Excerpt from: "Harmonic analysis in phase space”, by G. Folland

CHAPTER 1.

THE HEISENBERG GROUP
AND ITS REPRESENTATIONS

The Heisenberg group and its Lie algebra were born long before they were
christened.

The Heisenberg Lie algebra is so named because its structure equations are
Heisenberg’s canonical commutation relations in quantum mechanics. These
relations, however, are merely the quantized version of the Poisson bracket re-
lations for canonical coordinates in Hamiltonian mechanics, and the importance
of the latter was recognized as long ago as 1843 in Jacobi’s lectures on dynamics
([82, Vorlesung 35]). Moreover, the Heisenberg group and its discrete variants
have long played an implicit role in the theory of theta functions and related
parts of analysis and number theory. But the names “Heisenberg group” and
“Heisenberg algebra” did not come into common usage until the 1970’s, and
only since that time has the Heisenberg group received the recognition it de-
serves.

In an abstract sense, the Heisenberg group has only one locally faithful
irreducible unitary representation. More precisely, up to unitary equivalence
it has a one-parameter family of such representations, all of which are related
to one another via automorphisms of the Heisenberg group. There are, how-
ever, several quite different “natural” ways of realizing these representations
concretely in particular Hilbert spaces, and the really interesting part of the
representation theory of the Heisenberg group consists of studying these re-
alizations, the relations among them, and the integral transforms and special
functions derived from them, in detail. It is to this task that this chapter is
largely devoted.

1. Background from Physics

Much of the material in this monograph is motivated or illuminated by
ideas coming from physics. The relevant physics is on a very basic level: the
classical and quantum kinematics of a single particle moving in n-dimensional
space. (We reassure the reader, perhaps unnecessarily, that the case n = 3
is not the only physically meaningful one: for example, if n = 3k, a “particle
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in n-space” can be a mathematical model for k particles in 3-space.) In this
section we provide a very brief review of the classical and quantum pictures and
the relationship between them. For further information, the following are good
references: for classical mechanics, Abraham—Marsden [1], Arnold [6], Goldstein
[68]; for quantum mechanics, Landau-Lifshitz [94], Mackey [98], Messiah [103].

Hamiltonian Mechanics. According to Newton'’s second law, the mo-
tion of a particle is governed by a second-order ordinary differential equation
involving the forces acting on the particle, so that once these forces are known,
the motion of the particle is completely determined by its position and veloc-
ity at a particular time. In other words, position and velocity give a complete
specification of the “state” of the particle. However, in the Hamiltonian descrip-
tion it is found to be preferable to replace velocity by momentum (= mass X
velocity). Therefore, we shall take as the state space the so-called phase space
R?" with coordinates

(p1 q) = (pl, ceryPnyq1,y oeey qﬂ)

where p is the momentum vector of the particle and ¢ is its position vector.
(From a coordinate-invariant point of view, one should regard momentum as
a cotangent vector and R2" as the cotangent bundle of R™.) The physical
observables are real-valued functions on phase space. Thus every observable
is a function of position and momentum—another version of the fact that the
latter quantities specify the state of the system.

The time evolution of the system, and its various symmetries, are given by
certain transformations of phase space. The characteristic feature of Hamilto-
nian mechanics is that these transformations are not arbitrary diffeomorphisms,
but rather share the property of leaving invariant the differential form*

Q= dej Adg;.
1

(2 is a translation-invariant bilinear form on tangent vectors; if we identify the
tangent space to R2" at any point with R2" itself,  becomes the standard
symplectic form on R?" which we denote by brackets:

(1.1) [(p,9), (?',d')] =pd — ap'.

* The formalism of differential geometry will be used for the next couple
of pages and then will disappear from the scene; the reader to whom it is
unfamiliar is asked to be indulgent during this interlude.
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The diffeomorphisms of R2" that preserve (2 are called canonical transfor-
mations or symplectomorphisms. The group of linear canonical transfor-
mations, i.e., the group of all T € GL(2n,R) such that

[T(p,q), T(¥',4")] = [(p,9), (?',¢")]

is the symplectic group Sp(n,R).

