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Chapter 1

Introduction and Motivation

In mathematical statistical physics one studies certain classes of physical systems from a sta-
tistical point of view. In particular, one is concerned with

e Equilibrium properties of a macroscopic molecular system,
e Laws of thermodynamics,
e Thermodynamic functions.

“ Statistical mechanics, however, does not describe how a system approaches equilibrium, nor
does it determine whether a system can ever be found to be in equilibrium. It merely states what
the equilibrium situation is for a given system” [7]

We will start with an example how a statistical consideration can lead to the description of
a equilibrium in case of a classical system.

Consider a dilute gas with N >> 1 molecules each of mass m and contained in a box A C R?
of volume V. Each molecule is considered as a classical particle having a well-defined position
and momentum. We assume that the molecules are distinguishable from each other and they
reflected elastically at the walls of A.

A (microscopic) state of the gas is given by 3N canonical coordinates q = (qq, -+ ,q,) € AN
and 3N canonical momenta p = (py,--- ,py) € R*" of the N molecules. We put

[ =R x A3N .= space of all possible states.

A macroscopic state of the system (e.g. temperature, pressure, - - - ) can be represented by many
microscopic states in I'. So we can interpret a macroscopic state as a system in I' (so called
ensemble) of corresponding microscopic states.

1.1 Method of the most probable distribution

With (p,q,t) € R3x A xR, let f(p,q,t) be the distribution function of the gas. More precisely,
if Q C R?®x A and ¢t > 0, then

/ f(p,q,t) dpdqg = number of molecules with coordinates in €2 at time t. (1.1.1)
Q

5



6 CHAPTER 1. INTRODUCTION AND MOTIVATION

If a (microscopic) state of the gas is given, then the integrals on the left hand side are
uniquely determined for all 2. However, different states in I' can have the same distribution,
e.g. one may exchange two particles. Since we can distinguish the molecules one obtains
different states with the same distribution function. Hence we can identify a distribution
function f(p,q,t) with the subset

r rC r

of all states (in a given ensemble) that are distributed according to f, i.e. all states (in the
ensemble) that fulfill (1.1.1) for all Q C R® x A. The equilibrium distribution is the distribution
that “maximizes” I'y.

Let the ensemble be defined by fixing the energy E of the system !. The possible values

of (p,q) € R® x A are restricted through the energy condition and we replace the phase space
R?® x A by a sufficiently large box Bps = B x A where B C R®. Then we divide B, into K >> 1
small cells ¢; each of volume w = dpdg and number the cells by ¢, -+, cx. For a given state in
MNand:=1,---, K we put

n; = number of molecules of the state in cell ¢;,

2
€1 = 2p—z = energy of a molecule in the ith cell,
m

which by assumption must fulfill the conditions
(a): 5ym =N
(b) . Zfil gin; = E.

A distribution function f(p,q) is given by the “step function”:

n;

Q) = ——, if ,q) € ¢;.
f(p.q) T (p,q) €c
For given integers {n;}i—1.. x with (a) and (b) we will write Q(ny, -+ ,ng) for the number of
possibilities to distribute the N (distinguishable) particles to K cells ¢y, - , cx such that the
cell ¢; contains n; molecules |

~ N!

RICT -

(nla 7nK) nlan|

We assume that n; is large that we can replace logn;! by n;logn; due to Stirling’s formula ?

K
logﬁ(nl, ceoong)~ F(ny, - ;ng):= Nlog N — Znilogni.
i=1
Now we need to maximize F'(ny,---,ng) under the conditions (a) and (b). We consider
ni, -+ ,ng as real variables and use the method of Lagrange multipliers. Let us define

K K
Fyx(ny, - ,ng) = F(nq,--- 7nK>+)\12ni+)\225ini
=1 =1

Tthis ensemble is called microcanonical ensemble
2Stirling’s formula: log(n!) = nlogn —n + O(logn) as n — oo



1.1. METHOD OF THE MOST PROBABLE DISTRIBUTION 7

with A, Ay € R. A necessary condition of an extreme point of F' under the conditions (a) and
(b) is given by
_OF

ani

This gives n; = Cei*? for some C' € R and therefore f; = Ce®*2 /6pdq. One can check that in
fact this choice of n; maximizes F'. In the limit K — oo we find the distribution function

0

:—(lOgnZ+1)+/\1+52)\2, ’L:L,K

f(p,q) = Cetn,

which actually only depends on p. The requirement of being a density distribution gives

3
p2 2 2
e%dp =CV (— Wm) )
A2

N = f(p,q) dpdq = CV/

R3xA R3
If we write n := N/vol (A) for the particle density, then it follows

C’:n(_)\2)g. (1.1.2)

2mm

In the next step we calculate \y. Note that for the mean energy of a molecule we have:

p? A2

2m dp

2
_ Jr2 3

e (1.1.3)
fRS ezm dp

=] =

By using the standard integral formula

(NI

2 & 2 3
/ pPe W dp = 47?/ zle ™ dy = 7r§
R3 0 2a2
in (1.1.3) we obtain
E__ 3 _ , _ 3N_ 1
N 2) T 2E kT

where k = 8,6173 - 107°eV/K denotes the Boltzma constant, T is the temperature and we have
used that E/N = 2kT. Inserting the value of Ay into (1.1.2) allows us to calculate C:

1 3
C=n (271'ka> '

Conclusion: In the case of a dilute gas and under our simplifying assumptions the “most
probable distribution” is the Maxwell-Boltzmann distribution:

1 3 2
J(p) =n (27rmk:T) .

Note that we have receive this result by a purely statistical consideration not taking into account
the kinematics of the microscopic states.
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Chapter 2

C*-algebras in quantum statistical
mechanics

In a classical mechanical system the observables are polynomials or more generally elements
of the space C(I') of all real valued continuous functions defined on the phase space I'. Note
that C'(I") has the structure of a commutative algebra under the pointwise multiplication. In
the case where T' is compact or we only admit bounded continuous functions !, then C(T') or
Cy(T") are complete normed algebras. The algebra of complex valued continuous functions on
the compact space I' has the structure of a C*-algebra (see the definition below).

More abstractly, we may consider a physical system as being defined by its C*-algebra A of
observables. 2 The states of the system correspond to the measurements of the observables. In
the abstract mathematical framework states are normalized positive linear functionals on A.
We explain these notions now more in detail:

Let us write R and C for the field of real and complex numbers, respectively. If A € C, then
we denote by A its complex conjugate. Recall the following notions:

I. Let A be a complex vector space equipped with an associative and distributive product,
i.e. if AB denotes the product of A, B € A, then it holds:

() A(BC) = (AB)C,
(ii) A(B+C)=AB+ AC and (B+ C)A = BA+ CA,
(iii) Ay(AB) = (MA)(yB), where A,y € C.
We call A an associative algebra over C.
II. An involution A > A +— A* € A of A is a map such that:
(iv) A*™ = A,
(v) (AB)* = B*A*,
(vi) (M +vB)* = AA* +7B*, where \,v € C.
III. The algebra A is called normed with norm || - || : A — [0, 00) if for all A, B € A:

Lwe write Cy(T") for the space of bounded continuous functions on I'
2¢f. the Gelfand-Naimark theorem (GN-theorem) below.

9



10 CHAPTER 2. C*-ALGEBRAS IN QUANTUM STATISTICAL MECHANICS

(vii) ||A|| > 0 and ||A|| = 0 if and only if A =0,
(viii) ||AA]| = |\|||A]| where X € C,
(ix) ||1A+ B| < J|A|| + ||B]], (triangle inequality),
(x) ||1AB|| < ||All[|B]], (product inequality).
Definition 2.0.1. (Banach-, B*- and C*-algebra)

(a) Let A be a normed associative algebra which is complete in the norm topology, then A
is called Banach algebra.

(b) A Banach algebra with an involution and such that [|A|| = ||A*|| holds for all A € A is
called a B*-algebra.

(¢) A C*-algebra is a B*-algebra which for all A € A fulfills the norm equality
1AA*|| = [|AlP*.
The algebra A is called abelian or commutative if the product is commutative.

We do not assume that the algebras have a unit. However, if this is the case we call it unital
algebra and we add the assumption |le|| = 1 where e denotes the unit of the algebra.

Example 2.0.2. (C*-algebras)

(a) Let H be a complex Hilbert space and L(H) the algebra of bounded operators on H with
the operator norm. The adjoint operation

L(H)> A A" € L(H)

is an involution. Then L£(H) is a C*-algebra. More general: each closed sub-algebra of

Wy ”

L(H) which is invariant under the involution “x” is a C*-algebra.

(b) According to (a) the space C(n) of complex n X n-matrices can be interpreted as a C*-
algebra via the identification C(n) = L(C").

(c¢) Let X be a compact space, then the space C'(X) of continuous complex valued functions
on X with the pointwise product, the norm

1]l == sup{|f(2)] : € X}

and the involution f*(x) := f(x) defines a commutative unital C*-algebra.

(d) Let X be a locally compact space and f : X — C continuous. We say that f vanishes at
infinity if for each € > 0 there is a compact set K C X such that

|f(z)]<e forall =zeX\K.

The space Cy(X) of all continuous functions on X vanishing at infinity with the norm
and the involution in (c) is a commutative C*-algebra which is unital if and only if X is
compact.
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Exercise 2.0.3. (a) Show that the spaces in Example 2.0.2 in fact define C*-algebras.
(b) The C*-condition ||[AA*|| = ||A||? implies that ||A*| = || A]|.

(c) Let A be a unital Banach algebra. If ||A%]] = ||A||* holds for all A € A, then A is
commutative.
Hint: Let B € A and consider the function f(z) := e *ABe** where z € C.

2.1 Abelian (*-algebras and GN-theorem

In describing a physical system one usually starts with the “geometry” by choosing an ap-
propriate manifold (phase space) and then considering the algebra of observables (continuous
functions on the phase space). As a consequence of the GN-theorem one could reverse the
procedure: one may start with an abstract characterization of observables by fixing a unital
commutative C*-algebra A which encodes the relations between physical quantities. The GN-
theorem (which will be explained in this section) allows to construct a compact Hausdorff space
I' such that A can be identified with the C*-algebra of continuous functions on I.

For the moment we do not assume the existence of an involution. Let A be a unital
commutative Banach algebra over C.

Definition 2.1.1. A multiplicative functional m : A — C of A is a linear map that “preserves
the multiplication”:

m(AB) = m(A)m(B),

for all A, B € A. In particular, if m # 0, then we have m(I) = 1 where I denotes the unit of
A.

We will show that there is a close relation between multiplicative functionals and maximal
ideals on A which allows us to identify these objects.

Definition 2.1.2. An ideal T of A is a sub-algebra with AZ := {AJ : J € T} C T for all
A € A. The ideal is called maximal if there is no proper ideal Z C A with Z C Z C A.

Exercise 2.1.3. Show the following:

(a) The closure T of an ideal T C A is an ideal as well. In particular, mazimal ideals are
closed.

(b) A proper ideal T C A contains no invertible elements of A. In particular, it does not
contain the unit of A and the closure of a proper ideal is a proper ideal.

In the following we write A~! for the group of invertible elements of A. Recall that the
spectrum o(A) of an element A € A is defined by

g(A)={reC: A-X¢ A}

As is known the spectrum o(A) is compact and non-empty for all A € A (as for a proof see

[8]). We call p(A) := C\ o(A) the resolvent set of A.
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Exercise 2.1.4. Let X be a compact space and let C(X) be the Banach algebra of continuous
functions on X (cf. Example 2.0.2, (c)).

(i) Then o(f) = f(X) for all f € A.
(i1) Let B be a unital Banach algebra and B € B, then o(B) C {\ € C : |A| < ||B||}.

Theorem 2.1.5 (Gel'fand-Mazur). Assume that all elements of A\ {0} are invertible in A,
ie A7t = A\ {0}. Then A={\ : AeC}=C.

Proof. Let A € A and assume that A\ € o(A4) # 0. Then A — X\ ¢ A~ and by assumption it
follows that A — Al = 0. Therefore A = AI. O

Lemma 2.1.6. Let A be a unital commutative Banach algebra. Then (i) and (ii) are equivalent:
(i) Z C A is a mazimal ideal

(ii) There is a unique multiplicative functional 0 # m : A — C with

Z=kerm:={AecA: m(A) =0}

Proof. (i) = (ii): If Z C A is a maximal ideal, then Z is closed (see Exercise 2.1.3, (a)) and we
can consider the quotient space

A/T={a+T :ac A} withnorm [A+T|az:= }Ié%HA%-JH

If we define a product on 4/Z in a natural way via
(A+I)(B+ZI):=AB+1,

then A/Z becomes a commutative algebra with unit / +Z where [ is the unit in A. Note that
for all Ji, Jo €1

(A+Z)(B+ID)|laz = [AB+I||laz < [(A+ J)(B+ L) < A+ Al | B+ L.
By taking the infimum over Ji, Js € Z we see that
A+Z)(B +T) |z < |A+ T)aszllB + Tllaz
and therefore A/Z has the structure of a commutative Banach algebra. The natural projection
T A— A/T:7w(A):=A+T
becomes a surjective algebra homomorphism, i.e. 7 is linear continuous and
m(AB) = nm(A)n(B), forall A Be€ A

We show that all non-trivial elements 0 # 7(A) € A/Z are invertible in \A/Z. This follows from
the following two observations:
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(1): The quotient algebra A/Z contains no proper non-trivial ideal: If {0} # Q C A/Z was
such an ideal then the pre-image

ICn ' (Q:={AcA:n(A)eQ}CA

would be an ideal in A which properly contains Z. This contradicts the assumption that Z was
chosen maximal.

(2): If 0 # w(A) is not invertible in A/Z, then
{0} #£ Q:=m(A)(A/T) == {AB+I : B€ A} C A/

is a proper non-trivial ideal in \A/Z. This would contradict the first observation (1).

From the Gelfand-Mazur-theorem (Theorem 2.1.5) one concludes that

A/T={de+T:reClC

and m: A= A/T 5 C defines a multiplicative functional on A with Z = ker m.
(ii) = (i): Let 0 # m : A — C be a multiplicative functional with Z := ker m, then Z is an
ideal of A, in fact, if A € A and B € Z, then

m(AB) =m(A)m(B) =0 = AB €7 = ker m.

Moreover, since A/Z = A/ker m = im m = C is complex one-dimensional it follows that J
is maximal. Finally assume that ker m = Z = ker m where m is a multiplicative functional.
Then m defines a multiplicative functional on A /ker m = C and therefore m = am with a € C.
Since

1 =m(e) = am(e) =«

one concludes that m = m and the statement about uniqueness follows. O

Example 2.1.7. Let X be a compact space. For each v € X a mazimal ideal Z, C C(X) is
gien by
I, ={f € C(X) : f(z)=0} =ker 4,

where 6, : C(X) — C is the multiplicative functional which acts by evaluation in x € X, i.e.

0o (f) = f(x) for f € C(X).

Definition 2.1.8. We denote by M (.A) the space of all non-trivial multiplicative functionals
on A and according to Lemma 2.1.6 we call M(A) the mazimal ideal space or the Gelfand
spectrum of A. 3

Consider the topological dual A’ of A:
A'={p: A— C : ¢is linear and continuous}.

Then A’ is a complete normed space with norm

lellar = sup {lp(A)] : A€ A, A <1},

3A connection between the spectrum of elements in A and M (A) will be given in Theorem 2.1.13 below.
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Multiplicative functionals on a unital commutative Banach algebra A are automatically con-
tinuous and therefore

M(A) c A (2.1.1)
More precisely, M(.A) is contained in the unit sphere of A’

M(A) C Sy ={peA : |lofla=1}C A"
This a consequence of the following lemma:
Lemma 2.1.9. Fach multiplicative functional m € M(A) is continuous with ||m|| 4 = 1.

Proof. Let m € M(A) and recall ker m is a maximal ideal and in particular ker m is closed in
A (see Exercise 2.1.3, (a)). Therefore m factorizes through the quotient A/ker m:

m: A —"— Alker m _m C, where m(A+ ker m) := m(A).
Since A /ker m is one-dimensional it is clear that m is continuous. The continuity of the natural
projection 7 shows the continuity of m = m o m.

It remains to show that ||m||4 = 1: Let A € A and assume that m(A) > ||A|l. Then
|m(A)~tA|| < 1 and we have
e—m(A)TAe A

(geometric series!). If we define B := (I —m(A)~1A)~! € A, then we obtain the contradiction:
1 =m(e) =m(B(e — m(A)"'A))
=m(B —m(A)"'BA) = m(B) —m(B) = 0.
Therefore, it holds m(A) < ||A|| for all A € A. From m(e) = 1 and the definition of || - || 4, we
have |m||4 = 1. H

On the dual A" of A we can consider a second topology which in a sense is “weaker” than
the norm topology * and is called weak-x-topology or topology of pointwise convergence. We
explain the construction: On A’ a family of maps E4 parametrized by A € A is defined by

Ep: A — C: Exlp) == p(A).

The weak x-topology on A’ is the “roughest topology” such that all the maps F4 with A € A
are continuous. According to the inclusion M(A) C A’ in (2.1.1) the weak-*-topology descends
from A’ to the maximal ideal space M (A).

