TMP Programme Munich – spring term 2014

HOMEWORK ASSIGNMENT - WEEK 12 Hand-in deadline: Thursday 3 July by 12 p.m. in the "MSP" drop box. Info: www.math.lmu.de/~michel/SS14_MSP.html

Exercise 33. (A toy model for the Epstein-Glaser renormalisation.)

Consider the measurable function $f : \mathbb{R}^4 \to \mathbb{R}$, $f(x) = |x|^{-4}$. Note that $f \notin L^1_{\text{loc}}(\mathbb{R}^4)$ and therefore it cannot be viewed as a distribution T_f on the test functions $\mathcal{D}(\mathbb{R}^4)$ in the canonical way.

(i) Consider the subspace $\mathcal{D}_0(\mathbb{R}^4) := \{g \in \mathcal{D}(\mathbb{R}^4) | g(0) = 0\}$ and the map $T_f : \mathcal{D}_0(\mathbb{R}^4) \to \mathbb{C}$ defined by

$$T_f(\varphi) := \int_{\mathbb{R}^4} \mathrm{d}x \, \frac{\varphi(x)}{|x|^4}$$

Prove that $T_f(\varphi)$ is finite for every $\varphi \in \mathcal{D}_0(\mathbb{R}^4)$ and that the map T_f is linear and continuous in the topology of distributions.

(ii) Let $w \in \mathcal{D}(\mathbb{R}^4)$ be such that w(0) = 1 and define the map $\widetilde{T}_f^{(w)} : \mathcal{D}(\mathbb{R}^4) \to \mathbb{C}$ by

$$\widetilde{T}_f^{(w)}(\varphi) \ := \ \int_{\mathbb{R}^4} \mathrm{d}x \, \frac{\varphi(x) - w(x)\varphi(0)}{|x|^4}$$

Prove that $\widetilde{T}_{f}^{(w)} \in \mathcal{D}'(\mathbb{R}^4)$ (i.e., $\widetilde{T}_{f}^{(w)}$ is a distribution) and that $\widetilde{T}_{f}^{(w)} \equiv T_f$ on $\mathcal{D}_0(\mathbb{R}^4)$ (i.e., $\widetilde{T}_{f}^{(w)}$ is an extension of T_f).

(iii) Let $\lambda > 0$ and consider the scaling transformation $D_{\lambda} : \mathcal{D}(\mathbb{R}^4) \to \mathcal{D}(\mathbb{R}^4), (D_{\lambda}\varphi)(x) := \varphi(\lambda x)$. Prove that $\mathcal{D}_0(\mathbb{R}^4)$ is scale-invariant and so is T_f , i.e.,

 $T_f \circ D_\lambda = T_f \quad \text{on } \mathcal{D}_0(\mathbb{R}^4),$

and compute the quantity $\widetilde{T}_{f}^{(w)}(D_{\lambda}\varphi) - \widetilde{T}_{f}^{(w)}(\varphi)$ for a generic $\varphi \in \mathcal{D}(\mathbb{R}^{4})$.

Exercise 34. (Duhamel's two-point function: thermal expectation and Bogolubov inequality.) Consider the C*-algebra $\mathcal{A} = \mathcal{M}(n \times n, \mathbb{C}), n \in \mathbb{N}$, a Hamiltonian $H = H^* \in \mathcal{A}$, the corresponding Gibbs state ω_{β} , and the Duhamel's two-point function

$$\langle A, B \rangle_{\beta} := \frac{1}{Z(\beta)} \int_0^1 \operatorname{Tr} \left(e^{-s\beta H} A \, e^{-(1-s)\beta H} B \right) \mathrm{d}s$$

where $\beta > 0$ and $A, B \in \mathcal{A}$.

(i) Prove that

$$\begin{split} \langle A, B \rangle_{\beta} &= \langle B, A \rangle_{\beta} \,, \\ |\langle A, B \rangle_{\beta}|^{2} &\leqslant \langle A^{*}, A \rangle_{\beta} \, \langle B^{*}, B \rangle_{\beta} \end{split}$$

for all $A, B \in \mathcal{A}$. Is the thermal two-point function $\omega_{\beta}(A, B)$ also symmetric?

(ii) Express the thermal expectation value $\omega_{\beta}(A)$ using the Duhamel's two-point function. Conversely, set $\tau_t(A) := e^{itH}A e^{-itH}$, $t \in \mathbb{R}$, $A \in \mathcal{A}$ and denote by τ_z the analytic continuation of τ_t to the strip $|\Im \mathfrak{m} z| \leq 1$. Prove that

$$\langle A, B \rangle_{\beta} = \int_0^1 \omega_{\beta}(B\tau_{\mathbf{i}s\beta}(A)) \,\mathrm{d}s$$

(iii) Prove, for all $A \in \mathcal{A}$, that

$$\langle A^*, A \rangle_{\beta} \leqslant \frac{1}{2} \omega_{\beta} (A^*A + AA^*).$$

(*Hint*: use a convexity argument for the function $h_{\beta}(s) := \text{Tr}(e^{-s\beta H}A^* e^{-(1-s)\beta H}A)$.)