Since the form 2 is nondegenerate, it provides an identification of tangent
vectors with cotangent vectors. Actually, it provides two equally good ones,
differing from each other by a minus sign; we shall choose the one that assigns
to each tangent vector X at a point (p,q) the cotangent vector wx at (p,q)
whose action as a linear form on tangent vectors at (p, ¢) is given by

wx(Y) = QY, X).

If f is a smooth observable (= function on R?"), the vector field associated to
the one-form df under this correspondence is called the Hamiltonian vector
field of f and is denoted by X;. Explicitly, Xy is given by

Y, Xy) = df(Y)

> (of O of B
. Xf_z(apj dg;  Og; apj)'

1

I f and g are smooth observables, their Poisson bracket {f,g} is the
observable defined by

(1.2) {f,9} =Xp,X;) =) (gpf, g:,- - aaqu gzi) '

It is easily verified that the Poisson bracket is skew-symmetric and satisfies the
Jacobi identity

{f,{g,h}} + {h,{f,9}} + {9, {h, F}} =0,

so that it makes the space of smooth observables into a Lie algebra. It is also
easily verified that the map f — X is a Lie algebra homomorphism,

(X7, Xg] = X{f,9}>

whose kernel consists of the constant functions. The Poisson bracket of the
coordinate functions pj, gx are given by

(1‘3) {pj’pk} = {qJ, qk} = 0, {pj, qk} = Ojk.
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Any system of coordinates p, g} that satisfies (1.3) is called canonical, and
the canonical transformations of R?" are characterized by the fact that they
map each canonical coordinate system into another one.

The “infinitesimal automorphisms” of the system are the vector fields X
such that the flow generated by X consists of (local) canonical transformations.
This holds precisely when the Lie derivative of {2 along X vanishes, i.e.,

zx(dﬂ) + d(sz) =0
where, for any k-form ¢, ix ¢ is the contraction of X with ¢:
ixd(Y1,.., Y1) = (X, Y1, ..., Yio1).

But d2? = 0 and ixQ? = —wx in the terminology introduced above, so X is
an infinitesimal automorphism iff wx is closed. Since R?" is simply connected,
all closed one-forms are exact, so the closedness of wx means that X is a
Hamiltonian vector field. In short, the map f — Xy establishes a one-to-one
correspondence between smooth observables modulo constants and infinitesimal
automorphisms. The latter comprise (in a rough sense) the “Lie algebra” of
the group of canonical transformations, and the Poisson bracket is the pullback
of this Lie algebra structure to the observables. If H is a smooth observable,
the canonical transformations generated by Xy are obtained by integrating
Hamilton’s equations:

dp; OH dg; OH

dt —  dq;” dt dp;

Quantum Mechanics. In classical mechanics, once the state of the sys-
tem is specified, the value of every observable is completely determined. In
the quantum world this is no longer true: in a given state, observables have
only probability distributions of values, which may be, but usually are not,
concentrated at a single point. The mathematical setup is as follows. The state
space for a quantum system is a projective Hilbert space PH, that is, the set
of all (complex) lines through the origin in a Hilbert space H. Normally we
think of states as being given by unit vectors in H, with the understanding that
two unit vectors define the same state when they are scalar multiples of one
another. The observables are projection-valued Borel measures on R, that is,
mappings II from the Borel sets in R to the orthogonal projections on H such
that II(R) = I and if E,, E,, ... are disjoint Borel sets,

(14)  I(E;)I(E)=0 for j#k Y I(E)=0(JE).
J J
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If R(E) is the range of II(E), (1.4) is equivalent to

R(E;)LR(E;) for j #k, @R(E,-):R(UE,-).

If II is such a measure and u € H is a unit vector, then E — (II(E)u,u) is an
ordinary probability measure on R, and this is the probability distribution of
the observable II in the state u.

By the spectral theorem, projection-valued measures II are in one-to-one
correspondence with self-adjoint operators A on H (cf. Appendix B):

A= [aane), ()= xs(4).

Thus one can, and generally does, think of observables as self-adjoint operators.
We note that if A is a self-adjoint operator and u is a unit vector in the domain
of A, the mean or expectation of the observable A in the state u is

/z\(dH(/\)u,u) = (Au,u).

