Institute of Mathematics, LMU Munich – Spring Term 2012 Prof. T. Ø. Sørensen Ph.D, A. Michelangeli Ph.D

HOMEWORK ASSIGNMENT no. 9, issued on Tuesday 12 June 2012 Due: Tuesday 19 June 2012 by 6 pm in the designated "FA" box on the 1st floor Info: www.math.lmu.de/~michel/SS12_FA.html

> Each exercise is worth a full mark of 10 points. Correct answers without proofs are not accepted. Each step should be justified. You can hand in your solutions either in German or in English.

Exercise 33. (Every separable Banach space is a quotient of ℓ^1)

Let X be a separable Banach space over $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Consider ℓ^1 over the same field \mathbb{K} .

- (i) Produce a bounded linear map from ℓ^1 onto X ("onto" = surjective).
- (ii) Show that there exists a closed linear subspace $Y \subset \ell^1$ such that $X \cong \ell^1/Y$, where \cong is a linear isometric isomorphism. (The quotient Banach space was introduced in Problem 28).

Exercise 34. (The non-separable Hilbert space of Besicovitch quasi-periodic functions)

Let $X := \left\{ f : \mathbb{R} \to \mathbb{C} \text{ of the form } f(x) = \sum_{k=1}^{n} c_k e^{i\alpha_k x} \, \middle| \, n \in \mathbb{N}, c_k \in \mathbb{C}, \begin{array}{c} \alpha_k \in \mathbb{R} \\ \text{all distinct} \end{array} \right\}$, equipped with the natural structure of complex vector space.

- (i) Show that $\langle g, f \rangle := \lim_{R \to \infty} \frac{1}{2R} \int_{-R}^{R} \overline{g(x)} f(x) \, \mathrm{d}x, f, g \in X$, defines a scalar product \langle , \rangle on X.
- (ii) Show that X is non complete.
- (iii) Show that the completion of X is a non-separable Hilbert space.

Exercise 35. (Quadratically close orthonormal bases)

Let $\{\phi_n\}_{n=1}^{\infty}$ be an orthonormal basis of a Hilbert space \mathcal{H} and let $\{\psi_n\}_{n=1}^{\infty}$ be an orthonormal system. Prove that if

$$\sum_{n=1}^{\infty} \|\phi_n - \psi_n\|^2 < \infty$$

then $\{\psi_n\}_{n=1}^{\infty}$ too is an orthonormal basis of \mathcal{H} .

Exercise 36. (Schur's test. Hilbert's matrix. Hankel's matrix.)

Let \mathcal{H} be a separable Hilbert space and let $\{e_n\}_{n=1}^{\infty}$ be an orthonormal basis of \mathcal{H} .

(i) Let $T : \text{Span}(\{e_n\}_{n=1}^{\infty}) \to \mathcal{H}$ be a linear operator such that

$$\sum_{n=1}^{\infty} b_n |\langle e_m, Te_n \rangle| \leqslant A \, a_m \ \forall m \in \mathbb{N} \qquad \text{and} \qquad \sum_{m=1}^{\infty} |\langle e_m, Te_n \rangle| a_m \leqslant B \, b_n \ \forall n \in \mathbb{N}$$

for some $A, a_1, a_2, a_3, \dots > 0$ and some $B, b_1, b_2, b_3, \dots > 0$. Show that T extend uniquely to a bounded linear operator over the whole \mathcal{H} with $||T|| \leq \sqrt{AB}$.

- (ii) Let $T : \text{Span}(\{e_n\}_{n=1}^{\infty}) \to \mathcal{H}$ be a linear operator such that $\langle e_m, Te_n \rangle = (n+m-1)^{-1}$ $\forall n, m \in \mathbb{N}$. Show that T extend uniquely to a bounded linear operator over the whole \mathcal{H} with $||T|| \leq \pi$.
- (iii) Let $T : \text{Span}(\{e_n\}_{n=1}^{\infty}) \to \mathcal{H}$ be a linear operator such that $\langle e_m, Te_n \rangle = \frac{1}{2^{n+m-1}} \forall n, m \in \mathbb{N}$. Show that T extend uniquely to a bounded linear operator over the whole \mathcal{H} and compute ||T||.