3,C)

(note that E(f, g), when f and g are real-valued, is nothing but the Coulomb interaction
energy between two charge distributions f and g expressed in appropriate units);

• a plane Σ in the Euclidean space R3 and the mirror symmetry transformation RΣ : R3 →
R3 with respect to the plane Σ;

• the corresponding transformation θΣ : C∞
0 (R3,C) → C∞

0 (R3,C), (θΣh)(x) := h(RΣx);

• two functions f, g ∈ C∞
0 (R3,C) whose support are separated by Σ (and hence their

supports lie in the two distinct open half-spaces of R3 determined by Σ).

Prove that

(i) E(θΣg, g) ⩾ 0

(ii) |E(f, g)|2 ⩽ E(f, θΣf)E(θΣg, g) .

(Remark: albeit a non-trivial mathematical statement, reflection-positivity is the simple phys-
ical result that the interaction of a charge distribution and its mirror is repulsive.)
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Background for Exercise 33. So far in class we have studied the free Bose and Fermi
gases. Including interactions is more complicated and is often approached perturbatively. The
argument proceeds along the following lines.

For the free gas the Hamiltonian is dΓ(h), derived from the one-particle Hamiltonian h. In
terms of creation and annihilation operators that can be written as

H0 := dΓ(h) =
∑
n

En a
∗(ψn)a(ψn)

where the ψn’s area basis of eigenvectors of h and hψn = Enψn. One can also define operator-
valued distributions a∗x, ax so that

a(f) =

∫
dx f(x) ax , a∗(f) =

∫
dx f(x) a∗x ,

and re-write H0 accordingly. In this language, a local interaction could be, for example,

Hint = g

∫
dx (a∗xax)

2 .

Thus, formally, a Gibbs state would look like

ωint(A) ∼ Tr
(
e−β(H0+Hint)A

)
= ω0(e

−βHintA)

where ω0 is the KMS state for the free bose gas.

In the next step one expands e−βHint in powers of the coupling g and pulls the sum out of ω0.
This leads to expressions of the form

ω0

(
Πk

(
g

∫
dxk (a

∗
xk
axk

)2
)
A
)

which can be evaluated in terms of ω0(a
∗(f)a(g)) by means of Wick’s theorem (assuming that

A is a polynomial in the a’s and a∗’s).

For h = −∆ it turns out that

ω0(a
∗
xax) ∼ 1

|x− y|2
as |x− y| → 0.

Thus, already at the order g2 in the expansion, expressions like

∫
dxk

( 1

|xk − y|2
)2

appear,

that have to be given distributional meaning, whence the type of problems as in Exercise 33.

The result of part (iii) is that for the regularised distribution a change of scale effectively
changes g, precisely in the spirit of the renormalisation group.
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