The probability distribution of A in the state u is concentrated at a single point
A precisely when u is an eigenvector of a with eigenvalue A\. Moreover, if the
spectrum of A is purely discrete, so that A has an orthonormal eigenbasis {e;}
with eigenvalues {);}, the probability distribution of A in any state is given by

(1.5) E— 3 |(ue)l

A EE

For the system we are interested in, a particle moving in n-space, the
Hilbert space H is taken to be LZ(R"). If f € L2(R™) is a unit vector, |f|? is
interpreted as the probability density of the position of the particle in the state
f; that is, the probability that the particle will be found in a set B C R" is
Jg |fI?. From this, we can easily identify the self-adjoint operators Q1 ..., Qn
corresponding to the classical coordinate functions ¢, ..., g,. Namely, if E C R,
the probability that the jth coordinate z; of the particle will lie in F is

(1.6) /:;-EE |f(z)]? dz.

Thus the projection-valued measure II; for this observable is given by

II;(E) = multiplication by the characteristic function of {z: z; € E},
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and it follows easily that the operator

@; = [

is multiplication by the jth coordinate function, which we generally denote by
A%:

(1.7) Q;f(z) = X;f(z) = z; f(z),

defined on the domain of all f € L? such that z;f € L?.

We observe that there are no states f € L? for which the observables Q;
have definite values: the simultaneous eigenfunctions of the Q;’s are the delta
functions é;,(z) = 6(z — zo). These, however, can be considered as a set of
“idealized states” that form a “continuous orthonormal basis”:

(62,,0z,) = /6(:c —z1)8(z — z3)dz = 6(z; — x2),

f= / f(z)6; dz = / (f,6z)6; dz,

all integrals being interpreted in the sense of distributions. The formula (1.6)
for the distribution of Q; is then the analogue of (1.5).

What about momentum? According to the principles of wave mechan-
ics (cf. Messiah [103]), the eigenfunctions for momentum are the plane waves
e¢(z) = e2™**¢: the momentum of e¢ is h&, where h is Planck’s constant. Like
the delta functions, the e¢’s are not in L? but form a “continuous orthonormal
basis”:

(cfl’efz) —_ /e2ri(€l—€2)zdm — 6(&1 _ 62),
£= [ Forcede = [(freereede:
Here f is the Fourier transform of f, and these equations are restatements of

the Fourier inversion formula. By analogy with (1.6) and (1.7), we deduce that
the probability in the state f that the jth component of the momentum will lie

in F is
/ Fe)r de
h¢; EE

and hence that the self-adjoint operator P; corresponding to the classical ob-
servable p; is given by

(P;ifY(€) = h¢;f(€), or  P;j=hF1Q;F.
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In other words,

h 0
(1.8) P; = %a_z, = hD;.

The “automorphisms” of a quantum mechanical system are the bijections
on the state space PH that preserve the projective inner product |(u, v)|?. (Here
u and v are unit vectors in H, but |(u,v)|? depends only on the lines containing
u and v.) By a theorem of Wigner (see Bargmann [12]), these are precisely the
maps of projective space induced by unitary or anti-unitary operators on H.
For our purposes we may ignore the anti-unitary operators and regard the auto-
morphism group as the unitary group on H modulo scalar multiples of the iden-
tity. The “infinitesimal automorphisms” are the generators of one-parameter
groups of unitary operators, and by Stone’s theorem (cf. Nelson [114], Reed-
Simon [122]) these are precisely the skew-adjoint operators. If B = —B*, the
unitary group generated by B is e'B; this is projectively trivial precisely when
B is an imaginary multiple of I. If we disregard the (very substantial) diffi-
culties involved in algebraically manipulating unbounded operators, we have a
natural Lie algebra structure on the set of infinitesimal automorphisms, given

by the commutator
[B1,B2]) = B1 B2 — B3 B;.

Just as in classical mechanics, there is a correspondence between observables,
modulo scalar multiples of I, and infinitesimal automorphisms, for we can con-
vert any self-adjoint operator into a skew-adjoint one by multiplying by an
imaginary constant. We shall find it convenient to take this constant to be 2xs.
Thus, the one-parameter unitary group associated to an observable A is e274,
and the induced (formal) Lie algebra structure on the set of observables is

(41, Ag) — %mml, omidy] = 2mi[Ay, Ag).