Exercise 2.1.10. Show that M(A) is weak-x-closed in B° = {p € A" : |j¢||o+ < 1}.
Theorem 2.1.11. The mazimal ideal space M (A) equipped with the weak-+-topology is compact.

Proof. This follows from an abstract result in functional analysis (Banach-Alaoglu theorem)
which implies that the ball B° := {p € A" : ||p|la < 1} is weak-+-compact. Note that M(.A) is
weak-*-closed in B° (see Exercise 2.1.10) and according to Lemma 2.1.1 we have the inclusion
M(A) C B°. Since closed subsets of compacts sets are compact the statement follows. ]

4roughly speaking, it contains fewer open sets
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Consider the space C(M(.A)) of all continuous functions on M (A) with respect to the weak-
x-topology. Note that due to the compactness of M(A) the space C(M(.A)) has the structure
of a C*-algebra in the sense of Example 2.0.2, (c).

Definition 2.1.12 (Gelfand-transform). For each A € A and m € M(A) put I'(A)(m) =
m(A). ® The map
I':A— C(M(A)): A—T(A) (2.1.2)

is well-defined and called Gelfand transform.
Let B be a Banach algebra. We call a linear map 7 : A — B
(i) (algebra) homomorphism, if 7 is multiplicative m(AB) = w(A)7(B)

(ii) *-homomorphism, if A and B are C*-algebras and 7 is a homomorphism with 7(A*) =

w(A)* for all A e A
(iii) *-isomorphism, if 7 is bijective *-homomorphism and isometric, i.e. ||7(A)|| = ||A]|. ©

Theorem 2.1.13 (Gelfand). The Gelfand transform is a continuous homomorphism of algebras
with norm 1, i.e.

Tl = sup {ITA)] A <1} =1,
Moreover, for all A € A the spectrum of A fulfills

o(A) = {m(A) . me M(A)} (2.1.3)

and in particular

IT(A)|| = sup {|m(A)] : m € M(A)} =r(A) = lim A" % = “spectral radius of A".

n—oo

Proof. From the definition of the weak-#-topology it is clear that I'(A) is a continuous function
on M(A) and therefore the Gelfand transform is well-defined. It is clear that I' is linear and
I'(AB) =T'(A)I'(B) follows with m € M(A) from

T(AB)(m) = m(AB) = m(A)m(B) =T(A)(m) - T'(B)(m).

We show that ||I'|| = 1: According to Lemma 2.1.9 we have |I'(A)(m)| = |m(A)| < ||A|| for all
A € A and therefore

ID(A)| = sup {[P(A)(m)] = m € M(A)} < AL
Since I'(e) = e € C(M(A)) we see that |I'|| = sup{||[T'(4)] : [|A4|| <1} =1.

It remains to show the equality (2.1.3). From this the last assertion clearly follows.

“27: Let m € M(A), then A —m(A)e € ker m and therefore

A—m(Aeg¢ A

5In the literature also the notation A is used instead of r'(A)
SIf 7 is an injective *-homomorphism with 7(I) = I, then 7 already is isometric.
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This implies that m(A) € o(A).
“C”: Assume that A\ € 0(A) with A € A. Then A — Xe ¢ A~ and

Jaa = {(A—/\e)B : BEA} cA

is a proper ideal of A. There is a maximal ideal J with Jy4 C J C A. Let m € M(A) with
J = ker m. Then
0=m(A—Xe) =m(A) — A

and as a consequence A = m(A) € {m(A) : m € M(A)}. O

Exercise 2.1.14. Let A be a commutative unital Banach algebra which contains nilpotent
elements, i.e. there is A € A such that A" =0 for some n € N.

(i) Show that the Gelfand transform I : A — C(M(A)) is not injective.

(ii) Give an explicit ezample of a commutative unital Banach algebra that contains nilpotent
elements.

Exercise 2.1.15. Prove the formula for the spectral radius r(A) := lim,_,o | A™||% of an oper-
ator A € A in Theorem 2.1.13.

Lemma 2.1.16. Let A be a unital commutative C*-algebra and m € M(A), then m is a
x-homomorphism, i.e. m(A*) = m(A).

Proof. First we show that if A = A*, then m(A) is real. If we write m(A) = a+ib with a,b € R,
then we have for all ¢ € R:

b+ c® +2bc = |b+cf’ < |a+i(b+c)|?

= [m(A +ice)|? (m(e) =1)

< ||A +ice|?

= ||[(A + ice)(A* —ice)l (|BB*|| = || B||?, for all B € A)
= || A% + e (A* = A)

< lAJ* + ¢

Here we have used ||m||4 = 1 and the C*-property of the norm. Hence we have shown that
b? + 2be < || A%
Since ¢ is arbitrary we have b = 0 and therefore m(A) = a € R.

Let now A € A be arbitrary, then we decompose A in the form A = A, + iA; where

AT:%(A+A*) and Ai:%(A—A*).
i

Since A, = A} and A; = A} we obtain from the first part of the proof
m(A*) =m (A, —i4;) =m(A,) —im (A;) = m(A),

and the assertion is proven. O
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The proof of the GN-theorem requires the Stone Weierstrass theorem which we recall next:

Theorem 2.1.17 (Stone-Weierstrass). Let X be a compact space and let C(X) be the algebra
of complez valued continuous functions on X. Assume that A C C(X) is a sub-algebra with
the following properties:

(i) A contains all constant functions and if f € A, then f € A.
(ii) A separates the points of X, i.e. for x #y € X there is f € A such that f(z) # f(y).
Then the inclusion A C C(X) is dense.

Now we can state and prove the Gelfand-Naimark theorem (GN-theorem). Roughly speaking
it says that all unital commutative C*-algebras can be identified with an algebra of continuous
functions as in Example 2.0.2, (c).

Theorem 2.1.18 (Gelfand-Naimark). Let A be a unital commutative C*-algebra. Then the
Gelfand transform T : A — C(M(A)) is a x-isomorphism.
Proof. 1. Step: Show that I'(A*) = T'(A)* for A € A:

Let m € M(A). According to the definition of the Gelfand transform and Lemma 2.1.16 we
have

['(A%)(m) = m(A%) = m(A) =T(A)(m) = L(A)"(m).
2. Step: Show that ||[T(A)|| = ||Al| for all A € A, i.e. T is an isometry:
Let B = B* € A be self-adjoint, then it follows from the C*-property of the norm that

182 = [I1BB*|| = || BII.

Inductively, we have ||B?"|| = || B||*" for all n € N and we obtain for the spectral radius of B:
. nnt . o L
r(B) = lim B = lim |57 = | B]. 2.14)

In particular, we put B = A*A with A € A. Then we conclude from Theorem 2.1.13, the first
step and (2.1.4) that

I(A)[* = [I(AT(A)]| = T(AAT)| = r(AA") = [[AA™[| = [ A]l*

Since the Gelfand transform I' is an isometry it is clearly injective and it also follows that the
range

T(A) C C(M(A)) (2.1.5)

is closed. In order to prove the equality I'(A) = C(M(A)) it therefore is sufficient to show that
the inclusion (2.1.5) is dense. Note that I'(A) fulfills the following properties:

(i) Since I'(Ae) = Xe for all A € C we conclude that the range I'(A) is a subalgebra of
C(M(A)) which contains the constant functions. Also M(.A) is weak-*- compact.

(ii) I'(A) is invariant under complex conjugation since I'(A) = I'(A)* = ['(A*).
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(iii) I'(A) separates points of M(A), i.e. for any pair my # me € M(A) there is A € A with

L(A)(m1) = ma(A) # ma(A) = T(A)(my).

Therefore the density of the inclusion (2.1.5) is a consequence of the Stone- Weierstrass theorem,
(Theorem 2.1.17). O

Exercise 2.1.19. Let A be a commutative unital Banach algebra. The space
Rad (A) :== ﬂ {Z cA: Tisamazimal ideal }
is an ideal of A itself and is called the radical of A.
(i) If A € A is nilpotent, then A € Rad (A).

(ii) Calculate the radical of a commutative unital C*-algebra A. Show that a commutative
unital C*-algbera contains no nilpotent elements.

Exercise 2.1.20. Let X be a compact space, then the mazimal ideal space M(C(X)) can be
identified with X via the map 7

A X — M(OX)) : 2 by,

where 0,(f) := f(x) for all f € C(X) (cf. Example 2.1.7). Show that the map A is surjective.

Hint: Assume that there is m € M(C(X)) \ A(X). By using the compactness of X construct
feC(X) with f >0 and m(f) = 0.

More precisely, for each x € X there is f, € C(X) such that f.(x) # 0 and m(f,) = 0. Put

Uy = {y €X: fl‘(y) £ 0}

Then {U, }rex defines an open covering of X and since X is compact we may pass to a sub-cover
{Us,}iL,. Consider the function

N N
h=> fu ki, = Lo
j=1 Jj=1

Then h € C(X) and h > 0 on X and m(h) = Z;V:1|m(fzj)|2 = 0. Hence h € ker m is

invertible in C'(X), which gives a contradiction.

2.2 Fock-space, CCR and CAR- algebras

(Robert Helling)

"More precisely, A is a homeomorphism, i.e. a continuous bijective map with continuous inverse.
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2.2.1 CAR-Algebra
Let h be a pre-Hilbert space with completion h.

Definition 2.2.1 (CAR-algebra). The (unique up to *-isomorphisms) algebra A(h) generated
by element a(f) where f € h with the properties (i)-(iii) below is called CAR-algebra.

(i) h > f = a(f) is anti-linear
(i) {a(f),alg)} =0, with f,g € h
(iii) {a(f),a(g)"} = (f,9)id, with f,g € h

2.2.2 CCR-Algbera

Let H be a real Hilbert space with a non-degenerate symplectic bilinear form o : H x H — R,
i.e. 0 is anti-symmetric.

o(f,g) =—0o(g, f), forall f,ge H.

Definition 2.2.2 (CCR-algebra). The (unique up to *-isomorphisms) algebra A(H) generated
by Weyl-operators W (f) where f € H with the properties (i)-(ii) is called CCR-algebra.

(i) W(=f)=W(f)* forall f € H,

(i) W()W(g) = e 2°UOW (f 4 g) for all f,g € H.

2.3 Quasi-local Algebras

We introduce the notion of quasi-local algebras. These are classes of C*-algebras that are used
to describe infinite systems of statistical mechanics. We start with the definition.

A directed set I = (I,<) ® is said to possess an orthogonality relation L if the following
properties hold:

(a) if a € I, then there is § € [ with a L S.
(b) if @ < B and 5 L v, then o L .
(c¢) if @« L B and o L 7y, then there is § € I such that o L § and ~, 5 < 0.

Example 2.3.1. The following are intrinsic examples for a directed set with an orthogonality
relation:

1. Let I :=bounded open subsets of R™ or I :=finite subsets of 7Z" directed by inclusion:
A<B:+=ACB and Al B: <= AnB=0.

In (c) choose 6 = U~y

8“directed” means that the binary relation “<” is reflexive and transitive. In addition to each pair o, 3 € I
there is an “upper bound” v € I, ie. o, 8 < 7.



20 CHAPTER 2. C*-ALGEBRAS IN QUANTUM STATISTICAL MECHANICS

2. Let H be a vector space over R with a non-degenerated symplectic bilinear form ? b and
I :=set of linear subspaces of H directed by inclusion as in 1. Put

L1G:<= b{l,g)=0 forallle L and g€ G.

In (¢) choose 6 = span{f,~}.

We also assume an abstract versions of the “union” or “span” in 1. and 2. of the above example.
Let o, 8 € I, then we assume existence of a least upper bound denoted by oV 3 € I with

(d) a<aVpand g <aVp.
(e) if « <~y and f <~ then aV f <.

Let A be a C*-algebra equipped with an involutive automorphism o, i.e. 0 = id. Given A € A
we can define its even part A¢ and odd part A° with respect to o:

A° = %{A+U(A)} and A° = %{A—O’(A)}.
such that A = A° + A°. Clearly it holds 0(A¢) = A° and o(A°) = —A°. Moreover,
A= {A° . Ae A} = C*-subalgebra of A.
A% = {AO A€ A} = Banach space.

Definition 2.3.2 (quasi-local algebra). Let I be a directed index set with an orthogonality
relation. A quasi-local algebra is a C*-algebra A with an involutive automorphism o : A — A
and a net {A},e; of C*-sub-algebras such that the following properties hold:

(a) if B < «, then Ag C A,.
(

b) all algebras A, have the common identity e € A.

(
(d

)
)
¢) U,es Aa is dense in A (with respect to the norm topology).
) Each A, for a € I is invariant under o, i.e. 0(A,) = A,.
)

(e) With the commutator [-,-] and the anti-commutator {-,-} on A and with «, 5 € I such
that o L (it holds:

o 45,5 = {0},
o (A543 = {0},
o {A2, A3} = {0}.

Remark 2.3.3. We may choose o = id, then property (d) simply reduces to

9symplectic form means:
(i) skew-symmetric: b(u,v) = —b(v,u) for all u,v € H
(ii) totally isotropic: b(v,v) =0 for allv € H

(iii) non-degenerate: b(u,-) = 0 implies that u = 0
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[An, Al =0 for all a,f €1 with a L 5.

If I is the set of bounded open subsets of R™ as in Example 2.3.1 1., then A, can be interpreted
as the observables for a sub-system localized in o C R".

The corresponding quasi-local algebra describes the observables of the infinite system. The
condition

[Aq, Ag] =0, alp
states that observations become independent if o N 5 = ().

We now give some explicit examples for quasi-local algebras that play a role in statistical
mechanics:

Example 2.3.4. (quasi-local algebras)

1. Let the index set [ := {A C Z" : A is finite } be directed by inclusion and define the
orthogonality relation Ay L Ay <= A; NAy =0 for all A;, Ay € 1.

Let A € I and assign to each x € A a finite dimensional Hilbert space H,. Consider the
tensor product Hilbert spaces Hy and a corresponding C*-algebra Aj:

Hy = ®HI and Ap = L(H\) = bounded operators on H,.

z€EA

The family of algebras {Aa}aes is increasing: if A; N Ay = () then Hy,upn, = Hy, @ Hy,
and it holds

Ap, =2 Ay, ®ida, = L(Ha,) @ida, C L(Ha, ® Hp,) = Aajun,-

A quasi local algebra A with ¢ = id is defined by the minimal norm completion of the
normed algebra
U As.

Ael
If Ay Ay =0 and A; € Ay, where j = 1,2, then property (e) follows from

[A1, Ao = A1 Ay — A Ay
= (A1 ®id) (id ® As) — (id ® As) (4; ®id)
:A1®A2—A1®A2:O.

Algebras of the above type where the index set I is countable frequently are called UHF-
algebras 1°. They play a role in the study of quantum spin systems.

2. Let (H,(-,-)) be a Hilbert space and consider an index set
IC {M C H : M is a closed non-empty subspace}

which should be directed by inclusion and such that

UMmcH

Mel

0UHF means “uniformly hyper-finite”
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is norm dense. Assume that usual orthogonality 1 with respect to the inner product
defines an orthogonality relation on [ in the previous sense.

Let Acar(H) be the CAR-algebra over H generated by {a(f) : f € H} with the conditions
in Definition 2.2.1. For each M € I put
Acar(M) := C*-algebra generated by a(f)with f € M.

Define an involutive automorphism o on Acar(H) via the requirement o(a(f)) = —a(f),
for all f € H. Then

(Acan(H), {Acar(M)}aver)
defines a quasi-local algebra (proof see [2] vol II, Proposition 5.2.6).
Exercise 2.3.5. With the notation in 2. and M € I let us write
P°(M) : = odd polynomials in elements a(f) and a(g) where f,g € M
P¢(M) : = even polynomials in elements a(f) and a(g) where f,g € M.
Show that
(a) PE(M) C Agpr(M) and P°(M) C A2 ur(M).

(b) the conditions (e) in Definition 2.5.2 are fulfilled if we replace there AZyg(M) by
polynomial P*(M) and A%\ (M) by polynomial P°(M).

. Let H be a vector space over R equipped with a non-degenerated symplectic bilinear form

b: H x H— R. Define the index set
I := {M CH: Misa subspace}
ordered by inclusion and with the orthogonality relation L in Example 2.3.1, 2.:
M 1 N: <= b(l,g)=0 forall /e M and g € N.

H=|]JMm

Mer
Let Accr(H) be the CCR-algbera over H generated by Weyl-operators {W(f) : f € H}
with the conditions in Definition 2.2.2. For M € I put

Accr(M) := C*-algbera generated by W (f) with f € M.

With the involutive automorphism ¢ = id

<ACCR(H), {ACCR(M)}MEI>

defines a quasi-local algebra (proof, see [2] vol. II, Proposition 5.2.10), e,g if o(f,g) =0,
then

In particular, it holds

W)W (g) = W(f +g) = W(g)W(f).

Remark 2.3.6. The Examples 2.3.4 2. and 3. have different features. Whereas one always has
equality Acar(h) = Acar(H) for any dense subset h of the Hilbert space H it can be shown

that

Accr(H1) = Accr(H2)

for H; C H, exactly holds in the case where H; = H,.
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2.4 States, representations and Gelfand-Segal
construction

Let A be a C*-algebra. To simplify the proofs we assume that A is unital with unit e € A.
However, most of the results here are also true in general and in the proofs one may use so
called approzimate units which always exist (or an extension to a unital algebra).

