Institute of Mathematics, LMU Munich – Spring Term 2012 Prof. T. Ø. Sørensen Ph.D, A. Michelangeli Ph.D

HOMEWORK ASSIGNMENT no. 11, issued on Tuesday 26 June 2012 Due: Tuesday 3 July 2012 by 6 pm in the designated "FA" box on the 1st floor Info: www.math.lmu.de/~michel/SS12_FA.html

> Each exercise is worth a full mark of 10 points. Correct answers without proofs are not accepted. Each step should be justified. You can hand in your solutions either in German or in English.

Exercise 41. (Integral operators on C[0, 1] and $L^p[0, 1]$. Boundedness and compactness. The Hilbert-Schmidt norm attains the operator norm when the kernel factorizes.)

- (i) For any $f \in C[0,1]$ define $(Tf)(x) := \int_0^1 \frac{f(y)}{|x-y|^{1/3}} \, \mathrm{d}y, \ x \in [0,1]$. Show that T is a bounded and compact linear map from C([0,1]) into itself.
- (ii) Let $K : [0,1] \times [0,1] \to \mathbb{C}$ be a continuous function. Consider the integral operator $f \stackrel{T}{\mapsto} Tf$ given by $(Tf)(x) = \int_0^1 K(x,y) f(y) \, dy$ and denote by $||T||_{p \to q}$ its norm as a $L^p[0,1] \to L^q[0,1]$ map. Show that

•
$$||T||_{1 \to 1} \leq \sup_{y \in \mathbb{R}} \int_0^1 |K(x, y)| \, \mathrm{d}x$$

•
$$||T||_{2\to 2} \leq \left(\int_{[0,1]^2} |K(x,y)|^2 \,\mathrm{d}x \,\mathrm{d}y\right)^{1/2}$$

•
$$||T||_{\infty \to \infty} \leq \sup_{x \in \mathbb{R}} \int_0^1 |K(x,y)| \, \mathrm{d}y.$$

(iii) Consider the case p = q = 2 of part (ii). Show that $||T||_{2\to 2} = ||K||_{L^2([0,1]^2)}$ if and only if $\exists K_1, K_2 \in L^2[0,1]$ such that $K(x,y) = K_1(x)K_2(y)$ for a.e. $x, y \in [0,1]$.

Exercise 42. (Ehrling's lemma. L^1 -norm and derivative's sup control the sup norm. An Ehrling-like interpolation on gradients.)

(i) Let X, Y, and Z be Banach spaces with norms $\| \|_X$, $\| \|_Y$, and $\| \|_Z$, respectively. Assume that $X \subset Y$ with compact injection and $Y \subset Z$ with continuous injection. (I.e., id : $X \to Y$ is compact and id : $Y \to Z$ is bounded.) Prove that

$$\forall \varepsilon > 0 \ \exists C_{\varepsilon} \ge 0 \ \text{such that} \ \|x\|_{Y} \leqslant \varepsilon \, \|x\|_{X} + C_{\varepsilon} \|x\|_{Z} \quad \text{for all } x \in X.$$

(ii) Show that $\forall \varepsilon > 0 \ \exists C_{\varepsilon} \ge 0$ such that

$$\max_{x \in [0,1]} |u(x)| \leq \varepsilon \max_{x \in [0,1]} |u'(x)| + C_{\varepsilon} ||u||_{L^{1}[0,1]} \qquad \forall u \in C^{1}([0,1])$$

(iii) Let $d \in \mathbb{N}$, R > 0 and $\Omega := B_R(0)$ in \mathbb{R}^d . Show that $\forall \varepsilon > 0 \exists C_{\varepsilon} \ge 0$ such that

$$\|\nabla u\|_{C^{0}(\overline{\Omega})} \leqslant \varepsilon \|D^{2}u\|_{C^{0}(\overline{\Omega})} + C_{\varepsilon}\|u\|_{C^{0}(\overline{\Omega})} \qquad \forall u \in C^{2}(\Omega)$$

and give an explicit estimate of the constant C_{ε} .

Exercise 43. (Applications of Fatou's Lemma and of monotone convergence. Boundedness of the $L^{p}-L^{q}$ multiplication operator.)

- (i) Let (X, μ) be a measure space and let $\{f_n\}_{n=1}^{\infty}$ be a sequence of integrable functions on (X, μ) . Suppose that there exists an integrable function f such that
 - $f_n \to f$ pointwise almost everywhere,
 - $\int_X |f_n| d\mu \to \int_X |f| d\mu$ as $n \to \infty$.

Show that $\int_X |f - f_n| d\mu \to 0$ as $n \to \infty$.

- (ii) Let $a : [0,1] \to \mathbb{C}$ be a measurable function. Let $T_a : L^p[0,1] \to L^q[0,1]$, with $p,q \in [1,\infty]$, be the operator of pointwise multiplication by a, i.e., $(T_a f)(x) := a(x)f(x)$ for a.a. $x \in [0,1]$. Find the necessary and sufficient condition on a such that T_a is continuous
 - when p < q,
 - when $p \ge q$.

Exercise 44. (Orthonormal bases on an interval)

In this exercise you should use the fact that $\left\{\frac{e^{inx}}{\sqrt{2\pi}}\right\}_{n\in\mathbb{Z}}$ is an orthonormal basis of $L^2[0,2\pi]$, which was proved in Exercise 38(ii).

- (i) Consider the collection $\{e_n\}_{n\in\mathbb{Z}}$ in $L^2[a, b]$ with $e_n(x) = e^{2\pi i nx}$. Prove that the orthogonal complement of such a collection
 - is only $\{0\}$ if $b a \leq 1$
 - is different from $\{0\}$ if b a > 1.

(ii) Show that $\{f_n\}_{n=0}^{\infty}$, where $f_n(x) := \sqrt{2} \cos \frac{\pi x}{2} (2n+1)$, is an orthonormal basis of $L^2[0,1]$.