(Remark: the “physically correct” choice of constant is not 27: but —2xi/h.
This is irrelevant for our purposes; it would result in the relabeling of some
parameters when we describe certain unitary representations, but it does not
ultimately affect the quantization procedures discussed in Chapter 2.) In par-
ticular, the basic observables Q; and P; satisfy the canonical commutation
relations

héjx

21

(1'9) [PJ,Pk] = [QJ"QIC] =07 [PJ, Qk] = I.

Quantization. By the “quantization problem” we shall mean the prob-
lem of setting up a correspondence f — Ay between classical and quantum ob-
servables, i.e., between functions on R2" and self-adjoint operators on LZ(R"),
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such that the properties of the classical observables are reflected as much as
possible in their quantum counterparts in a way consistent with the proba-
bilistic interpretation of quantum observables. Since this discussion is intended
only to provide motivation, we shall ignore all technical difficulties associated
with unbounded operators. On the formal level, then, a quantization procedure
f — Ay ideally should have the following properties.

(1) The quantum counterparts of the position and momentum coordinates
g; and p; should be the operators ); and P; defined by (1.7) and (1.8). More-
over, if f is a constant function ¢, the probability that f = c is one no matter
which state the system is in, whence it follows that the quantum counterpart
of f must be the operator cI. Thus:

(1.10) A, =Q;, A, =P, A.=cl

(ii) If f,g are classical observables, the expectation of Af;, in any state
should be the sum of the expectations of Ay and A,, that is,

(Af+qu,u) = (Agu,u) + (Agu,u).

But if A is a self-adjoint operator, the diagonal matrix elements (Au,u) deter-

mine all matrix elements (Au,v), and hence the operator A, by polarization.
Therefore,

(1.11) Af+g = Af-}-Ag‘

(iii) Suppose ¢: R — R is a Borel function. If £ C R and Q is a probabilis-
tically determined quantity, the probability that ¢(Q) € E is the probability
that Q € ¢~!(E). Thus, if f is a classical observable and Ag= A dII¢()), the
spectral projections for Agos should be Myos(E) = I;(¢~1(E)). But these are

the spectral projections for the operator ¢(As) defined by the spectral func-
tional calculus (cf. Appendix B). Thus:

(1.12) Agos = ¢(Ay).
(iv) A much weaker requirement than (1.12) is that A,y = cAy (c constant)

and Az = (Ay)?, and this together with (1.11) implies that the quantum
counterpart of a product fg should be the Jordan product of Ay and A,. Indeed,

(Af + Ag)? = (Afg)® = A(s19)2 = (A5)® + 245, + (4,)%,
so that

(1.13) Agg = 5(AsAq + AgAy).
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(v) Finally, there should be a correspondence between the Lie algebra struc-
tures of classical and quantum observables: [Af, A;] should be a constant mul-
tiple of Ay ;3. In view of (1.9) and (1.10), the constant must be h/2xi:

h
(1.14) [Af, Ag] = %A{f,g}.

Now, how much of this can be accomplished? We shall insist on the basic
position-momentum correspondence (1.10), the additivity (1.11), and the very
special case A.s = cAy (c € R) of (1.12): in other words, we require f — Ay to
be a linear map satisfying (1.10). However, there is no such map that satisfies
either (1.13) or (1.14) (or (1.12), which is stronger than (1.13)). That (1.13) is
impossible can easily be seen as follows. Let f(p,q) = p; and g(p,q) = 1. I
(1.13) were true we would have

i(P1Q1+ Q1 P)’ = (Afy)? = Apga = 3(PIQT + Q1 P)).
But a simple calculation shows that

—h2 [ ,0? o 1
l 2 = 2 — —_
1(P1Q1+ Q1 Py) 7 "5 + 2z, B, + 4] :

1/ p2n)2 2132_—h2r232 9 2 1
2(PrQi+ Q1P = yp -zlamg + “"a_:z;l+ ] .
The proof that (1.14) cannot be satisfied is a bit more involved; we shall present
it in Section 4.4 (Groenewold’s theorem).

We should not be too surprised or disappointed at these negative results:
life would be dull if things were so simple! We shall, however, keep (1.12), (1.13),
and (1.14) in mind as guidelines, and in Chapter 2 we shall construct quantiza-
tion procedures which satisfy them in an approximate sense for large classes of
observables, the approximation being good when Planck’s constant h is small.
We shall also investigate the extent to which the (pointwise) boundedness or
positivity of a classical observable can be reflected in the (operator-theoretic)
boundedness or positivity of its quantum counterpart.