We start with some remarks on self-adjoint functional calculus. Let A = A* € A be
selfadjoint. Consider the commutative C*-algebra A4 which is generated by A and the unit
e € A. According to EXERCISE 8 there is an isometric *-isomorphism

Ay — C’(U(A)),

where C(o(A)) denotes the C*-algebra of continuous functions on the spectrum o(A) of A and
such that 7o p(A) = p for all polynomials. Given f € C(c(A)) we define

flA) =7Y(f)e Ay C A (2.4.1)
Hence we have for f,g € C(o(A)):

(f9)(A) = f(A)g(4) and  f(A)" = f(A) (2.4.2)

1is a *-isomorphism.

by using the fact that 7~

Exercise 2.4.1. Let A € A be selfadjoint, i.e. A= A*. Show that 0(A) C R.

Definition 2.4.2. An element A € A is called positive if it is self-adjoint and o(A) C [0, 00).
If A € A is positive then we write A > 0 and by A > B we mean that A — B > 0.

Exercise 2.4.3. Let A € A be self-adjoint, i.e. A= A* with ||Al| < 2. Then A >0 if and only
if le—A| < 1.

Exercise 2.4.4. A subset C C A is called a “cone” if C is invariant under multiplications with

A€ (0,00). Show
(1) What are the positive elements of A = C(X) where X is a compact Hausdorff space?
(2) The positive elements of a C*-algebra form a closed convez cone.
Hint: Use the characterization of positivity in Fxercise 2.4.3.
(3) If A, B € A are positive, then A+ B is positive.
(4) FElements of the form AA* are positive.

Exercise 2.4.5. Let A € A be positive. Show that there exist a positive element B € A such
1
that A = B?. We write B = Az.

Hint: Use the above self-adjoint functional calculus.
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2.4.1 Positive functional and states

We write A* ' for the topological dual of A consisting of all continuous linear functionals
¢ : A — C and with norm

¢l

Example 2.4.6. Let X be a compact Hausdorff-space and let A = C(X). Then A* can be
identified with the space of all complex Borel measures on X.

4 =sup {|p(A)| : Ac Aand ||A]| =1}.

A linear functional ¢ is called positive if p(A*A) > 0 holds for all A € A. (Here we do not
assume continuity of ¢ explicitely, it will be a consequence of positivity)

Definition 2.4.7 (state). A positive functional ¢ € A* with norm ||¢|| = 1 is called state. We
denote the set of all states in A* by E 4.

Exercise 2.4.8. Fach element A € A with ||A|| <1 can be decomposed in the form
A - BO - Bl + ’L(BQ - Bg), (243)
where B; € A with B; > 0 and ||B,|| <1 for 5 =0,---,3.

Proof. First, decompose A in real and imaginary part:
1 * 1 *
A ==(A+A") and A;:=—(A—-A")
2 21
both are selfadjoint, i.e. A, = A} and A; = A;. We further decompose A, = A, + — A, _ and
A; = A+ — A, _ into their “positive” and “negative parts”

1 1
Ar,:l: = §(|AT| + Ar) = f:i:(Ar> and Al‘;t = §(|Az| + Az) = f:I:(Az)
where fy = (|x| £ 2)/2 maps o(A,) and 0(A;) to [0,00). Using the relation (2.4.2) and taking
square root of fy the first assertion follows. n

We show some simple properties of positive functionals. Note that the proof makes neither
use of the closedness of A nor of the C*-property of the norm.

Lemma 2.4.9. Let ¢ : A — C be positive and linear, then we have for all A, B € A:
(1) @(A*B) = @(B*A). In particular, with B = e one has p(A*) = ¢(A).
(2) |p(A*B)|* < p(A*A)p(B*B), (Cauchy-Schwarz inequality),
Proof. For all A € C it follows from the positivity of ¢:
0 < p((VA+B) (M + B)) = [\Pp(AA) + Xp(A"B) + Ap(B"A) + p(B"B)
(1): Taking the imaginary part of both sides gives:

0 = A[@(A*B) — p(B*A)] — A[p(A*B) — p(B*A)] = 2iIm [A[ o(A*B) — o(B*A) H .

e change the notation to A* since A’ usually means the commutant of A
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Since this is true for all A € C, we conclude (1).
(2): Using (1) in the above inequality gives
0 < [APp(A"A) + Ap(A*B) + \p(A*B) + ¢(B*B).
If p(A*A) = 0 then we conclude that ¢(A*B) = 0 and (2) follows trivially. Otherwise we choose
A= —p(A"B) /(A" A),

which implies (2) again. O
Proposition 2.4.10. Let ¢ be a positive linear functional on a unital C*-algebra A, then o is
continuous with p(e) = ||¢|| (e is the unit in A).

Proof. Assume that ¢ is unbounded and consider
M := sup {cp(A) tA>0, ||A] < 1} € R, U{oo}. (2.4.4)

Assume that M < oo and let A € A with ||A]] < 1. According to Exercise 2.4.8 we can

decompose A in the form
A= (By— By) +i(By — Bs)

where B; > 0 and || B;|| < 1. Hence, by the triangle inequality

p(A)] <Y |e(B))] <4AM < o0

Jj=0

which contradicts the assumption that ¢ is unbounded. Hence M = oo and we can choose a
sequence {A4;};en C A with ||A4,|| <1 and

QO(AJ) > 2j, j € N.
Consider the partial sums S,, := > " 277/ A; € A where m € N. Then
S:=lim S,,€¢ A

m—o0

exists and is positive (according to Exercise 2.4.3, (2)) and S,, < S for all m. '* We have for
all m € N:

m

o0 > @(S) > o(Sn) = Z2‘jg0(Aj) >m+ 1,
o ~——
J >1
which is a contradiction. Hence ¢ must be bounded.
It remains to show that [|¢|| = ¢(e). Since ||e]] = 1 we have ¢(e) < ||¢|| and the Cauchy-

Schwarz inequality (Lemma 2.4.9) shows:

(A" = lp(Ae)[* < p(AA")p(e) < [loll[AA™[[p(e) = [l All*e(e).

Dividing both sides by ||A||* and taking the supremum over 0 # A € A on the right hand side
gives

lell* < llello(e).
Hence ||¢|| < ¢(e) and we have proven equality ||¢|| = ¢(e). O

12The positive elements of a C*-algebra form a closed convex cone.
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Corollary 2.4.11. Let A be a unital C*-algebra and let ¢y, py € A* be positive functionals.
Then

(i) the sum @1 + o € A* is positive with norm |1 + @a|lax = ||o1llax + 2]

A*,
(ii) the states over A form a convex subset of A*.

Proof. (i): It is clear that ¢ + ¢35 is positive. Moreover, it follows from Proposition 2.4.10 that

1 + pallar = (01 + @2)(€) = @r(e) + ale) = [lpnllar + llp2ll.ax-
(ii): let A € [0,1] and assume that ¢, ps € A* are states, i.e. ||p1].a = ||pa]| 4+ = 1, then
[A@1 + (1= Agaflar = Mler]las + (1 = Alpafla- = 1,
where we have used the property (i). The convexity follows. O

We can define a partial ordering on A* using the notion of “positivity”.

Definition 2.4.12. Let ¢y, ps € A* be positive, then we write ¢ > 9 if 1 — 9 is positive.
In this case one says “p; majorizes @s.

Assume that ¢,y € A* are states and fix A € [0,1]. According to Corollary 2.4.11 we
know that ¢ := Ap1 + (1 — Xy is a stated with

©>Ap1 and @ > (1 — N)ps.

States that cannot be expressed as a non-trivial convex combination of two other states will
play a special role.

Definition 2.4.13. A state ¢ € A* is called pure if the only positive linear functionals that
are majorized by ¢ have the form Ay with A € [0,1]. We write P4 C E4 for the set of pure
states.

The pure states are the so called extreme points of E 4. If K is a subset of a vector space
X, then p € K is called extreme point of K if it cannot be expressed in the form

p=ap+ (1 —a)p, with a€(0,1) and p1,p; € K.
In this framework the following is an important result:

Theorem 2.4.14 (Krein-Milman '3). Let X be a topological vector space on which the dual X*
separates points. If K is a non-empty compact convex set in X, then K is the closed convex
hull of its extreme points. In particular, the set of extreme points is non-empty.

Exercise 2.4.15. Let A be a unital C*-algebra. Then the set of states is a weak-*-compact
convex subset of A*.

13Mark Krein (1907-1989) russian mathematician, David Milman (1912-1982) russian/israeli mathematician
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2.4.2 Star-homomorphisms

Before introducing the important concept of representations we start with some general obser-
vations on *-homomorphism between C*-algebras.

Let A, B be C*-algebras with units e4 and eg, respectively. Consider a x-homomorphism
mA—B (2.4.5)

We assume that If 7(e4) = eg. Otherwise we replace B by the C*-subalgebra B C B defined
by

B :=n(eq)Br(es) = {W(GA)BW(GA) : Be B}
with the same norm as B and the unit
ez =T(ea)esm(eq) = m(ea).
Assume that A € A and \ € py(A)= “resolvent set of A7, i.e. A— Xey € A™'. Then
m(A) — Neg =7(A— Xea) € B~

The inverse is given by 7((A — Ae) ™) and therefore A € pg(m(A)). In particular, we have for
all A e A:
op(m(A)) C aa(A). (2.4.6)

Here 0 4(+) and o5(-) denote the spectrum in A and B, respectively.

Proposition 2.4.16. The x-homomorphism m is (automatically) continuous and contractive,
i.e. ||m(A)|| < ||A]l for all A € A.

Proof. Let A € A and note that m(AA*) € B is self-adjoint. It follows from the inclusion (2.4.6)

and the property
IC|| = r(C) = spectral radius of C

for all self-adjoint elements C' of a C*-algebra that
Im(A)* = | (A)m(A)"|| = [[7(AA")|| = sup {\ € o(7(AA7))}
< sup {A € 04(AA")} = [ AA"] = ||A]12
By taking the square root on both sides the assertion follows. O]

Let A and B be commutative unital C*-algebras with maximal ideal spaces M(A) and
M (B), respectively (interpreted as multiplicative functionals). Let 7 : A — B be an injective
x-homomorphism which maps the unit e4 in A to the unit ez in B. Then 7 induces a map

7t M(B) — M(A) : mw~ 7'(m) :=mom, (2.4.7)

which is continuous with respect to the weak-*-topology. Since M (B) is weak-k-compact, it
follows that the range n*(M(.A)) is compact in M (B) and, in particular, closed.

Lemma 2.4.17. Under the above assumption it follows that the map 7" in (2.4.7) is surjective,

ie. T(M(B)) = M(A).
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Proof. Assume that X := M(A)\ 7*(M(B)) # 0 and let mo € X. Since X is open we can
choose two non-trivial functions f,g € C(M(A)) with f-g=0 and

fim)=1 forall m € 7' (M(B)). (2.4.8)
Consider the Gelfand transform
r-A—C(M(A)> f,g,
which is a #-isomorphism. Define 4 :=T'"(f) € Aand 0 # B ='"!(g) € A. Then we have
AB=T"Y ()T (g) =T "X(f-9) =0 (2.4.9)
and for all m € M(B) it follows from (2.4.7)
m(m(A4)) = '(m)(A) = L(A)(x"(m)) = f(r'(m)) = 1.

Therefore m(A) does not belong to any maximal ideal of B and as a consequence must be
invertible. Applying the inverse to both sides of

7(A)m(B) =n(AB) =m(0) =0
gives m(B) = 0 and by injectivity B = 0 which is a contradiction. O

Corollary 2.4.18. Let A and B be unital C*-algebras (not necessarily commutative) and as-
sume that m : A — B an injective x-homomorphism. Then m is isometric, i.e.

Im(A)[l =[[All,  forall A€ A

Proof. First assume that A = A* € A is self-adjoint. Without restriction we can assume that
m(ea) = ep. Denote by A4 and Br(a) the commutative C*-subalgebras of A and B generated
by A and 7(A), respectively. According to Lemma 2.4.17 we have

Im(A)|| = r(7(A)) = sup {m(n A)) :m € M(B)}
= sup {r'(m)(A) : m € M(B)}
=sup {m(A4) : m € x"(M(B))}
=sup {m(A4) : m e M(A)} =r(A) = ||A].
For general A € A this observation implies
[A]]* = |4 Al = [ (AA%)]| = [[r(A)m(A)"] = ||=(A)]*
and the assertion follows by taking the square root. O

Corollary 2.4.19. Let w: A — B be a x-homomorphism, then the range w(A) is a C*-algebra
and in particular closed.

Proof. According to Corollary 2.4.18 the induced map
7: A/ker m — B

is an injective isometric *-homomorphism. Since the quotient A/ker has the structure of a
unital C*-algebra the assertion follows. m

Exercise 2.4.20. Assume that m(A) > 0 for all A € A with A > 0. Show that 7 is isometric.
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2.4.3 Representations

In order to show the connection between the abstract C*-algebras and Hilbert space operators
we introduce the concept of representation. A link between representations and states is then
given by the Gelfand-Naimark-Segal construction which we explain in this section.

Consider a complex Hilbert space H and choose B := L(H). Let
m: A— L(H)
be a *-homomorphism.
Definition 2.4.21. The pair (H, ) is called a representation of the C*-algebra A.
(i) A representation is called faithful if 7 is even a *-isomorphism (then it is isometric!).
(ii) Two representations m and p of A on H; and Hs, respectively, are called (unitarily)
equivalent, if there is a unitary operator U : H; — H, with
Urn(x)U* = p(x), forall z € A.
We will often identify unitarily equivalent representations.

Let M C L(H) be a set of bounded operator on H. A vector Q € H is called cyclic for M
if the inclusion {AQ : A € M} C H is dense. We define

Definition 2.4.22. A “cyclic representation” of a C*-algebra A by definition is a triple (H, 7, ),
where (H,7) is a representation of A and Q € H is cyclic for m(.A).

Exercise 2.4.23. Let (H, 7, 2) be a cyclic representation. Then (H,r) is non-degenerate in

the sense that
{feH :n(A)f=0 forallAc A} =0

Definition 2.4.24 (Commutant). The commutant M’ of M is defined by
M = {Ce L(H) : [C,M]=CM — MC =0 forall M eM}.
A subspace G C H is said to be invariant under M if

T(G)cG, forall T e M.

We call M irreducible if the only closed invariant subspaces G C H of M are G = {0} and
G = H. There are some relation between these notions. Without a proof we mention:

Proposition 2.4.25. Let M C L(H) be a “self-adjoint” subset, i.e. M € M implies that
M* e M. Then (i) and (ii) are equivalent

(i) M is irreducible

(ii) M'={X-id : XA € C},
Proof. See [8]. O
Exercise 2.4.26. Proof (ii) = (i) of Proposition 2.4.25.

Definition 2.4.27. A representation (H,m) of a C*-algebra A is called irreducible if the set
7(A) C L(H) is irreducible.

Exercise 2.4.28. If (H,w) is an irreducible representation of the C*-algebra A, then each
vector £ € H is cyclic or m(A) = {0} and H = C.
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2.4.4 The GNS-construction

The GNS construction was discovered independently by Gelfand/Naimark and by I. Segal. It
provides a method to construct representations of C*-algebras with the help of positive linear
functionals.

Let A be a C*-algebra with positive linear functional ¢ : A — C, i.e. ¢ € A*. We put a
pre-inner product on A by
(A,B) = p(A"B)

(see Lemma 2.4.9). We define
={NeA: p(N*N)=0}.
Lemma 2.4.29. N, is a closed left ideal of A, i.e. AN € N,, for all A€ A and N € N,.
Proof. As a preparation for the proof we show that for all A, B € A we have
0(A*B*BA) < ||B||*p(A*A). (2.4.10)
In fact, since o(B*B) C [0, || B||?] it follows that B*B — || B||?e < 0 and therefore

|B|*?A*A — A*B*BA = A* (|B||*e — B*B) A= (CA)*CA > 0. (2.4.11)

TV
is of form C*C>0

Since ¢ is positive we find that (2.4.10) holds. Let N € N, and A € A then AN € N, follows
by applying (2.4.10) from:

0 < p((AN) (AN)) = p(N*A*AN) < o(N*N) |A*A]| = 0.
~——

=0

By using the Cauchy-Schwarz inequality again one easily shows that N, is a linear space and
closedness follows from the continuity of . [

According to Lemma 2.4.29 we can consider the quotient algebra
AN, ={A:=A+N, : Ac A}
with the inner product (for simplicity we use the same notation as before):
(4, B> = ¢(A*B). (2.4.12)

Exercise 2.4.30. Check that the inner-product (2.4.12) is well-defined on the quotient AJN.,.

Definition 2.4.31. We write H,, for the Hilbert space completion of (A/N,, (-, -),) which then
is a Hilbert space.

Our next aim is to define a representation of A on H,. The quotient .A/N,, can be identified
with a closed subspace of H,. For any given A € A we define m,(A) : A/N, — A/N, by

7,(A)(B +N,) = AB + N, (2.4.13)
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Since N, is a left ideal in A it is clear that m,(A) is well-defined. We show that m,(A) is
continuous on A/N,, with respect to the norm || - ||, induced by the inner-product (-, ).
Imo (A)B)IIZ = 1AB + NG I3
= ¢((AB)*AB)
= p(B*A*AB)
< [A"Allp(B*B) = | A" Bl;.

