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Exercise 5.1. (Instability of matter for Bosons). Consider the standard three-dimensional
many-body non-relativistic spinless molecular Hamiltonian A with M nuclei and N electrons.
Assume for simplicity that each nucleus has the same positive charge Z. The goal of this
exercise is to prove that there exists a (normalised) many-body wave function ¥y of N boson
coordinates and there exists a choice of positions (Ry,..., Rys) of the nuclei such that

(U, HUy) < —Ca?Z*3min{N, ZM}*/* (1)

for some constant C > 0. This shows that non-relativistic matter made out of bosons is
unstable of the second kind.

(a) Introduce the bosonic trial function Wy (zy, ..., zx) = [, da(2;) with some one-body
wave function ¢y (x) 1= A32¢(A\r) and some scaling parameter A > 0 to be optimised
later. Assume that the unscaled ¢ is a normalised (||¢|| = 1) smooth and compactly
supported function. Prove by direct computation that
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(b) Let Wy g := {-- -} the potential term in (2). Show that if there exists an R such that
Wyg < —CZY3N*3 (3)
for some constant C' > 0 then by optimising on A in (2) one gets the desired bound (1).

(¢) In order to obtain (3), divide the support of ¢ in M cells I'y,..., Ty C R? in such a way
that [, [¢(x)[*dz = ;. Place one nucleus in each cell T'y, and in the expression (2) for
W g average each nuclear coordinate Ry, with respect to the weight M|¢(x)|?, restricted

to I'y. The quantity you get this way is certainly above Wy g for some choice of R because

an average is never less than the minimum. Under the assumption N = ZM, show that

you can drop a number of negative terms in the estimate of Wy g from above so to obtain

Wyg < — ZQM2Z // [9(z ’x|_’¢ dz dy. (4)
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(d) In order to estimate 3 [[ Ferk% dz dy from below, observe that this quantity is

certainly larger than the smallest possible self-energy of a charge distribution of total
charge 1/M confined to the smallest ball containing I'y (denote by 4 its radius). Thus,

prove that
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(e) Use Jensen’s inequality in the r.h.s. of (5) and show that (3) reads
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Wy < —=Z*M——o— . (6)
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(f) You are then left with estimating 5, Z,iwzl Tk, the mean value of the radius of the smallest
ball containing I'y. Show that the freedom that you still have in choosing the decompo-
sition of the support of ¢ into the I'y’s with the constraint ka |¢(x)[*dz = 4 allows you

to organise the cells so that
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Conclude the proof, showing that (6) and (7) yield the desired bound (3).

Exercise 5.2. (Instability of relativistic matter for large /) Consider the standard three-
dimensional many-body pseudo-relativistic spinless molecular Hamiltonian A with M nuclei
and N electrons. Assume for simplicity that each nucleus has the same positive charge Z. The
goal of this exercise is to prove that there exists a constant D < 128/(157) such that if « > D
then the system is unstable of the first kind for N and M large enough.

(a) Show by a scaling argument that to prove instability it suffices merely to show that the
energy can be made negative.

(b) To this aim, pick ¢ € HY?(R?) with ||¢|ls = 1. Let N =1 and compute the expectation
value (¢, H¢) in terms of o, Z, R.

(¢) For an upper bound on (¢, H¢), average it over the nuclear positions, with weight given
by TIAL, |¢(Ry)|? and show that
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(d) Show that for a given value of Z you can choose M so that the above bound reads
1

(e) Complete the proof of the main statement by plugging the trial function ¢(z) = e
in.