2. The Heisenberg Group

The Poisson bracket relations (1.3) for canonical coordinates in Hamilto-
nian mechanics and the commutation relations (1.9) for their quantum ana-
logues are formally identical, and the abstract algebraic structure underlying
them is the following. We consider R2"*! with coordinates

(pl y*3Pn,q1,y -, qn, t) = (p, q, t)’
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and we define a Lie bracket on R2"t! by

(1.15) [(pya,t), (', 4',t")] = (0, 0, pg’ — gp") = (0, 0, [(p,q), (P',4")]),

where the bracket on the right is the symplectic form on R2". It is easily verified
that the bracket (1.15) makes R?"*! into a Lie algebra, called the Heisenberg
Lie algebra and denoted by h,,. If Py, ..., P,,Q1, ..., @n, T is the standard basis
for R2*+1 the Lie algebra structure is given by

(1.16) [P, Pe] =[Q;, Q] =[P, T] = [Q;,T] =0, [P}, Q] = 6;iT.

Thus, (1.3) and (1.9) say that in both classical and quantum mechanics, the
momentum, position, and constant observables span a Lie algebra isomorphic
to h,,.

In order to identify the Lie group corresponding to h,,, it is convenient
to use a matrix representation. Given (p,q,t) € R?"*! we define the matrix

m(p,q,t) € My42(R) by

0 P1 ... DPn t
0 0 ... 0 @
m(p’%t)= . SO
0 0 ... 0 g¢gn
0O 0o ... 0 O

(where all entries are zero except on the first row and last column). Moreover,

we define
M(p,q,t) = I + m(p,q,1).

It is easily verified that

(1.17) m(p, ¢,t)m(p’, ¢, t') = m(0,0,pq"),

(1.18) M(p,q,t)M(p', ¢, ') =M@ +p',9+4,t+1t +pg').
From (1.17) it follows that
[m(p, q, t)a m(pla q'at')] = m(oa 0’ pq' - qp’)’

where the bracket now denotes the commutator. Hence the correspondence
X — m(X) is a Lie algebra isomorphism from h, to {m(X) : X € R2"+1},
and to obtain the corresponding Lie group we can simply apply the matrix
exponential map. From (1.17) we have

m(p, ¢,t)> = m(0,0, pq) and m(p,q,t)* =0 for k>3,
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SO
(1.19) e™P0t) = I + m(p,q,t) + 1m(0,0,pq) = M(p, g,t + 1pg).

Thus the exponential map is a bijection from {m(X) : X € R?"*1} to {M(X):
X € R?2"*1}) and the latter is a group with group law (1.18). We could take
this to be the Lie group corresponding to h,, but we prefer to use a slightly
different model. It is easily verified that

expm(p,q,t)expm(p’,¢',t') =expm(p+p', ¢+ ¢, t +t' + 3(pq' — ¢p')).

Therefore, if we identify X € R2"**! with the matrix e™X)  we make R2"+!
into a group with group law

(1.20) (p,a, )P, ¢, t')=(p+p,q9+4d,t+t + 1(pq' — ap")).

We call this group the Heisenberg group and denote it by H,,. The expo-
nential map from h,, to H, is then merely the identity, and the inverse of the
element (p, g,t) is simply (—p, —gq, —t).

Occasionally it is better to identify (p, ¢, t) with the matrix M(p, ¢,t), which
by (1.18) yields the group law

(p,a,t)(?,d\t")Y=(+p,q+d,t+t +pq').

We call R?**! with this group law the polarized Heisenberg group and
denote it by HR°!. By (1.19), the map

(pa q, t) R (p’ qvt + %pq)

is an isomorphism from H, ta HE°, and it is also the exponential map from
h, to HR?'. The inverse of (p, q,t) in HR? is (—p, —q, —t + pq).
We observe that
Z ={(0,0,t):t € R}

is the center, and also the commutator subgroup, of both H,, and HE°!. More-
over, Lebesgue measure on R2"*! is a bi-invariant Haar measure on both H,,
and HP°!,

The Automorphisms of the Heisenberg Group. We denote by
Aut(H,) and Aut(h,) the automorphism groups of H, and h, (as a topo-
logical group and a Lie algebra, respectively). Since the underlying set of both
H, and h, is R?**! Aut(H,) and Aut(h,) are both sets of mappings from
R27*1 to itself. In fact, they are equal. This is an instance of a general theorem
about automorphisms of simply connected Lie groups and their Lie algebras,
but we can give a simple direct proof.
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(1.21) Proposition. Aut(H,) = Aut(h,).