The inequality follows from (2.4.10). Hence 7,(A) extends to a bounded operator on the

completion H, with
[mo (Al < [|A]

and clearly the assignment
Tt A— L(H,): A— 7m,(A)

gives a representation of A on H,, (in particular we have 7,(A;)m,(A2) = m,(A1As2).)

Definition 2.4.32 (GNS-representation). (H,,m,) is called GNS-representation associated
with ¢.

We show that the GNS-representation is cyclic. Put &, := my(e4) = ea + N, = €4 € H,.
Then we have for all A € A

<£@77T¢<A>£Lp>@ = <a7 A\>@ = (p(e;‘A) = W<A> (2'4'14>

and due to Proposition 2.4.10 we find

€115 = plea) = lloll.a--

Definition 2.4.33. States of the form 7w(A) = (Q, 7(A)Q) where (H, ) is a representation of
a C*-algebra A and ) € H are called vector states.

Proposition 2.4.34. The triple (H,, m,,&,) defines a cyclic representation of A.
Proof. By definition we need to show that
{mo(A), : Ac A} ={A+N, : A A} = A/N,
is dense in H,. But this is clear since H,, is the completion of A/N,,. ]

Exercise 2.4.35. Let A := C™*™ ="C*-algebra of n x n complex matrices”. On A consider
the trace functional @y : A — C defined by the usual matrix trace

ou(A) = trace(A), Ae A
(a) Show that . is a positive linear functional on A.
(b) Give an explicit description of the GNS-representation (Hy,,, Ty,., Ep,,)-

The GNS-construction gives is a relation between the notions “pure state” and “irreducible
representation”.
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Theorem 2.4.36. Let A be a unital C*-algebra with a state ¢ and corresponding GNS-represen-
tation (Hy,, m,,&,). Then (a) and (b) are equivalent:
(a) the representation (H,,m,) is irreducible

(b) ¢ is a pure state (extreme point of E ).

Proof. (a) = (b): Assume that (a) holds and ¢ is not a pure state. Then we find a state w

not of the form w = Ay where A\ € [0,1] with w < ¢. The Cauchy-Schwarz inequality implies
for all A, B € A:

lw(B*A)|? < w(B*B)w(A*A)
< ¢(B*B)p(A*A)
= | BIZ|IAII2
= |Imo(B)&ol12 I mo (A)E, 1%

Therefore the assignment
AIN, x AN, — C: (mp(B)éy, mp(A)E,) — w(B*A)

is continuous w.r. to | - ||, and extends to a bounded bilinear form S : H, x H, — C. Hence
we can choose a bounded operator T' € L(H,,) such that

<7T¢,(B)f‘p, T7T‘P(A)€‘P>go = S(WSO(B){’@,W‘F(A)@) =w(B*A).
If there was A € R such that T'= X - id then we had
Ap(A*A) = <7T<p(A)f<p, )\7T<p(A)§D>w = w(A*A),

with A € [0, 1] which contradicts our above assumption. Fix A, B,C € A, then we have

=mp(CA)
(o (B TV (A&, = w(B'CA)
—u((C*BY )
= <7T<P(C*B)5w T7T<P(A)€<p>gp
= <7r¢(B)§<p, WSD(C)TW¢(A)€¢>SO.
Since A and B were chosen arbitrarily we conclude that T' commutes with all elements in

m,(A) C L(H,). In other words A -id # T is in the commutant 7,(A)" C L£(H,) and according
to Proposition 2.4.25, (i) = (ii) the representation 7, cannot be irreducible. Contradiction.

(b) = (a): No proof here (requires the notation of spectral projections). O
As for the uniqueness of the GN S-construction up one can say the following

Exercise 2.4.37. With the above notation ZetA(fI,fr, é) be another cyclic representation of the
unital C*-algebra A such that p(A) = (£, T(A)) 5z for all A€ A, cf. (2.4.14).
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(a) Show that there is a unitary operator U : H — H which sets up a unitary equivalence
between m, and 7.

The following result (which we state without a proof) sometimes also is called the Gelfand-
Naimark theorem (cf. Theorem 2.1.18).

Theorem 2.4.38 (Gelfand-Naimark). If A is a C*-algebra, then A has a faithful representa-
tion, i.e. A is isometrically isomorphic to a concrete C*-algbera of operators on a Hilbert space
H. If A is separable, then H may be chosen separable.

2.4.5 The GNS-construction for a matrix algebra

(see Robert’s lecture)
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Chapter 3

Equilibrium States and KMS condition

(see Robert’s lecture)
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Chapter 4

Ising model in 2d

Consider a square lattice A C R? with n rows and n columns, i.e we have N = n? lattice points.

(i) The spin variable is a function A 3 p +— s, € {£1}.
(ii) A configuration of the system is given by
S = {sp CpE A}.

(iii) The energy in the configuration state S has the form

N
Ei(S) == epqspsq— B sp. (4.0.1)
p=1

(pq)

Here

(pq) = (qp) := direct neighbors in A,
B = exterior magnetic field,

€pg = interaction energy between p and g.
The partition function is given by

_ 1
Q/(B,T) = XS:MENS), with = (4.0.2)

The sum is taken over all 2V = |{S = (s1,- -+, sn) : 8, = £1}| configurations S. The Helmholtz
free energy has the form

AI(BuT) = —k?TIOg QI(B7T) = _B_l 1Og QI(B7T) (403)

Goal of this section: Calculate the thermodynamical limit for the two dimensional Ising
model (“Onsager solution” for the Ising model)

1
lim Nlog Qr(B,T), N=n’ (4.0.4)

N—oo

and observe a phase transition. !

! This is the only non-trivial example of a model, in which the phase transition can be calculated mathemat-
ically exact.

37
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Simplifications:
(1) Assume that €,, = € > 0 (ferromagnetism) is independent of the pair (pg).

(2) Pose boundary conditions: add one column and one row to the right and to the bottom
which has the same configuration as the first column and the first row, respectively.

Some notation: With a € {1,--- ,n+ 1} we write Ry, = (Sa.1,° - , Sa.n) for the spin coordi-
nates of the a-th row of A. It follows from (2) that

Ry =R, and Sa1 = Samn+1, fora=1,---n.

e Interaction energies:

n

Er(Ry, Roy1) = —¢ Z SakSa+1k (between neighboring rows)
k=1
Ei(R,) = —¢ Z SakSak+1 — B Z Sak  (within the a-th row).
k=1 k=1
If the configuration S of the system is determined by the rows Ry, --- , R,, then we can write

the energy F;(S) in (4.0.1) as

n

ES) =Y [E[(Ra, Rai1) + EI(RQ)]

a=1

The partition functions takes the form

QBT =% exp {—6 3 [EI (Ray Roy1) + EI(Ra)] } .

Ry

Strategy: Express this complicated sum in form of a “matrix trace” using the periodic bound-
ary conditions with respect to the rows (i.e. Ry = R,11).

Consider the set
R ={(s1, -+ ,8n) : s, =1} = “possible configurations of the row R”, |R|=2".
Fix an order of R and define a matrix P € M. (R) having the entries
(R|P|R) = e PEIRIVTEM®] R R € R.
We can rewrite Q;(B,T) in the form:
Qi(B,T)=> -+-Y (Ri|P|Ry){Ra|P|Rs) - (Rn|P|Ry)
R R

— Z (Ri|P"|Ry) = Trace P".
Ry
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Assume that P can be diagonalized with eigenvalues {A\;(n), -+, Aan(n)} (counted with multi-
plicities). Then P™ has the eigenvalues {A;(n)",- -, Aon(n)"}. Therefore

2”

Q:(B,T) = Trace P" = Z Ai(n)™. (4.0.5)

Observation: Assume that \;(n) for all i grow of the order e” as n — oo and let Apax(n)
denote the largest eigenvalue for fixed n. Then

1
lim — log Apax(n) = ¢ € R.

n—oo M

Then we obtain from (4.0.5) that
1 1
—1 )\max =—1 )\max "
108 A1) = 1 108 A1)
1 < 1
< —logy Ai(n)" = 5 log Qr(B,T)
i=1

1 n n

< ﬁlog (2 Amax (1) )
1 1

= —log Amax(n) + —log 2.
n n

This shows . .
lim Nlong(B,T) = lim —log Apmax(n).

N—oo n—oo N,

Therefore, in order to calculate the limit (4.0.4) we will study the eigenvalues (in particular the
largest one) of the matrices P as a function of n.

4.1 A decomposition of the transfer matrix

Let R=(s1, -+ ,s,) € Rand R = (s},---,s],) € R be two configuration of rows. The entries
of P are:

(R|P|R') = e AlEHRR)+E1(R)]

= exp {ﬁe Z SkSy + 562 SpSpr1 + BB Z sk}
k=1 k=1 k=1
= H Bk . 1_16’865’“3’“+1 . H ePesksi, (4.1.1)
k=1 k=1 k=1

define the matrix Q1 = ((R|Q1|R)) p,rer € Man(R) = 2" x 2"-real matrices by

<R‘Q1|R/> _ H eﬁesks;C
k=1
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Let @) and Q3 be the diagonal matrices

0 if R+ R
R R/ — ) 4.1.2
< |Q2| > {HZl eﬁéskSkH, fR=R ( )
if R#R
R R — 4.1.3
(RIQs|R') = {Hk BB if R— R 1)

Note that Q3 = Id in the case where B = 0 (we will assume this later on in order to further
simplify things).

Lemma 4.1.1. The matriz P decomposes into a product P = (Q3Q02Q)1.
Proof. This follows from (4.1.1), the well-known formula for the matrix multiplication

(RIQ:Q:QiIR') = 3 (RIQs| R)(RIQ| R)(RIQ|R')

R

J’;Un

together with the definition of the diagonal matrices ()2 and Q3. O]

Next: Find an expression of (); which we can handle more easily. We need some prepara-
tions:

Definition 4.1.2. Let A;,--- , Ay € M,,(C) with k£ € N with entries (i|4;|j) for [ =1,--- k.
Define the tensor product A; ® Ay ® -+ @ Ay, € M,x(C) by 2

Ea

<(’i17"' V)| A1 ® - ® Agl(d1, - 7Jk H Zz|Az\Jl

=1
where (i17”' 7ik)7(j17"' 7jk) € {17 7m}k'

Lemma 4.1.3. Tensor products of matrices A;, By € M,,(C) multiply as follows:
<A1®~--®Ak) : (Bl®~--®Bk) = (A1 B1) @ (A2 By) @ -+ ® (Ay - By),

where """ denotes the usual matriz multiplication.
Proof. Exercise 24, homework 06. O

Let now m = 2 and consider in particular the matrix
Be —Be
e e
A= < 6_'86 eﬂe ) I~ MQ((C)

Lemma 4.1.4. ()1 can be expressed as n-fold tensor product of A, i.e. Q1 = A®--- R A.

2We can put the tuples (iy,---ix) in lexicographical order
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Proof. With R = (s1,--+ ,8,), R = (s},--+ ,s),) € R we have from Lemma 4.1.3

(RIA®---®@ ARy =[] (sklAlsi)y = [ [ e”** = (Rl |R').
k=1 k=1

n times
The assertion follows from the definition of ). O

Recall that the Pauli matrices X,Y, Z are defined by

01 0 — 1 0
x=(15) v=(07) ma z=(5 )

Let I € My(C) denote the identity matrix.

Lemma 4.1.5. With € R we have e** = cosh(§)I + X sinh(f). Moreover, A and X are

related via
V/2sinh(2¢3) e’ = A, where  tanh @ = e=2°¢,

Proof. Straightforward calculation, (see Exercise 24, (iii) of the homework assignment 6). [

For a =1, ---,n we now put:

Xo=1® - 0X® I Mu(C),
Vo=I® QY ® - ®I€ Mu(C),
Zo=1® - QZ®- @I € Ma(C),

(each tensor product has n factors and X, Y, Z are located at the a-th position).

Lemma 4.1.6. With 0 > 0 such that tanh @ = e=2°¢ it holds
Q=A® - -®A= [2 sinh(2€6)} ? O(Xa+ Xark o Xo) (4.1.4)

Proof. From Lemma 4.1.4 and Lemma 4.1.5 it follows that

B

Q=AR ---®A= [ZSinh(Qeﬁ)} . @

It remains to show that e/X @ - .. @ /X = f/(X1+Xot4+Xn) Tt ig clear that !X = T @ -+ ®
X ® - .- ® where the €’X is at the a’s position. Hence it follows from Lemma 4.1.3 that

X o X X1 X X
Since the matrices X, and X, commute for o # o’ we see that the right hand side of the last
equality coincides with ef/(X1+Xot4Xn) O

Instead of @)1 we further examine the matrix that appears on the right hand side of (4.1.4)
and we set

Qy = PN € Mo (C). (4.1.5)
The diagonal matrices @) and Q3 in (4.1.2) and (4.1.3) can be expressed in terms of Z,, as well.



42 CHAPTER 4. ISING MODEL IN 2D

Lemma 4.1.7. Let Z, 1 := Z;, then

n
Qs = H e,BEZaZa_H’
a=1
n
=[]
a=1

Proof. (a): Since Z% =1 we find for fixed a € {1,--- ,n} that
efededott = cosh(Be)l + sinh(B€) Zo o1

Therefore ef¢%aZa+1 ig diagonal with

<(817 T Sn>|6ﬂezaza+1 ’(8,17 T 8;1)> -
s {cosh( €) + sinh(Be) = €€, if sgn(s,) = sgn(sas1)
o o cosh(Be) — sinh(Be) = e7P¢, if sgn(s,) # sgn(say1)
DY .
Now, (a) follows from the definition (4.1.2).
(b): Follows by a similar argument from e’#%e = cosh(8B)I + sinh(8B)Z, and (4.1.3). O

Summarizing these calculation we have

Proposition 4.1.8. Let 6 > 0 with tanh @ = e=2°¢. Then the matriz P € My (R) decomposes
in the form

V|3

P = 30,0, = [2 sinh(2¢ ]

n n
H H ﬂeza a+1 9X1+ +Xn)

4.2 On spin representations of rotations
Consider the following 2n matrices in Man (C):
Fog = X1 Xo- - Xo1Ye and Dy = X1 X X1 Z,. (4.2.1)
where a = 1,--- ,n. From Lemma 4.1.3 check that X,,Y,, Z, fulfill the relations
I a# f: then [X,, Xg] = [Ya,Ys] = [Za, Z5] =0 and [X,, Ys] = [Xa, Zs] = [Ya, Zs] = 0.

II. For fixed a € {1,--- ,n} the matrices Z,, Y,, Z, are involutive and anti-commute, i.e. it
holds Z2 = Y2 = 22 =1 and

{Xonya} = XoYo + Yo Xo = {YomZoe} = {XomZOc} =0

Proposition 4.2.1. The matrices I',, € Maon(C) with v = 1,--- 2n fullfil

r,r,+T,I, =260,,1, v =1+ 2n. (4.2.2)
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Proof. We only check one case. Let u < v, then
F2I/F2u — Xl c XV,1YVX1 t Xﬂflyu - X'uXHJrl et Xl/*].Yl/Y;,L
FQ,uFQV = Xl T X,U,—ly;l,Xl T XV—IYV = YVYMXM T Xu—l = _FQV]-—‘Q[A'

In the case where v =  the right hand sides of both of the above equations give the identity
since Y2 = 1. [

Consider any system {I', : v =1,---,2n} C Man(C) of matrices that fullfil
L, +T,0, =25, v,u=1-- 2n. (4.2.3)
In the following we write
e O(m) := group of orthogonal elements in M,,(R), i.e w € O(m) <= ww' = I.
e GL(C,m) := group of invertible matrices in M,(C).
Lemma 4.2.2. Let S € GL(C,2"), then it holds

(i) The system {IS := ST,87' : v = 1,---,2n} fulfills the anti-commutator relations
(4.2.3).

(i) There is T € GL(C,2") such that TT,T~! = T, forv=1,---,2n.
(iti) Let w = (wu) € O(2n) and define

2n
r, ::Zwuﬂ’g, (p=1,---,2n).
=1

Then the system {I', : p=1,---,2n} fulfills the anti-commutator relations (4.2.3).
Proof. (Homework 7) (i) is an easy calculations and we omit the proof of (ii). The statement
(iii) is obtained as follows:

2n
DL, + T, = 3w Tl + T3 }

i0=1

2n
=2 Z Wuﬁwuiéi,él

i =1
2n

=2 wuwpel = 26,1,

=1
where in the last equality we have used the orthogonality of w = (w,,,) € O(2"). O

Let w = (wy) € O(2n) and I', be the matrices defined in (4.2.1). By combining Lemma 4.2.2
(ii) and (iii) we conclude that there is S(w) € GL(C, 2") with

ZanMFg = S(w)l,S(w)™". (4.2.4)
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Definition 4.2.3. If w = (w,,) € O(2n) and S(w) € O(2") are related via (4.2.4), then we
call S(w) a spin representation of the “rotation” w. In this case we write w <> S(w).