(iv) Prove, for all $A, B \in \mathcal{A}$, that

$$\omega_{\beta}([A,B]) = \langle [A,\beta H], B \rangle_{\beta}$$

and deduce Bogolubov's inequality

$$|\omega_{\beta}([A,B])|^2 \leqslant \frac{\beta}{2} \omega_{\beta}([A^*,[H,A]]) \omega_{\beta}(B^*B + BB^*).$$

Exercise 35. (Reflection positivity and the Laplacian)

Consider

• the quantity

$$E(f,g) \ := \iint_{\mathbb{R}^3 \times \mathbb{R}^3} \mathrm{d}x \, \mathrm{d}y \, \overline{f(x)} \frac{1}{|x-y|} g(y) \,, \qquad f,g \in C_0^\infty(\mathbb{R}^3,\mathbb{C})$$

(note that E(f,g), when f and g are real-valued, is nothing but the Coulomb interaction energy between two charge distributions f and g expressed in appropriate units);

- a plane Σ in the Euclidean space \mathbb{R}^3 and the mirror symmetry transformation $\mathcal{R}_{\Sigma} : \mathbb{R}^3 \to \mathbb{R}^3$ with respect to the plane Σ ;
- the corresponding transformation $\theta_{\Sigma} : C_0^{\infty}(\mathbb{R}^3, \mathbb{C}) \to C_0^{\infty}(\mathbb{R}^3, \mathbb{C}), \ (\theta_{\Sigma}h)(x) := h(\mathcal{R}_{\Sigma}x);$
- two functions $f, g \in C_0^{\infty}(\mathbb{R}^3, \mathbb{C})$ whose support are separated by Σ (and hence their supports lie in the two distinct open half-spaces of \mathbb{R}^3 determined by Σ).

Prove that

- (i) $E(\theta_{\Sigma}g,g) \ge 0$
- (ii) $|E(f,g)|^2 \leq E(f,\theta_{\Sigma}f) E(\theta_{\Sigma}g,g)$.

(*Remark:* albeit a non-trivial mathematical statement, *reflection-positivity* is the simple physical result that the interaction of a charge distribution and its mirror is repulsive.)

Background for Exercise 33. So far in class we have studied the *free* Bose and Fermi gases. Including interactions is more complicated and is often approached perturbatively. The argument proceeds along the following lines.

For the free gas the Hamiltonian is $d\Gamma(h)$, derived from the one-particle Hamiltonian h. In terms of creation and annihilation operators that can be written as

$$H_0 := \mathrm{d}\Gamma(h) = \sum_n E_n a^*(\psi_n) a(\psi_n)$$

where the ψ_n 's area basis of eigenvectors of h and $h\psi_n = E_n\psi_n$. One can also define operatorvalued distributions a_x^* , a_x so that

$$a(f) = \int \mathrm{d}x \,\overline{f(x)} \,a_x, \qquad a^*(f) = \int \mathrm{d}x \,f(x) \,a^*_x,$$

and re-write H_0 accordingly. In this language, a *local* interaction could be, for example,

$$H_{\rm int} = g \int \mathrm{d}x \, (a_x^* a_x)^2$$

Thus, formally, a Gibbs state would look like

$$\omega_{\text{int}}(A) \sim \text{Tr}\left(e^{-\beta(H_0+H_{\text{int}})}A\right) = \omega_0(e^{-\beta H_{\text{int}}}A)$$

where ω_0 is the KMS state for the *free* bose gas.

In the next step one expands $e^{-\beta H_{\text{int}}}$ in powers of the coupling g and pulls the sum out of ω_0 . This leads to expressions of the form

$$\omega_0 \Big(\prod_k \Big(g \int \mathrm{d}x_k \, (a_{x_k}^* a_{x_k})^2 \Big) A \Big)$$

which can be evaluated in terms of $\omega_0(a^*(f)a(g))$ by means of Wick's theorem (assuming that A is a polynomial in the a's and a^* 's).

For $h = -\Delta$ it turns out that

$$\omega_0(a_x^*a_x) \sim \frac{1}{|x-y|^2}$$
 as $|x-y| \to 0$.

Thus, already at the order g^2 in the expansion, expressions like $\int dx_k \left(\frac{1}{|x_k - y|^2}\right)^2$ appear, that have to be given distributional meaning, whence the type of problems as in Exercise 33. The result of part (iii) is that for the regularised distribution a change of scale effectively changes g, precisely in the spirit of the renormalisation group.