Proof: By (1.15) and (1.20), the Heisenberg group and algebra structures
on R2"*1 are related by

XY =X+Y+1XY] (X, YeR™M

From this it is clear that if € Aut(h,) then a € Aut(H,). On the other hand,
suppose a € Aut(H,). If [X,Y] =0 then
o(X +Y) = a(XY) = a(X)a(¥) = a(X) +a(Y) + }[a(X), oY)
= a(YX) = a(¥)a(X) = a(X) + a(¥) — H[a(X),a(¥)
and hence a(X +Y) = a(X) + a(Y). In particular, a is additive on every

one-dimensional subspace, and it is continuous; hence it commutes with scalar
multiplication. Therefore, if X,Y € R?"*! and s € R, we have

sa(X +Y + 33[X,Y]) = a(sX + sY + 1 2[X,Y]) = a((sX)(sY))
= (sa(X)) (sa(Y)) = sa(X) + sa(Y) + 3s*[a(X), a(Y)).
If we divide through by s and let s — 0 we obtain a(X +Y) = a(X) + a(Y).

Thus a is linear; taking this into account, the above equation also shows that
ao([X,Y]) = [a(X),a(Y)]. In short, a € Aut(hy,). I

We now identify the automorphisms of H,, explicitly. It is easy to write
down several families of them:
(i) Symplectic maps. If S € Sp(n,R), the map

(P, q,t) — (S(p,9),1)

is clearly in Aut(H,). For the moment, we denote the group of such automor-
phisms of H,, by G;.
(ii) Inner Automorphisms. It is easily checked that

(a,b,¢)(p,q,t)(a,b,c)"! = (p, ¢, t + aqg — bp).

We denote the group of inner automorphisms of H,, by Ga.
(iii) Dilations. If r > 0, the map §[r] defined by

5[r](p, g,t) = (rp,rq, rzt)

is obviously in Aut(H,); moreover, é[rs] = é[r]é[s]. We denote the group of
dilations by G3.
(iv) Inversion. The map ¢ defined by

i(p, q, t) = (q7 p, _t)

isin Aut(H,). We denote the two-element group consisting of 7 and the identity
by G4.
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(1.22) Theorem. With notation as above, every automorphism of H,, can be
written uniquely as ajazazay with aj € Gj.

Proof: If a € Aut(H,), o maps the center Z to itself, and by Proposition
(1.21), a is linear; hence a must be of the form

a(p,¢,t) = (T(p,q), ap + bq + st)

with T € GL(2n,R), a,b € R", and s € R\ {0}. By composing a with
the inversion : if necessary, we can make s > 0; then by composing with the
dilation 6[s~'/?] we can make s = 1; finally by composing with a suitable
inner automorphism we can make a = b = 0. What is left is a map of the form
(p,¢,t) — (S(p,q),t) where S € GL(2n,R), and clearly this is an automorphism
of H, iff S € Sp(n,R). 1

3. The Schrodinger Representation

We recall that the quantum-mechanical position and momentum operators
are Q; = X; (multiplication by ;) and P; = hD; (h/2n: times differentiation
with respect to z;). We may regard these operators as continuous operators
on the Schwartz class S(R"). As such, they satisfy the commutation relations
(1.9), and it follows that the map dps from the Heisenberg algebra h, to the
set of skew-Hermitian operators on S defined by

dpi(p, q,t) = 27i(hpD + ¢X +tI)

is a Lie algebra homomorphism. We wish to exponentiate this representation
of h, to obtain a unitary representation of the Heisenberg group H,,.