Remark 4.2.4. Let wy,ws € O(2n) with spin representations S(w;) and S(ws). Then
S((Uﬂx)g) = S(w1)5<w2)

is a spin representation of wjws. In particular, if w; and w, are commuting rotations, then the
spin representations S(w;) and S(wy) commute, as well.

Now we specialize the previous observation to rotations in the a-g-plane
w(aplf) € O@2n),  a#Be{l,--- 2n}.

with angular § € [0, 27) where w(/3|0) acts on the standard basis [e; := (0;¢)}_; : i =1,---,2n]
of R?" as
w(ap|)e; = e, if i ¢ {o, 5}
w(af|f)eq = eqcosl + egsinb
w(af|f)es = —eqsinb + eg cos .
We can also admit “complex angles” 6 in the definition of w(uv|d). Let 0,6, € C, then
(i) w(uv|0y)w(ur|dy) = w(uv|dy + 65). In particular: w(uv|0)= = w(uv| —0),
(i) w(pw|fh) = wlvp| —6).
We calculate a spin representation of w(a/f3|6):

Lemma 4.2.5. With a # € {1,---,2n} it holds

w(apBlh) «— e~ 2lels,
Proof. (Homework 7) Since aw # 8 we have from the anti-commutator relation
2
(Talg)” =Tolglaly = —I2T% = —1

and therefore 9
e 27T = cos 3 ['[gsin—. (4.2.5)

Clearly, e=27Ts has the inverse e2"*Ts. If A ¢ {«, 8} then [['y,e27"%] = 0 and therefore
e‘grarﬁlﬂ»egrapﬁ =T,.

Moreover, assume that A = «, then it follows from (4.2.5) that

0 0 0 0
e 2TelsT ealels — (cos 5 ~ Fal'gsin 5) I, <cos 5+ Talssin E)

0 0 0 0
= (cos 3~ I',I'ssin 5) (Fa cos 3 + I'gsin 5)
0 0 0 0
=T, (cos® < —sin?= | + 2I'g cos — sin —
2 2 2 2

=Tqcost +T'gsind.
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Here we have used I's = —I',I'gl'. If A = 3, then the relation
e~ 2lels Fﬂegrarﬁ = —T'ysinf +T'gcosd

is obtained by a similar calculation. O

The importance of the previous lemma lies in the fact the eigenvalues of w(«f|6) and its

spin representation e=50als are related. Clearly the set of eigenvalues of w(a/5|0) are given by

{1,e7% €%} where the eigenvalue 1 has the multiplicity 2n — 2.

Lemma 4.2.6. The spin representation e~ 2°Ts of w(afB|A) has the eigenvalues {e'%,e~2},
Fach eigenvalue has the multiplicity 271,

Proof. If we replace I'; in the definition (4.2.4) of S(w) by another family ', = LT, of matri-
ces that fulfill the anti-commutator relation (cf. Lemma 4.2.2, (ii)), then a spin representation
S(w) transforms to a spin representation S(w) = L™15(w)L with respect to I'y. In particular,
the eigenvalues of S(w) and S(w) are the same.

We pass to a new system f@ of matrices obeying the anti-commutator relations by exchanging
the role of X, Y and Z in the definition (4.2.1) of T',.

Yy — X —7—Y

Without restriction we choose fa = /1 X9 and fg = 71Y5. Then it follows

Therefore it holds
= = 0 ~ ~ 0
e 27eTs = cog = — I I'gsin = (4.2.6)
2 2
e7is 0
:[®< i9>®[®...®[.
0 e

It follows that e‘gf‘lfﬂ has the matrix elements

n
_OF T —i2
<(317 T 73n)|6 2Farﬁ|(3/17 U 7‘9;1>> =e 2% Héskvsk'
k=1

This means that e~2Le1s is a diagonal matrix with eigenvalues e~ (if s5 = 1) and eigenvalues
eis (if s5 = —1), respectively, and each of multiplicity 2"~ 1. ]
Assume that a,b,c,d € {1,--- ,2n} are pairwise distinct. Then the matrices I',I', and T'.I'y

commute Hence the matrices
ﬁp T ‘Llp Ty
e2 e and e2 <9 01,0, € C

commute and can be diagonalized simultaneously. It follows from Lemma 4.2.6 that:
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Corollary 4.2.7. Let 7 be a permutation of {1,---,2n} and fix 0,--- ,0, € C, then the 2"

eigenvalues of
];[ e 2 Prgj1Tmgy — exp {—gj Z Fﬂ—zjlrﬂzj} € Mon ((C) (427)

j=1

are given by ez (£O1202200) here the sings + and — are chosen independently. Note that

(4.2.7) is the spin representation of a product of commuting rotations.

Remark 4.2.8. The set of eigenvalues must be invariant under all possible reflections 6; — —0;
(which can be seen as a change of the set {I', } to another one with the same anti-commutation
relation). Therefore, all possible combinations of signs must appear in the set 3 (FO1E02EE0n)

of eigenvalues.

4.3 The Onsager solution for B =0

We calculate the Onsager solution for the Ising model when B = 0, (i.e. no exterior magnetic
field). Recall that
Q:(B,T) = Trace P"

and according to Proposition 4.1.8 we in the case where B = 0 that ()3 = [ and therefore

=Q
% n ,—J\;
P frd Q2Q1 = |:2 Slnh(zeﬂ ] H BeZaZ, a+1 0(X1+ +Xn) c R(QTL)
a=1 -
=Q2

1
lim Nlog Qr(B,T) = lim —log Apax(n), (N =n?), (4.3.1)

N—oo n—oo M

where Apax(n) denotes the largest eigenvalue of P. Let V := @g@l and assume that V' has only
positive eigenvalues. Let A = A(n) be the largest eigenvalue of V. Then we have

n

A () = [2 sinh(Zeﬁ)] " A(n)

and it follows from (4.3.1) that

lim Nlog Q:(0,7) = ;log [2sinh(2¢f)] + lim llogA(n). (4.3.2)

N—oo n—oo 1,

Next aim: Justify the above assumptions and to calculate the limits on both sides of (4.3.2).

First, we rewrite V and @); for j = 1,2: for a = 1,--- ,n one has
I‘2041—‘20471 = X1X2 te Xa,1YQX1X2 tee onflza = YaZa = Z.)(oz'

Therefore .

Q, = PXat+Xn) H 0Xa _ H e~ 0720201 (4.3.3)

a=1
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and similarly
P2a+lr2a - Xl e XaZa+1X1 T Xa—lya - XaYaZa—i-l - Z.ZaZa—&-l
F1]:\2n = Zle te anlyn = Zl Yan Xl to anan = _ZZIZn(Xl te Xn)
——
——iZn
If we define
U .= X1X2 s Xn € MQn((C),

with U? = I then we have i\ I'5,U = Z,Z; and find the following representation of Qo from
these relations 2

n—1 n—1
@2 — PeZnn [H eﬁGZaZa+1] — Bl T2 U H e~ Bl 2041120 (4.3.4)
a=1 a=1
Lemma 4.3.1. The matrix V = ég@l can be expressed in the form
n—1 n
V= eiﬁd‘ﬂ_‘an [H ei,@erza+1F2a] [H ei9F2aF2a_1] : (435)
a=1 a=1

where Ty, were defined in (4.2.1). Here 0 > 0 is the solution of the equation tanh @ = e=2.

We want to get rid of the matrix U which appears in the exponent of the first factor of V
and just work with products of spin representation. In the next step we further decompose V.

First we collect some properties of the matrix U:
Lemma 4.3.2. The matrix U = X5 --- X,, € Man(C) satisfies:
HDU=X0X® - ®@X =TTy Ty,

(ii) U has the eigenvalues +1 each of multiplicity 2",
(iii) U2 =1, I-U)U=~I-U) and (I +U)U =1+ U,
)

)

(iv) Ifa # b e {1,---2n}, then I',I', commutes with U.

(v) Let w be an orthogonal transformation with spin representation S(w), then we have
S(w)US(w)™! = det(w) U.

Proof. The first equation in (i) follows from the definition of X, and Lemma 4.1.3, the second
equation is a consequence of

Note that by (i) the matrix Z ® --- ® Z is a diagonal form of U and Z € My(C) has the
eigenvalues +£1. The equations in (iii) immediately follow from the definition of U and (iv) is
obtained as follows from (i):
L0, U =a"T, 0 -+ Ty,
= i"(—1)"" 0,0y - - Ty, T
= i"(=1)"20) -+ T L0y = UL T,

3Recall that all matrices e#¢Z«Za+1 are diagonal and hence commute
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Consider the factor e#I1T2:U wwhich appears in the representation (4.3.5) of V. Lemma

4.3.2, (iv) implies (iI'1T,U)* = —U?*(T'1T'3,)? = I which means that
ePilnl — cogh(Be) + iUT Ty, sinh(Be).
From the relations in Lemma 4.3.2, (iii) we see that

, 1 1
BTl _ 5(_] +U)+ 5(_f — U)| [ cosh(Be) + il T, sinh(Be)]

— 1(I +U) [cosh(ﬁe) + Dy, sinh(ﬁe)} +

2
1
+ 5([ — U) [ cosh(Be) — il Ty, sinh(fBe)]
1 . 1 ‘
= 5([ + U>6265F1F2n + 5([ o U)e—zeﬁl"ll"zn.

If we plug this result into the representation of V' in Lemma 4.3.1 then we obtain
1 L1 _

where V* € Mya(C) are defined by

n—1 n
Vﬂ: — 6ii56F1F2n [H 6_i65r2a+lr2a] [H €_i9F2aF2a1] (438)

a=1 a=1

and tanh # = e~2%. Note that the matrices V* have the form of a product of spin representation
from the last section and therefore they are easier to handle than V.

Lemma 4.3.3. The matrices U,V and V™~ pairwise commute. In particular, they can be
diagonalized simultaneously.

Proof. First we show that U commutes with V* and V. Let a # b € {1,---,2n} then we see
from Lemma 4.3.2, (iv) that T',)T', and U commute. Now [U,V*t] = [U, V] = 0 follows from
the form of V*. Note that by a similar reason U also commutes with V. Since (I + U)/2 and
(I —U)/2 are projection onto complementary spaces we find:

VY — i(u U)WV(I - U)WV = iV(H DI -V =0,

Vvt = %(I WUV = }Lvu )T+ U)WV =0,

In particular, it follows that V* and V'~ commute. O

Consider the orthogonal matrix g € M. (C) defined by

g 1 -1 1 -1 g
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Then gUg is diagonal, more precisely:
GUg ' =g(X@X®  ®X)g'=2Z0Z0 - QRZ=71ZyZy, (4.3.9)

:((1) _01)®...®((1] _01)

Now we can choose an orthogonal matrix o € Man(R) that permutes all eigenvalues “+17 of
gUg™ ! to the upper left corner and all eigenvalues “—1” to the lower right corner. If we define

R :=o0g and U := RUR™',
then R € Man(C) is orthogonal and

(0g)U(0og)™ = RUR™' = U = ( 12671 _[Sn_l > . (4.3.10)

We put V¥ = RVER™! and conjugate the decomposition (4.3.7) by R:
-1 -~ 1 -
RVR ' =V = 5(I + U)WVt + 5(I ~U)V~.

It follows from Lemma 4.3.3 that U , V* and V- are pairwise commuting;:
proo (Ve ) g [ Vo Ve )
Vi —Vah —Vor —Vah

We find that V;5 = V;t = 0 and (by the analogous calculation for V=) we have

VE= Vi 0 with  V;F Vb € Mgt (C)
- 0 Vv2j2: ) 11> Y22 2n— .

Therefore we find that

1 -~ I 0 vVioo VEioo
—(I + = R I 4.3.11
S+ 0V (oo)(o Vﬁ) <o NE (4.3.11)

i<1_ﬁ)v_:(8 ?><v5; ?25>:<8 ‘722> 43.12)

which shows that V has the following matrix representation:
~ 1 ~ o~ 1 -~ VAT
V=-(I+U)Vr+-(I-U)V" = . :
S+ D)WV + (1= D) ( s
We are aiming to find the eigenvalues of V. We have

{eigenvalues of V} = {eigenvalues of l7} = {eigenvalues of VJ} U {eigenvalues of l72§}

Moreover, we know
{eigenvalues of l7ﬁ} C { eigenvalues of l7+} = {eigenvalues of V+}
{eigenvalues of l725} C { eigenvalues of l7_} = {cigenvalues of V™ }.

In other words:



50 CHAPTER 4. ISING MODEL IN 2D

Lemma 4.3.4. The union of the eigenvalues of V't and V'~ contains all eigenvalues of V.

In the next step we calculate the eigenvalues of V' and V~. Consider the matrices

n—1 n
OF .= w(1, 2n| + 2ife) [H w(2a+1,2a] — 2iBe) [H w(2a,2a — 1| = 2i0) | € My,(C).
a=1 a=1
(4.3.13)
Then V* = S(OF) is a “spin representation” of Q. * Define
A= [Jw(2a,2a — 1] — i) € My, (C). (4.3.14)
a=1
Note that w(uv|0;)w(ur|by) = w(pv|d; + 6;) and w(ur|d)= = w(u, v| — 0). Therefore:
[H w(2a,2a — 1] = 2i0) | A7 = A, (4.3.15)
a=1

The eigenvalues of QF coincide with the eigenvalues of

wt = AQTAT!
n—1
= Aw(1,2n| £ 2ife) [H w(2a, 2a + 1]2iPe) | A,
a=1
N ~

where in the second equation we have used w(uv|d) = w(vu| — ). We express A and x* in
matrix form. Consider J, K € My(C) defined by:

o coshf  isinh@ o cosh(2f¢)  isinh(20¢)
Ji= ( —isinh@ cosh@ ) ,and K= ( —isinh(20¢) cosh(28e) |-

If n =1 we have w(2,1]if) = J and for general n € N the above definition show:

J 0
0 J
A=| . € My, (C),  where 0 e My(C),
J
cosh(268e) 0 ... 0 =isinh(2fe)
0 0
X" = : K : € My, (C), where
0
Fisinh(28e) 0 ... 0  cosh(2p¢)
K 0
0 K
K:= . c MQn_Q(C)
K

4Recall that w(puv|f) is the rotation in the y — v-plane around the angle 6.
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Lemma 4.3.5. The matriz w™ = AxTA has the form
A B 00 .. 0 FB
B A B 0 0 0
0 B* A B :
wt = : : € My, (C), (4.3.16)
0 0 A B
FB 0 B* A

where the matrices A, B € My(C) are given by

cosh(20) —isinh(26)
A : = cosh(20¢)

isinh(26)  cosh(20)

—1sinh(20) —isinh®6
B : = sinh(20¢)
icosh’@  —1sinh(26)
Moreover, write B* = B for the Hermitian adjoint matrixz to B.

Proof. (Homework 8) From the above matrix representation one easily sees that x* has the
form

A B 0O .. 0 FB
B A B 0 0 0
0 B* A B :
Xi = : S MZTL(C)a
00 QB
FB 0 B A
where A, B € M,(C) are defined by
) cosh(2f¢) 0 ) 0 0
A= , and B :=
0 cosh(20e¢) isinh(20¢) 0

Now the assertion follows from JAJ = A and JB.J = B together with J* = J. m

We use the matrix representation of w* to determine the eigenvalues and make the following
Ansatz for an eigenvector 1 of w™:

ZU

22u

Y= : € C*™,  where u:(u1>€C2, z € C.
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It follows from Lemma 4.3.5 that the equation w*1i) = A\ is equivalent to the system of
equations:

b (ZA +2°B T Z”B*)u = z\u
(B): CEj: (FA+ 2B+ 277'BYu =zd, (j=2,---,n—1)
E,: (z"AF 2B+ 2""'B*)u = 2" \u.

Note that the equations E; for j =2,--- ,n — 1 and z # 0 all are equivalent to
(A+ 2B+ z7'B*)u = \u.
Hence the system (E) of equations is equivalent to the three equations:
(A+2zBFz""'B*)u = \u

(E): S (A+2B+2"'B*)u = \u
(A T "B+ Z_lB*)u = \u.

We look for solutions among all z € C with 2" = %1 where we choose the —-sign for w™ and
the +-sign for w™. Then (E) reduces to a single equation, namely

(A + 2B+ Z’IB*)u = \u.

Note that the matrix A + 2B + z7!B* is self-adjoint if |z| = 1 and therefore has only real
eigenvalues.

The case of w': The n solutions to the equation 2" = —1 are given by

itk

S = {zk::en : k:1,3,---,2n—1}.

