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Exercise 27. Let f € LL _(R?) (d > 1, integer). Prove that
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(Recall the notation: Li . is the family of (equivalence classes of) functions that, once re-
stricted to any compact K, are in L!(K), while C2° is the family of infinitely differentiable and
compactly supported functions.) Hint: introduce the mollifiers j,,(z) := m<j(mz), m € N,
for some positive j € C®(R?) supported in the ball of radius 1 centred at the origin and with
Jpaj(z)dz = 1. By means of Lemmas 47 and 48 in the Funktionalanalysis class last semester
you may show that the identity f]Rd fodr = 0 for all p € C*(R?) implies f * j,, = 0 as a
smooth function and then you may exploit the L-limit as m — oo.

Exercise 28. (This exercise proves Lemma 2.31 stated in the class.) Let € be an open,
non-empty set of R? (d > 1, integer). Let T': D(Q) — C be a linear complex-valued functional
on the space of test functions over €. Prove that
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Recall that D (2) = {p € D(Q) : supp(¢) C K} and that Di () = sup |[D%p(x)|.
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