Aset {Agy—11, 912 : L =1,---  n} of 2n eigenvalues for w™ can be determined by the solutions
of the n equations

(A+2B+ %B*)u = N, (4.3.17)
where k =1,3,--- ,2n—1 and j =1, 2. '
Lemma 4.3.6. With the previous notation we have for k=1,3,--- ,2n — 1:
(i) det (A+ 2B+ z,'B*) =1,
(i) C(8,€) > Trace(A + 2B + z; ' B*) > 0, where C(B,¢€) is independent of k and n.
In particular, the eigenvalues of A1 and A2 of A+ 2, B + zk’lB* are positive and A\, = A,;é

Proof. (Homework 08)
(i): From the explicit form of A and B in Lemma 4.3.5 one checks that for all k:

-1 2
S sinh(25¢) sinh(?@)}

det (A+ z,B + 2, ' B*) = {cosh(Qﬁe) cosh(20) —
— (Cosh(2ﬂe) sinh(26) — z;, sinh(28¢) sinh®  — 2, ' sinh(2/3¢) cosh? 9) X

X (cosh(2ﬁ<—:) sinh(26) — z; sinh(283¢) cosh® @ — 2, ' sinh(20¢) sinh2(9)> =1
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Moreover,
Trace(A + 2B + z;, ' B*) = 2 cosh(20¢€) cosh(26) — 2 cos (%) sinh(2f¢) sinh(260)
> 2 cosh(28e — 20) > 0.

This shows the second inequality in (ii). The first one follows from the uniform estimate
| cos(ZE)| < 1. O

Using the last lemma we define for £ =1,3,--- ,2n — 1:
A = e* and  Ago:=e . (v >0).
One obtains
cosh(vy) = = %{e””“ + 6_7’“} (4.3.18)

= %Trace(A + 2B + z,;lB*)
= cosh(25¢) cosh(260) — cos (%k) sinh(2f¢) sinh(26).
Lemma 4.3.7. The eigenvalues E+ of w™ are given by:
E@+:{éﬁk:k:1;x~-@n—1cmdw;>owsdmwan@31&}. (4.3.19)

In particular, w* can be expressed as a product of n commuting rotations.

The case w™: The n solutions to the equation 2 = 1 are given by

itk

Si={z=en : k=0,2,---,2n—2}.

Now we determine eigenvalues {Ags1, Aog2 1 € =0,---,n — 1} of w™ as the solutions of the n

equations
(A + ZkB + Zk_lB*) u = )\k,ju

where £k = 0,2,--- ,2n — 2 and j = 1,2. In the same way as before we find A\;; = €" and
k2 = e ¥ with 4, > 0 which is a solution of (4.3.18).

Lemma 4.3.8. The eigenvalues E - of w™ are given by:
E.,-= {ej”’“ k=0,2,--,2n —2 and v, > 0 is solution of (4.3.18)}. (4.3.20)

In particular, w™ can be expressed as a product of n commuting rotations.
Now we observe some relations between these eigenvalues:

Lemma 4.3.9. For k=0,---,2n let v > 0 be the solution of (4.3.18), then it holds

(1) v = Yan—k;
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(i) 0<v<m < <M

Proof. Property (i) follows from cos(mk/n) = cos(m(2n — k)/n). In order to see (ii) we take the
derivative on both sides of (4.3.18) with respect to k:

O sin mk\ 7 sinh(25¢) sinh(26)
ok n n sinh

Since we assume that ~, > 0 it follows that the right hand side is positive if 0 < k < n. O

Since VE = S(Q%) and the matrix QF has the same eigenvalues as w® = AQ*A~! it follows
from Corollary 4.2.7 together with (4.3.19) and (4.3.20)

Proposition 4.3.10. The eigenvalues of V* are given by

eigenvalues of V' : = {e%(i“i%i'“iwn‘l) : vy solution of (4.3.18) (4.3.21)

)
}

eigenvalues of V™~ : = {e%(iwiwi'"iw"”) : v solution of (4.3.18) ¢. (4.3.22)

All eigenvalues grow at most of order e as n — 0o. °

Proof. The second statement follows from the trace estimate from above in Lemma 4.3.6, (ii)
since

|[£7 £t Eyma] <y 4+ + -+ Y2

< Z log Agi—1,1
=1

n
< Z A2i—11
=1

< ZTrace(A—i— 2B+ zle*) <n-C(ep).

=1
The right hand side growth linearly in n € N. O

We return to the task of studying the eigenvalues of V. Recall that
{ eigenvalues of V} C {eigenvalues of V*} U { eigenvalues of V’}.

Moreover, with the notation in (4.3.11) and (4.3.12) we had

1 e (Vi 0 1 - (90
U+ 0V _( Vo) md U=V =( g )

5This last statement was necessary to justify the previous relation

1
Jim 1ogQr(B,T) = lim —log Amax (), N =n?
—00

n—o00 N,
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Let R = 0g € Man(C) be the orthogonal matrix defined in (4.3.10) and consider the following
system of anti-commuting matrices

r.— {fy — RT,R :v=1,.-. ,2n}.

Let w € My, (R) be orthogonal, then we write S(w) for the spin representation of w with respect
to the system I'. If w = w(«af|f), then we have:

S(w(aB|f)) = e~ 5Tl

Note that for j =1,--- n:

Tj-1Ta; = 0gl'y;_1Ta;(09) ™" = (09)Z;Y;(0g) ™" (4.3.23)
:Z'OQ{[®“~®<_01 _01>®~~-®Ilgol (4.3.24)
= —ioZ;jo . (4.3.25)

Lemma 4.3.11. There are orthogonal matrices Ty € My, (R) such that

T T = w(1, 2liv1 )w (3, 4)iy3) - - - w(2n — 1, 2n]iven—1), (4.3.26)
T QT =w(1,2]iv)w(3, 4|ive) - - w(2n — 1,2n]ive,_2). (4.3.27)
Proof. Follows from Lemma 4.3.7 and Lemma 4.3.8. O]

We now shown that spin representations S(7) bring (I — U)V* into diagonal form. Since
V* and V™ are treated in the same way, we only give the arguments in the case of V. We
know from Lemma 4.3.2, (v) that

S(THUS(Ty) ™" = det(T)U = +U.

With V't = RVTR™! = RS(QM)R™ = S(Q") it follows that
~ 1 SN ~ 1 ~ ~ o~
S(T) {5(1 + U)v+} S(T) " = SU £ D)STHVHS(T,) ! (4.3.28)
1, -~ .
— S+ U)S<T+Q+T+1> — (%),

Since by Lemma 4.3.11 conjugation by T, transforms Q% to a product of commuting rotations
we obtain from Lemma 4.2.5 that

1 R Y2i—1 5 = 1 n 1
(*) — §(I:|: U)Heil 22 1F2j*11—‘2j — 50([ :l: ZlZQ . e ZTL) {H eQ'YleZj} 0*1 — VD

j=1

=1
Here we have used (4.3.9) and (4.3.23). The matrices Vp and o~ 'Vpo b are diagonal and so we

have diagonalized N
Lo e — (Vi 0
§(I+U)V _< R

6the matrix o~ 1Vpo arises from Vp by permuting the elements in the diagonal
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Clearly the eigenvalues of \N/f{ coincide with the non-zero eigenvalues of
1 I
0" Wpo = S U & 212y 2,) H1 e~ 32145 (4.3.29)
j=

Let (s1,---,8,) be an eigenvector of the right hand side of (4.3.29) and assume that the plus-
sign appears in front of the product Z;Z, - - - Z,. Then the corresponding eigenvalue of 0=Vpo
is non-zero if the equation

Zj(Sl, e 7877,) =—1 (4330)

only holds for an even number of j € {1,--- ,n}. If the minus sign appears in front of
Z1Zy -+ + Zy, then the eigenvalues is non-zero if (4.3.30) only holds for an odd number of j:

Corollary 4.3.12. The largest eigenvalue A, (A) of A € {Vi1,Viy} fulfills

17 1 e ~_ l .
An(‘/l—il_) = e§(i71+73+ +Y2n-1) and An(V22) _ 62(:‘:70-&-72-&- +’an72)‘

Proof. We only treat A = 1714{ Then the lemma directly follows from the last observation and

Lemma 4.3.9 which implies that v, = min{yy;_1 j = 1,---n}. O
Since we have the asymptotic equalities
et S S R - TG { e ¢ St I
lim = lim =l
=Y tYe+tyat-o o Yttt
lim = lim =:/_,

and since ¢, > (_ (again by Lemma 4.3.9) we finally obtain that

1 .1
L= lim —logA(n) = lim ——(y +73+ - +7n01),
n—oo N n—oo 2N

where A(n) denotes the largest eigenvalue of V' = Q2Q);.
The limit lim,,_, % log A(n)

Recall that 1 1
Jim 1o Q(0,7) = 7 log [2sinh(2¢8)] + L.

Next step: We determine an integral representation of L.

We define a function v : [0, 27] — R as the positive solution of the equation
cosh y(z) = cosh(2p¢) cosh(26) — cos(z) sinh(2¢) sinh(260). (4.3.31)
In particular it follows from the definition of 7, in (4.3.18) that
7r
Y (—(2]€ — 1)) = V2k—1-
n

Approximation of the integral of v(z) by Riemann sums gives the relation
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Hence we can express the above limit £ in form of an integral:

1 2m 1 ™
L / ~v(z)dx v(z)d.
0

:E :%0

In the last equality we have used v(x) = v(27 — x) for x € [0, 7].
Remove the parameter 6 from the definition of y(z):
Recall that # > 0 was defined through the relation tanh # = e~2¢ which shows that

12 g
sinh(2Be) €2 — =28 | — —4Pc
2tanh 0

- 1 — tanh?6

= 2sinh 6 cosh # = sinh(26),
where we use (1 — tanh? )~ = cosh? and from (4.3.33):

1
— inh2 —
cosh(20) = 4/sinh”(20) + 1 = \/sinh2(2ﬁe) +1

B 1 5 _ cosh(28e)
— m\/l + sinh?(2f¢) = Smh(250) coth(20).

We insert the identities (4.3.33) and (4.3.34) into the equation (4.3.31):

coshy(x) = cosh(20¢) coth(28¢) — cos .
In the following calculation we need the identity 7

Lemma 4.3.13. Let z € R, then:

1 ™
|z| = —/ log (2cosh z — 2 cost) dt.
T Jo

Combining (4.3.35) and (4.3.36) leads to an integral representation of v(z):

1 ™
v(z) = —/ log (2 coshy(x) — 2 cos t) dt
0

™

1 T
= —/ log (2 cosh(2f¢) coth(20¢) — 2 cos & — 2 cos t> dt.
0

™

From the last identity and (4.3.32) we obtain

1 T ™
L= —/ / log (2 cosh(25¢) coth(28¢) — 2(cos x + cos t)) dtdzx.
22 Jo Jo

"this identity follows immediately from an integral formula in [3], p. 942;

™ /a2 — b2
/ log(a £ bcos x)dx = 7log <a—|—;b> , (a > D).
0
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(4.3.32)

(4.3.33)

(4.3.34)

(4.3.35)

(4.3.36)



58 CHAPTER 4. ISING MODEL IN 2D

The above integration is taken over the square [0, 7] x [0, 7] however, we can as well integrate

over the dotted rectangle in the picture in Fzxercise 30, Homework assignment 08 without

changing the value of the integral. In fact, consider the two maps F}, Fb : R? — R? defined by
Fy(x,t) = (t,—x)" and Fy(x,t) .= (2 —t, )",

Then F; maps the triangles D and F' to complementary parts of the triangle A (notation

with respect to the picture in Exercise 30) and both transformation leave the above integrand

unchanged because of

cos(x) + cos(t) = cos(t) 4 cos(—x) = cos(2m — t) + cos(z).

The square [0, 7] x [0, 7] is mapped to the dotted rectangle R by the linear transformation

1 -1
A= ( 2 ) , with det A =1.

1
L3

We put D := cosh(28¢) coth(20¢), then it follows from the transformation rule of the integral
and the above observation that

1
L= 2772 log [QD — 2(cos x + cos t)] dtdx

t
=53 / / log [2D — 2cos (x — 5) — 2cos (x+ 2)} dtdx
= ﬁ/o /0 log l2D — 4 cos(z) cos (5)} dtdzx.

Next, we decompose the integrand as

log {QD ~ dcos(x) cos (%)} ~Jog {2 cos (é)} +log

and then use the identity (4.3.36) again:

1 [ D D

—/ log | —~+ — 2cos(z) | do = cosh™ | ————

T Jo cos (5) 2 cosh (5)
Thus we obtain

1 (7 t 1 (7 D
— log |2 - — h! | ———~ .
L= o og{ cos (2)} dt + o oS (2(:osh (%)> dt

Applying the relation cosh™ 2 = log(z + v/22 4 1) and using the abbreviation

t
COS (2

D
—— — 2cos(z
) ()]

2 281Hh(2ﬁ€) 6266 _ 6—2,35
R === —
D cosh®(23¢) (2B 4 o=2Be)2




we can therefore write
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1 ™
L= 7 /0 log

t
D + \/D2 + 4 cos? (§>] dt
1

== /2 log [D(l + V1 — k2 cos? 3)]d$
0

™

1 ™
— [ log [D(l + V1 — K2 sin? s)] ds

T or 0
1 2 cosh?(20¢) I
g (2 209) L Mgl (14 Vi— i) ds.
5 0g Sinh(25¢) +27r/0 0g2 + K*sIn® s | ds
=2D

Lemma 4.3.14. The limit L has the integral representation
1 2 cosh?(20¢) 1 [ 1
o= Log (BR[0T s as
28 iz /T 27/0 osn Ut oSS ) 4s

where
e?ﬁs o 6—2,36

(62[36 + e—Qﬂe)Q '

k=4

Proof. Homework.

We summarize our results

Theorem 4.3.15. Let T > 0 and = 1/(kT'), then we have the limit
1 1 .
AP_I)I;O N log Q(0,T) = 3 log [2sinh(2¢3)] + £

= log [2 cosh(25e)} - %/0 log% <1 + V1 — Kk2sin? 3> ds,

where
€2ﬁe o 6—256

(62ﬂe + 6—256)2 '

k=4

4.4 Thermodynamical functions and
physical interpretation

59

In order to write down the thermodynamical functions we use the notion of elliptic integrals.

Definition 4.4.1. The complete elliptic integral K(k) of the first kind and F; (k) of the second

type are defined by:

z d 1 ("d
K(k) = /2 i = —/ —S, where A :=1/1— k2sin’s
0 V1—r2sin’s 2Jo A

Ey(k) = /2 V1 — K2sin® s ds.
0
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Lemma 4.4.2. One has the following asymptotic behaviour if k — 1:
(i) lim,_1{K1(k) — log \/%7} =0,
(i) lim,_y; E1(k) =1,
Proof. Homework 09. O
Together they fullfil the differential equation
dK, () = Ei(k) Kl(lﬁ)'
drK k(1 — K?) K

From Theorem 4.3.15 and in the case where B = 0 we obtain the thermodynamical functions:

(4.4.1)

Helmholtz free energy per spin:

0(0.7) = = lim 7 10Qs(0,7)

N—oo

T 1
log 3 <1 + V1 — K2sin? 3) ds.

= B llog (2 cosh(25€)> -

Internal energy per spin: is obtained by
d
% [501(07 T)} (4.4.2)
k dk [T sin’s
= —2etanh(2 —— ——d
ctanh(2f6) + 5 - 73 . A"

where A := \/1 — k2sin®s. We can rewrite the integral on the right hand side. Consider the

relation

K2 sin® s 1—+x

2m8 Jy

U](O, T) =

2 2

25in? s 1

=— +
(1+A)A (14 V1 —r2sin?)V1—r2sin®s (14 /1 —k2sin?s)y/1 — k2sin’s
A1
1+A 1+A A A

Therefore we have

T sin’s T 1 [Tds T 2
— ds=——+ — —=—— 4+ =K )
/0 (1+A)A i K2 * K2 /0 A K2 * K2 1(#)

Here we have used the notation of elliptic integrals. We also calculate the expression ™ 1dk /d3:
1dk  cosh?(2B¢) d [ sinh(28¢)
kdB B sinh(28¢) dj (cosh2(266)

Plugging this relations into (4.4.2) gives

) = 2¢ coth(20¢) — 4etanh(2fe).

ur(0,T) = —2etanh(2f¢) + % <%Z—g> [—7 + 2K (k)]

= —2ctanh(2f¢) + [ecoth(2f¢) — 2¢ tanh(2fe) {—1 + %Kl(m)]
_ ecoth(28¢) + %Kl(m) [ coth(28) — 2 tanh(250)|

= —ecoth(23¢) [1 - %Kl(/{) + %tanhQ(Zﬁe)Kl(ﬁ)].
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If we define the function

' = K'(ef) := 2tanh?(2f¢) — 1,
then we have

Lemma 4.4.3. The inner energy per spin is given by
2
ur(0,7) = —ecoth(2f¢) |1 + /@’—Kl(n)] : (4.4.3)
7r

where
_ 2sinh(23¢)
~ cosh?(23)

The functions k and k" are related by

and K = K'(ef) := 2tanh?®(2B¢) — 1.

K2+ K7 =1 (4.4.4)
Moreover, ur(0,T) considered as a function of k does not extend analytically around k = 1.
Proof. (4.4.4) follows by a direct calculation. We show that
F(k) = K'Ky(k) = V1 — k2K, (k)
is not analytic in k = 1. According to the DGL (4.4.1) we have

Ei(k) V1= kKKi(k)

K{(k)V1— kK2 = )
1(%) — -
Therefore
K
F'(k) = ——=Ki(k) + K{(k)V1 — k?
( ) m 1( ) 1( )
K Ei (k) V1— k2K (K)
- K+ -
V1 — K2 KV 1 — K2 K
Now it follows from the asymptotic behaviour of K; (k) ~ log(4/v1 — k%) and Ej(k) ~ 1 as
x — 1 in Lemma 4.4.2 that |F'(k)| — oo as K — 1. O

We call the temperature 7. corresponding to k(f5.€) = 1 where 5. = 1/(kT,) the critical
temperature. This means that x'(f.€) = 0, or equivalently

2 1
tanh(2B.¢) = tanhk—;c -5 and ];T — 0, 4406868 - - - . (4.4.5)
In particular, it holds
12
9 _ sinh®(2f3c¢) 5
cosh (2666) = m = 2\/COSh (2&66) —1

which gives

cosh(26.€) = V2,
sinh(25.€) = tanh(25¢) cosh(26¢) = 1.
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Heat capacity per spin: By using (4.4.3) and (4.4.1) one obtains

B
c1(0,T) = %(O,T)

— 2;(,86 cothQ(QBe))2 [QKl(/‘@) —2E,(k) — (1 = &) (g - KIKl(K)) }

The “heat capacity per spin” has a logarithmic singularity as |T'— T,.| — 0:

T -1

cr(0,T) ~ C(e) log T

as T —T,.

Magnetization per spin: In order to calculate m;(0,7") we need an expression for the inner
energy a;(B,T) for B # 0. Since we have assumed B = 0 in our calculations we cannot use
the above formulas and present an expression of the magnetization/spin without a proof (for
details see [9]):

mi(B,T) = —55 (56”(3 ’ T>) T aeiasetets e o

B=0
V1—22 ’

Here we put z = e~27¢.
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The renormalization group

(Robert Helling)
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Chapter 6

Ideal gases

Within the mathematical framework of the CCR and CAR algebras we study thermodynamical
models describing non-interacting particles in some bounded set A C R™. These are the so-called
free gases. The simplifying assumption of non-interacting particles is a good approximation for
a gas at high temperature and low pressure where the intermolecular forces become negligible.

6.1 The ideal Fermi gas

Let (b, (-,-)) be a “one-particle-Hilbert-space” over C and recall that the Fermi-Fock space was
defined by

§-(h) := P-3().

Here we have:
® 3(h) =D,50h" where " =h®@--- @ bh with n € N and h? = C. (Fock space over b).
e P_= projection onto the “anti-symmetric part” of ().

Let H be a self-adjoint Hamiltonian operator on h with second quantization dI'(H) on §(h_)

dl'(H) := @ H, = self-adjoint closure, Hy=0,

n>0

Ho(P-(fi@ @) =P (Y fiohe oHfig- o).
=1

Put A = 1 such that the Schrédinger equation for an arbitrary number of fermions moving
independently is given by
v,
— =dl'(H)V¥
i = H)Y

We consider the Gibbs grand canonical ensemble. Let ;1 € R (chemical potential) and 5 € R
(inverse temperature) and consider the modified Hamiltonian

K, = dl(H — pul).

'With solution ¥, = e~ (H) = (e~ )T and the evolution 7;(A) = ['(e®) AT (e*H).

65



66 CHAPTER 6. IDEAL GASES

The Gibbs equilibrium state on the CAR-algebra Acar(h) over h takes the form

trace(e P51 A)
A) =
w(4) trace(e AKu)

., where A€ A(b).

Recall that Acar(h) is the algebra generated by the identity I and a(f) with f € b such that
(1) b > f+ a(f) is anti-linear,
(2) {a(f),alg)} =0
(3) {a(f),alg)"} = (f.9)1.
Question: Is the Gibbs state w well-defined? More precisely: when is e ?Xu trace class?
Lemma 6.1.1. Let § € R, then (a) and (b) are equivalent:
(a) e PH is trace class on b,
(b) e BdUH=1) s trace class on F_(b) for all u € R.
Proof. Proposition 5.2.22 in Bratteli/Robinson. O

Remark 6.1.2. If the Gibbs state is not defined for all or some /5 (e.g. [ negative) we can
replace it by a 7-KMS state @ with respect to the following evolution

Acar(h) 3 A = 1,(A) = e AeEn ¢ Acar(b). (6.1.1)
Recall that the KMS-condition (which would be used in the following arguments) has the form:

w(Ar(B)) , =w(BA).

le=i
If the Gibbs state exists, then it is the unique 7-KMS state.
We consider the evolution (6.1.1) on generators a*(f) of Acar(h).
Lemma 6.1.3. Let a(f) € Acar(h) with f € b, then we have for all t
(i) el g (f)e~itdl(H) — g (et f),
(i) et g f)e=itd(H) = q(eitH f).

Proof. We only show (i). Put U; := e and recall that the second quantization relates the
unitary one-parameter groups U, corresponding to H and dI'(H) in the following way

eitdD(H) _ DU, = EB Un,ts

n>0

where Uy, = I and with n € N:

Uni(P-(fi® fo@ -+ @ £) = P-[Ufi @ Uifo ® - © Uifu]
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From this it follows:

AL (H) g (§)e=itd(H) p_ (fl Q- ® fn) =T(U)a*(f)P- (U,tfl R ® Uftfn>

__V”+1NUJP(}:qf®vyﬁn®~-®UtﬂJ

n!

— ”n+1P<ZewUtf®fm®“'®fwn>

n!

™

™

=P a"(Uf)P-(f1 @@ fa).
Since = P_a*(Uf)P- = a*(U,f) this finishes the proof. O

Write z = €% > 0 for the activity. Using the previous lemma we can calculate the so-called
two-point functions of the Gibbs state w.

Corollary 6.1.4. Let f,g € b, then we have
w(a*(falg)) = (g, 2 #(I +ze )71 f), (6.1.2)
Proof. In Lemma 6.1.3 we replace t by i and H by H — pul. Then
trace{e_ﬁK“a*(f)a(g)} = trace{e_BK“a*(f)eﬁK” e_ﬁK“a(g)}
— trace{a* (e”g(H’“l)f) e’ﬁK“a(g)}
=z trace{e‘ﬁK‘La(g)a* (e_ﬁHf)} = (x).
Now we use the anti-commutation relations to switch a*(e=?# f) back to the left:
(%) = —2 trace{e_ﬂKﬂa* (e‘ﬁHf)a(g)} + 2(g, e_ﬁHf>trace(e_5K“).

Dividing both sides by trace(e™#%«) gives

w(a*(flalg)) = —zw(a* (e flalg)) + z(g, ™" f)

or equivalently
w(a*([I + ze_BH]f)a(g)) = z(g, e_BHf>.
Finally, (6.1.2) follows by replacing f with (I + ze ##)=1f. O

Definition 6.1.5. Consider the group of Bogoliubov transformations of Acar(h) induced by
rola(f)] == a(e”f), where 6 € [0,27).

These are the so-called gauge transformations. A state on Acar(h) is called gauge-invariant if
it is invariant under gauge transformations.
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Remark 6.1.6. By a very similar argument one checks that the formula (6.1.2) generalizes to

(i) -

B 0 if n#m,
T (@ oelan)w (T o () T algy) - else
In particular,

(I) By iteration of this process it follows that the Gibbs state w only depends on the values
of all the two-point functions

w(a*(falg)) = (g ze (L + ze )7L ).

The state w is called quasi-free. 2

(II) Remark (I) implies that the Gibbs state w on Acar(h) is gauge-invariant and quasi free.

Now we specify the discussion to the following case. Let A C R™ be a bounded and open
subset and put

ba:=L*(A), and Bh:= L*(R"),
Cyr () = {f e C*®(Q) : supp (f) C Qis Compact}, Qe {AR"}.

Consider the (positive) Laplacian —A on C§°(A). With respect to suitable units we define the
Hamiltonians

Hy = some self-adjoint extension of — A on C§°(A),
H = self-adjoint extension of — A on Cg°(R™).

There are various self-adjoint extensions Hy of —A on L%(A) according to the choice of
boundary conditions. However, the Laplacian on R™ has a unique self-adjoint extension. The
operators H, typically have discrete spectrum with eigenvalue asymptotic (Weyl-asymptotic)

dim A
)

Ao~ 02 as f— oo

and therefore e ##4 is trace class if 5 > 0. However, H has no discrete spectrum and e ?# is
not of trace class for any g € R.

Remark 6.1.7 (classical boundary conditions). Let A C R™ be bounded and open with piece-
wise differentiable boundary dA. Recall Green’s formula

—0 o
<A¢,¢>_<¢,A¢>:/M{ a—i—a—:fgo}da.

In order to make A symmetric on its domain of definition we must make sure that the integrand
vanishes for all ¢, 1 € D(A). We may choose

2We do not give the exact definition of a quasi-free state here which requires the notion of truncation
functions. As for details see Bratteli/Robinson II, page 43.
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(i) a—“’ = 0 on JA, (Neumann boundary conditions),
(ii) ¢ = 0 on OA, (Dirichlet boundary conditions),
(iii) 22 = hp where h € C*(9A) is real-valued.

First we comment on the thermodynamical limit. In the following the limit A — oo means
that A is a sequence of open bounded sets that eventually contains all bounded A C R".

We write wy for the Gibbs equilibrium state over Acar(ha). Let w be the gauge-invariant
quasi-free state over Acar(h) with two point functions (c.f. Corollary 6.1.4):

w(a*(Palg)) = (g2 7"(I+ 277 f)
Proposition 6.1.8. For all A € Acar(bha) it holds limp_,oo wp(A) = w(A).

Proof. Bratteli/Robinson II. O

In particular, the thermodynamical limit of the “finite-volume equilibrium states” is uniquely
defined and independent of the particular boundary conditions (unique thermodynamic phase).

6.2 Equilibrium phenomena

The explicit expression of the two point functions for the infinite idealized Fermi gas allows us
to study some equilibrium phenomena.

Definition 6.2.1. Consider the number functional N which measures the number of particles
in a given state:

Nt Eagn@n) — [0,00] : N(@) i=sup Y @(a*(fi)alf:)). (6.2.1)

F runs through finite dimensional subspaces of fh and {f;} through the ONBs of F'.
Exercise 6.2.2. Let [e; : i € Nyo| and [f; : j € Ng| be orthonormal bases of i and put
w(m) — P_ |:ej1 ® o e ® ejm:l’

where m € Ny and the entries of (ji,- - ,jm) € NI are pairwise distinct (otherwise ¥™ = ().
With the number operator N on F_(h) show that

m = (), Np) = 37 (0, a* (fa)al fu)0 ™).

n>0

Consider the quasi-local CAR algebras

Ap = ACAR(hA), such that ACAR(h) = U.AA.

A
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By choosing the sub-spaces F' in (6.2.1) only in h we obtain local number functionals
j&A :ZZAA —%[0,00}

We calculate the following density for the Gibbs equilibrium state w (=number of particles per
unit volume in A):

Let {f,}n be an orthonormal basis of L?(A), then we find from Corollary 6.1.4:

p(B,z): = ]&’(oj), with |A| ;= volume of A

= |A|71 Z W(a*(fn)CL(fn))

n>0

= A7) (fas 22T+ 2727 ) oy = ()

n>0

Via continuation by zero we can embed L?(A) into L?*(R"™). Let  be the Fourier transform

of f € L*(R"), then:
<fn, zeP2 (1 + zefm)’lfn> = <ﬁ” ze PP (1 + ze’ﬁpz)’lﬁl> -
L2(R™

— (£ 12 2 PP (1 —Bp? —1>
(1ol 27 (4 2y

L2(n)

With p,z € R™ put e, () := (27)"2¢P, then we have

S IR0 = S e = el = ot

n>0 n>0

Inserting this above gives
Lemma 6.2.3. For each bounded open set A C R™ the density function p(B,z) has the form
1
(2m)"

where \ := \/4w[ (“thermal wave lenght of the individual particle”) and the function I(z) is
given by

p(B,z) = / ze’BPQ(l + ze’BPQ)_ldp =A""I(z) < o0,
Rn

I(z) =72 / e (14 ze ) \dx,

In particular, p(B,z) is independent of A (which is expected since the equilibrium state is
invariant under space translations).

Next: Calculate the local energy per unit volume.

Let {f,} € C*(A) be an orthonormal basis of L*(A). The local energy per unit volume of the
state w is given by

e(B,2) = A7) w(a (V=Af)a(V=Af))

n>0

=A™ Z <fn, zeP2 (I + zeBA)’l(—A)fn>

L2(A)
>0 (A)
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Exercise 6.2.4. With the notation of Ezercise 6.2.2 it holds

D (@ @ (V=AL)a(V=A L)) = (@, T,

n>0

where { fn}n is a (suitable) orthonormal basis of by and Ty is a self-adjoint extension of the
second quantization T'(—A) of —A w.r.t Neumann boundary conditions. 3.

By a similar argument like the one we used for the density function p(z, 5) we obtain

1
(2m)"

e(p,z) = /npzzeBPQ(l + ze”BPQ)’ldp = (x).

Note that

2 ,—Bp?
zpje p; O ( 5 2)
_— — ———1 1 p
1+ zeFr? 20 dp; 08 ([} +z€

and therefore one obtains via partial integration
(%) = —L(QW)_" z”:/ i lo <1 + ze‘ﬁp2) d

— %(277)” ; /n log <1 + ze’ﬁPQ) dp

_n -n -Bp*
25<27T) /n log <1 + ze ) dp.

Lemma 6.2.5. For each bounded and open A C R™ the local energy per unit volume fulfills

n

T 28
where \ := /47 B and the function J(z) is given by

c(B,2) = 2 (2m) " / Jog (1 2 ) dp = A () < ox,

J(z) = WZ/ za?e ™ (1 + ze=*") .

In particular, (B, z) is independent of A.

Fermi sea: Consider the idealization of zero temperature: if we take  — oo, then the
integrand in the expression of p(f3, z) behaves as follows (recall that z = e#):

1, if pP<yp

lim ze”BPQ(l + 2675192)_1 = lim e’ﬁ(p2’“)(1 + e’ﬁ(pz’“))_1 = L
0, if p* > pu.

B—r00 B—00

All states with energy < u are occupied and states with energy greater than u are empty. The
critical value p = p? is called Fermi surface.

3If ¢ € C5°(A) C ha C F-(ha), then we have Ty () = — (b, A)y,
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6.3 The ideal Bose gas

Consider the Bose Fock space F,(h) over the one-particle Hilbert space b with one-particle
Hamiltonian H, i.e.

Fi(b) == PLF(h),

where P, is the projection onto the symmetric part of F(h). The Hamiltonian for a non-
interacting system of Bosons is given as the second quantization dI'(H) of H.

The corresponding time evolution of observables A € £(Fy(h)) has the form
A 1y(A) = M) geitdlH) — L(e™) AT (e71). (6.3.1)

Let ay(f) and a’.(f) be the annihilation and creation operator on F, (h), respectively, which
fulfill the canonical commutation relations (CCR) for all f,g € b

(a) [a+(f)7a+(g)} =0= [aj-(f)’a*—i-(g)} =0,

(b) [a+(f),ai(9)] = {f.9)].

The operators a(f) and a’ (f) with f € b are densely defined and unbounded in general.
We pass to the family of Weyl operators W := {W(f) : f € b} which are unitary

W(f) = evil D le (7, (1))
and satisfy
(a) W(=f) =W(f)" forall feb,
(b) W(HW(g) = e 3™ UIW(f +g) for all f,g € b.
Definition 6.3.1. The C*-algebra Accr(h) in £(F(h)) generated by W is called CCR-algebra.
We consider the action of 7, on generators of the CCR algebra:
Lemma 6.3.2. For allt € R and f € b the x-automorphism 1; acts on Weyl-operators as
m(W(f) =W (e"f). (6.3.2)
In particular, {r;}; defines a group of automorphisms on Accr(bh).
Proof. Homework O]

Remark 6.3.3. Recall that the one-parameter group of operators (6.3.2) is not strongly con-
tinuous.

With x € R consider the generalize Hamiltonian K, := dU'(H — pI) and assume that e=#%»
with 8 € R is of trace class

Definition 6.3.4. The Gibbs equilibrium state on the CCR-algebra Accr(h) takes the form

_ trace(e PR A)

w(A) = trace(c P where A € Accr(b).
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Next step: We extend the Gibbs state from Accr(h) to polynomials in ay(f) and ai(g).
Now, fix n € Ny and put f := (f1, -, f,) with f; € h. Consider the operator

Ap = a(f)alfs) - a(fa)e 75, (6.3.3)

The following result essentially distinguishes the existence of traces in case of the ideal Fermi
and the ideal Bose gas, respectively, (c.f. Lemma 6.1.1).

Proposition 6.3.5. Let 1,3 € R and assume that e " is a trace class operator on Y. Let
z 1= PP denote the “activity”. Assume that 3(H — ul) > 0, then

(a) The operator e PKu is of trace class.
(b) The operator A3 Ay is of trace class.

(¢) The two point functions w(a*(f)a(g)) with f, g € b are well-defined and there is a constant
C(z,8) depending on z and 8 such that

|w(a*(falg))] < C=B)IfN - llgl- (6.3.4)

Proof. (a): Let {\,}n>0 be the sequence of eigenvalues of H repeated according to the multi-
plicity and increasing (decreasing) if 8 > 0 (if 8 < 0). Let {e,} C b be an orthonormal basis
of eigenvectors of H, i.e. He,, = \,e,. With

0<n<j2<-<Jm,

where m € N and occupation numbers (nj,,--- ,n;, ) € N™ consider E,, .. ,, € Fy(h) defined

by:

J
En]-1~~~,nj = P+(€j1 R Qe ReQ Qe Qe ®"'®ejm)‘
- ~~ e . ~ > ~~ >
nj, times nj, times nj,, times

m

Note that E,, ... ,,. is an eigenvector of e %« Put N :=n; +nj, + -+ +n;,,, then

e_BKMEnly"'ynm = F(e_B(H_MI))P+ (6]1 ® T ® ejl ® e ® ej”L ® Tt ® 6]‘7”)
=P (eMe @ @e e, @ e ey @ @ePMe;)
e ZNeflg(njl/\j1+m+njm)‘jm)Enl

sMim *

According to our assumption S(H — pl) > 0 we have ze ™ = ¢=#N=#) < 1. Hence, we can
estimate the trace of e #%« as follows:

[e o]

trace (e_’BK“) < H (1 4oze BN 2207280 L 88BN L )

=0
o
= H (1 — ze’ﬁ’\j)_l
=0
= expolog { H (14 2eP(1 - ze_mf)_l)}
=0

= exp { ilog (14 ze (1 - ze_mﬁ')_l)} = (x).

J=0
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On the right hand side we apply the estimate log(1 + z) < x whenever > 0 and find

(x) < exp {Z ze PN (1 — ze_ﬁ’\f)_l} = ().

J=0

We only consider the case § > 0 in which we chose the eigenvalue sequence {)\;}; to be
increasing. Then we can estimate

sup(1 — ze™P) 71 < (1 — ze7PA0) !
J€No

and therefore

(x%) < exp {z(l — ze~ ) ieﬁ’\]} = exp {z(l — ze P)trace (e’ﬁH) } < 0.

J=0

(b): The trace of A3A; can be estimated in a similar way

trace (A3Ay) < Z Z Ha(fl) e a(fn)e_gK“Em’...vnm H2 (6.3.5)

0 (rjy s M, JENT™

oo

_ Z N By Ny 1 N ) Ha(fl) .. a(fn)En17~.. . H2

m=0 (njy, nj, JENT
Now, we use the estimate
la(f1) - 'a(fn)Em,~~,nm|| < N%Hle e fll - ||En1,~~~,nm||7
=1

which together with (6.3.5) gives

trace (A}Af) <A N fall Z Z NN e =By Agy + 4150 Ajin )

=0 (njy, nﬂm)eNm

= ||f1||2 ||fn||2 (Z_) Z Z ZNe—/B(”h)\jl-f—-“-&-njm/\jm)
(n;

1o M JEN

=LAl 1 fall? (Zd%)n H(l — 267 P T = (% x ). (6.3.6)

J=0

We have seen in (a) that the infinite product on the right hand side converges under the
condition S(H — ul) > 0 and it defines an analytic function in z. Therefore (* % ) is finite
which proves (b).

(c): Follows from the estimate (6.3.6) together with the Cauchy-Schwarz inequality:

trace(A}Ay)trace(A;A4,)

trace(e—AKu)?2 ’




6.3. THE IDEAL BOSE GAS 75

Under the condition of the previous lemma it follows that the two-point functions w(a*(f)a(g))
are well-defined. We calculate their value

trace {e~1a*(f)a(g)} = trace {efgma*(f)egm o—BK egz@a(g)efgm}
= trace {a* (e—g(H—ﬂf)f) e—ﬁKHa(e—g(H—uf)g) }
= trace {e_ﬁKﬂa(e_g(H—/”)g) a* (e—g(H—uI)ﬂ} = (%).
Now, we use the CCR-relations to switch a*(---) back to the left:
(%) = trace {e’ﬁK“a* (efg(H*“I)f)a(efg(H*uI)g)} + <g, e’B(H’“I)f>trace (e P8 .
Dividing by trace(e?%«) gives

w(a*(f)a(g)) = W (a* (e—g(H—uI)f)a(e—g(H—uI)g)> + <g, e—B(H—uI)f>'

If we iterate this algorithm N times we obtain:

w(a*(falg) =w (a* (7 F WD fa(e= FW1Dg)) 4 i (gre7mut=py - (63.7)

Under the assumptions of Proposition 6.3.5 we have S(H — pl) > 0 and therefore

lim
N—o0

e_NTB(H_“I)fH =0.

Taking the limit N — oo on the right of (6.3.7) and using the estimate in Proposition 6.3.5, (c)
w(a*(flalg))]| < Clz B - gl

we obtain: s s
Nliinoow (a* (e_T(H_“I)f)a(e‘T(H_“I)g)> =0. (6.3.8)

Hence we end up with the following two-point functions for the Bose gas.

Proposition 6.3.6. Let i, 3 € R and assume that e is a trace class operator on b. If
B(H — pl) > 0, then the two-point functions of the Gibbs-state w are given by

w(a*(falg)) = <g,ze"3H(I — ze_ﬁH)_1f>. (6.3.9)

Moreover, on the Weyl operator w acts as

WV () = exp{ - i<f (I+ ze o) (1 — 27" )

Proof. We only show the first statement: note that
[o¢] o0
Z e~ AmH—pl) — Z (ze’ﬁH)m = (I - ze’BHY1 — I = ze” PH(] — ze7PH)~1,
m=1 m=1

Hence the assertion follows from (6.3.8) and (6.3.7). O
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6.4 Equilibrium phenomena

Assume that the operator ze (I —ze=#H)~1 is positive self-adjoint (not necessarily bounded or
with discrete spectrum). Then the associated sesquilinear form on the right of (6.3.9) determines
a quasi-free state.

Let w be the gauge-invariant quasi-free state over Accr(h) with b := L*(R") and two point

functions
w(a*(fla = ze PH(T — ze7PH~L
(a*(falg) = (g, 271 ),

where H is the self-adjoint extension of —A on L?(R™). Put by := L*(A)

.AA = ACCR([]A) and .A = ACCR(E) where 6 = U L2<A>

ACR™

If wp denotes the Gibbs state on Accr(ha) with respect to a self-adjoint extension H, of the
Laplacian —A on L?*(A) (A C R™ bounded and open) and parameters 3 and y, then we have
the following result on the thermodynamical limit:

Proposition 6.4.1. If there is ¢ > 0 with Hy — pul > ¢l for all A, then it follows
lim wj(A) =w(A), Ae Ay

A—oo

Proof. Bratteli/Robinson II. O

Now we specify the discussion to an open square box Ay with edges of length L > 0
L L L L
b (B eon (B cw
L 22) T g)
and we assume Dirichlet boundary conditions for the Laplacian —A on Ap. Consider the local
density

PAL 67 : |AL‘ ZWAL n)) - ( )7

n>0

where { f,,} is an orthonormal basis of eigenfunctions —A in D(—A). Assuming that (H—ul) >
0 we find from the definition of the two point functions of wy, in Proposition 6.3.6 that

(1) = LY (fur 2”20 = 22)71 £, )

L2(AL)
n>0
— L Z ze_ﬁ%(l’)(l _ Ze—ﬁva(L))—l
aeNn

Note that the eigenvalues of —A on Ay are given by the numbers
EA(L) := {%(L) = —(af+--+al):a€ Nn},

with corresponding eigenfunctions

Fi(l‘l,-.- ,ZL‘n) I:HSiIl (%a] |:xj—§:|)
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Since Hy, > 7y ..1)(L)I it follows that the condition Hy, — ul > cl for all L > 0 which
appears in Proposition 6.4.1 can be fulfilled if

nm?

izl
and therefore we need p < 0. Since S > 0 we have

0<c< (yap- (L) —p) = — I, forall L >0

0<z=¢e? <1.

In this region (single phase region) we have the thermodynamical limit in Proposition 6.4.1
and a unique thermodynamical phase of the infinitely extended Bose gas. However, note that
pa, (B, z) has a pole with respect to the activity z as z approaches

7'7.7T2
Pl — ST as L — oo.

If we choose von Neumann boundary conditions, then the Laplacian in A has a zero-
eigenvalue and the same unboundedness of the local density happens for z — 1 independently
of the choice of box size L. This phenomenon is called Bose-FEinstein-condensation.

Remark 6.4.2. We may also look at the local density with respect to the equilibrium state w
of the infinite extended Bose gas in Proposition 6.4.1. Let ) # A C R" be bounded and open
and {f,}n>0 and orthonormal basis of L*(A). Then

1 .
ple.f) = i (e (f)al )

where \ := /47w 3. Note that for all z € R™ the map
0,1] 3 2z ze™ (1- 2(3_%2)_1

is monotonely increasing. Therefore, z — p(/3, z) is strictly increasing and we see that

p(z,B) <A™ 7T_n/ e (1 e‘m2)_1dx.

N

Moreover, we have for the integral

_ = ifn=1,2
/ e_xz(l - e_wQ) 'dr o 1 nen
n < oo, ifn > 3.
Thus, we see that p(z, ) remains bounded for z € [0,1] in dimensions n > 3. This does not

reflect the unboundedness effect that arises for a finite box as was discussed above. However,
for all 0 < z <1 one has

Lli_{I()lopAL(ﬁ>z) = p(ﬁa Z)
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Next: Analyse the “Bose-FEinstein-condensation” appearing when z = 1. We look at the ther-

modynamical limit as L — oo for fized densities pa, (B, 2).
’fL7\'2
Let n > 3 and fix 8, p > 0. Since py, (/3,) is monotonely increasing to +oo as z 1 €” 17 we

can uniquely solve
TL71'2
pa,(B,z1) =p where 0< 2z <e’i7. (6.4.1)

One always has pa, (5, 2) < p(8,z) whenever 0 < z < 1 and L > 0. Moreover, both functions
are monotonely increasing in z. Two cases are possible

I. Assume that 0 < p < p(f3,1). Then we can also uniquely solve the equation p(f,2) = p
where Z € (0, 1] and from

pAL(B72) < p(ﬁvg) = p~ = pAL(/B, ZL)
we find that 0 < Z < z;. It can be shown that

lim z;, = Z. (6.4.2)

L—oo

II. Assume that p(5,1) < p. We have z;, > 1 since otherwise we would arrive at the
contradiction

p(ﬁa 1) <p= pAL(67ZL) < p(ﬁ, ZL) < P(ﬁ,1)~

In this case it can be shown that lim;_,. 27, = 1 and

1 _
Tim MZLB_BMMD(L)(I — zge~Pa-nd) Y= 5—p(8,1) > 0. (6.4.3)
Recall that )
nm
Y, (L) = Tz

is the smallest eigenvalue of the Laplacian —A on A with respect to Dirichlet boundary
conditions and |Ap| = L™ is the volume of the box.

Moreover, if & € N* with a # (1,--- , 1), then we have
1 _
nggo mzLefﬁ'm(L)(l _ zLefﬂva(L)) L. (6.4.4)

Now we state the main result:

Theorem 6.4.3. Let n > 3 and fix p,3 > 0. With L > 0 consider the “square boxes” Aj,
having side-length L as above. Moreover, put

(a) Hp, :=self-adjoint extension of —A on Ap, w.r.t. Dirichlet boundary conditions and H the
selfadjoint extension of —A on R™.

(b) wa, the Gibbs state on Accr(L*(Ar)) with respect to 8 and the activity z1, which is chosen
as the unique solution of

pAL(ﬁ72L) = ﬁa where ﬁ > 0.

Here, pp, (B, z) means the local density with respect to wy, .
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(c) p(B,z), the local density of the infinite extended Bose gas, i.e.

1 _
p(B,2) = Lll_{r;o pa (B, 2) = @n) / ze PV (1 — ze_ﬁpz) 1alp, 0<z<1.

Then the following limit exists

L—oo

wp(A) = lim wy, (A),  where A €| JAccr(L2(M).

Moreover, w; acts as follows on generators of the CCR-algebra

(A) If p < p(B,1) and Z = limy,_, 21, is the unique solution to p = p(f, 2), then
ws(W(f)) = exp —1<f (I 4 ze PH) (I - 26_’3H)_1f>
r 4\ L2®n) |
(B) If p> p(B,1), then limy o 2z, = 1 and

wp(W(f)) = exp{ — 2" (5 — p(B, 1))‘ . f(x)d$‘2_

1

— 2 {f U+ e (1)

4 L2(Rn)}'

Proof. We only comment on (B): Let f € L?(Az) and recall from Proposition 6.3.6 that

ion (W(F) = exp{ = (£, (T + e )(7 = ze o)) |

J/

-~

=:I1(f)

With the eigenvalues 7,(L), a € N" of Hy and the orthogonal projections Pjyqy(L) where
k(o) = a2 + -+ - + o2 onto the corresponding eigenspace we can write

—Bva(L)
L= Y T Pl D).

1 — ZL@‘B’YQ (L
aeN”

Recall that the family of normalized eigenfunction of Hy, with respect to Dirichlet boundary
conditions and corresponding eigenvalues 7,(L) was given by

FL e T, " . L
Uh(py, - x,) = CATRRRRELY = ||F§||_1Hsin (L% [xj - —}) ,  where «o€N".

[EZ] : L 2
7j=1
Note that [|[FX[|7" = {/2% is independent of a. In particular, if = (1,---,1), then the above
expression simplifies to
(=1)"2% T,
o= 2 s (25)

j=1
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Then we have

(f Prroe (L)) = 1 Pr (D) fI1?
= (£, 9G] =

% /AL f(x)]f[lcos (%) dx

and therefore

2
lim L"(f, Py, 1y(L) f) = f(:x)d:x‘ (6.4.5)
L—oo Rn
Moreover, we find from (6.4.3) that
. n 1 _|_ ZLe_B,Y(l,,l)(L) . _
ngroloL a0 = 2(p — p(B, 1)) (6.4.6)

Combining (6.4.5) and (6.4.6) gives

14+ ZLe*ﬁ’Yu 1)(L)

_ on+l1
I}—{go 1— ZL€*5’7(1 (L) < Pk(l >f> =2

[ @] (5= (5. 1).

The higher energy states give no contribution to the density. Indeed, if we choose o € N"
with a # (1, -+, 1), then

(P D)= D0 KEEE[

k(ﬁ) k(e)
P> P ()da|
\IJI 2 17
2TL
<Lz 2: { uwwm}.
R’n
k(B)=k(a)

Therefore, we conclude that there is a constant C,, > 0 independent of L such that

2
2P D] < C{ [ 1@t} (6.47)
R
From (6.4.4) recall that
lim L ™"z e (B (1 — zLe_ﬁva(L))_l = 0. (6.4.8)
L—o0

By combining (6.4.7) and (6.4.8) one finds for all m € N with m > n that

lim Z Lo e et <ka L)f)y=0

L—oo ]_ — ZLe—/B’Ya
aF#(1,,
k(a)<m

and therefore

zpeBra(l) .
tim {1~ Y 1 (. P (D)f) } =2

L—oo 1— ZL@‘B’Ya(L
k(a)>m

fla)de| (5—p(B,1)). (6.4.9)

Rn

J/
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Finally, one shows that
lim lim {]f(f) —(f (I + e PHY (I - e—ﬁH)—1f>} ~0.

m—o0 L—00

Let € > 0 and choose m > 0 such that
Jim 1(F) = Jim {10(f) = I2(N } = (T + e #)(1— e )71 )| =
Jim {I7(f) = (£, (I + e ) (1 = e Pty <e

Since € > 0 was chosen arbitrarily and the left hand side does not depend on m we find from
(6.4.9) that

lim I.(f) = 2"“‘ . f(x)dxr(ﬁ — p(B, 1)) + <f, (I +e P - B_BH)_1f>,

L—oo
which finishes the proof of (B). O
Remark 6.4.4. We give some comments on the phenomenon of Bose-Einstein-condensation.

(a) In the high density region we have z = 1 and Bose-Einstein condensation takes place, i.e.
a finite proportion of particles are in the lowest energy state. This effect corresponds to
a phase transition of the system of non-interacting Bosons.

(b) In the region z = 1 there is a family of equilibrium states at the same temperature and
parametrized by their particle densities p € [p(5, 1), 00).

(c¢) The equilibrium states corresponding to z = 1 have less ergodic properties than the states
in the single phase region.

(d) Consider the equilibrium state w; corresponding to p € [p(8,1),00). The calculation in
the proof of Theorem 6.4.3 shows that the two-point-functions of w; are given by

oo (ale)) =21~ p(p1)] [ 3lds [ oo

1
2m)™ Jgn

n

+

J?(p)/gme_ﬁp2 (1 — e_ﬁPZ)_ldp.
The local densities take the form
P81 = ALY walar(fa)alf)) = 2" [5 = p(8,1)] + p(B,1).
{fn}

Recall that the factor “2"” on the right appeared in the proof of Theorem 6.4.3 when we
took the limit

L—oo L—oo

2
tim L|(f,h. ) = Jim LU (O] /R fwyda]

More precisely, in the case of Dirichlet boundary conditions and with the lowest energy

eigenfunction \IJ(LL__J) of the Dirichlet Laplacian H,, we had
n : n 2
2" = lim L"|¥f . 1y(0)]".

L—oo

Note that this value, which is interpreted as the relative proportion of the condensate at
the origin, is sensitive under the particular choice of boundary conditions.
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