For the moment we take h = 1. The main point is to compute the operators
e2™ieD+aX) If f e [2 let

9(z,t) = [*mHPP+N f)(z).

g is the solution of the differential equation 8¢/0t = 27i(pD + ¢X)g subject to
the initial condition g(z,0) = f(z), that is,

9y 99 _omi =
2 ij Be; — 2wigzg, 9(z,0) = f(z).

The expression on the left is just the directional derivative of g along the vector
(=p,1), so if we set

z(t)y=z—tp, G(t) = g(z(t),t),
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we obtain

G'(t) = 2mig(z — tp)G(),  G(0) = £(2).
This ordinary differential equation is easily solved:

9(z — tp,t) = G(t) = f(z)e2mitaz=mit'p1,
Setting ¢t = 1 and replacing = by = + p, we obtain the desired result:
(123) ’ e21ri(pD+qX)f(a:) — e21riqz+1riqu($ + p).

From this formula it is evident that e2™(PD+¢X) i5 a unitary operator on L2,
and it is easily checked that

(1.24) e2mi(pD+¢X) 2mi(rD+sX) _ mi(ps—qr) ,2wil(p+r)D+(g+8)X]

It follows therefore that the map p from H,, to the group of unitary operators
on L? defined by

p(p,q,t) — e21n'(pD-{»qX+tI) — e2rite21ri(pD+qX)’

that is,

(1.25) p(p, ¢, t)f(z) = eXm¥imiaztmiva f(z 4 p),

is a unitary representation of H,. Moreover, the operators p(p,g,t), besides
being unitary on L2, are continuous on S and extend to continuous operators
on §'; and we shall frequently regard them as such.

At this point we can put Planck’s constant back in. Namely, we set

pr(p,a,t) = p(hp, q, ht) = 2™ht2milhpD+eX)

or
(1.26) Ph(P, q,t)f(a:) — e21riht+21riqz+1rihqu(z + hp)

Then for any real number h, pj is a unitary representation of H, on L2(R"),
and the corresponding representation dpy, of h, is given by (1.23). Moreover,
pr and pps are inequivalent for h # h’. (It suffices to observe that the central
characters e2™*#* and e2™*'t are inequivalent for h # h'.) We shall see in the
next section that pj is irreducible for h # 0.

We call p; the Schrédinger representation of H, with parameter h.
Generally we shall take h = 1 and restrict attention to the representation
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p = p1; the generalization to other (nonzero) values of h is an easy exercise
which we shall omit except when it leads to something of particular interest.

As we pointed out in the Prologue, in some ways it is more natural to
replace p by the representation

(1.27) p'(p’ g,t) = p(—¢,p,t) = 621rit621r:'(px—qD),

in which the symplectic form rather than the Euclidean inner product is used
to pair (p, ¢) with (D, X) in the exponent. Indeed, we have

eZm'(pX—qD)f(m) — CZWiPz—’fquf(w _ q)
[2™(PX~aD) fTY£) = e—2wiq5+1riqu(§ —p).

Thus if the mean values of the position and momentum of f are zo and &,
the mean values of the position and momentum of €?™®X—4D) f are x4 + ¢ and
o + p. The operator e2™(?X—¢D) therefore represents a translation in position
space by ¢ and a translation in momentum space by p, which accords with the
usual interpretation of p and ¢ as momentum and position variables. However,
p' also has its disadvantages, and we shall generally stick to p. In any case, it is
easy to go from one representation to the other. On the Heisenberg group side,
it is just a matter of composing with the automorphism (p, ¢,t) — (—g,p,t) of
H,; and on the L? side, p and p' are intertwined by the Fourier transform, as
one can easily check:

Fe(p, ¢,t)F ' = p'(p, ¢, 1)

The kernel of p is {(0,0,k) : ¥k € Z}. For some purposes it is better to
throw away this kernel, so we define the reduced Heisenberg group H:*¢ to

be the quotient
H7d =H, / {(0,0,k): k € Z}.

We still write elements of H!*d as (p,q,t), with the understanding that ¢ is
taken to be a real number mod 1, and we regard p as a representation of Hr®d,
which is now faithful. In fact, since the central variable ¢ always acts in a
simple-minded way, as multiplication by the scalar 2™, it is often convenient
to disregard it entirely; we therefore define
p(p,g) = p(p, ¢,0) = > PD+e%),

The Integrated Representation. The unitary representation p of Hr*d

determines a representation of the convolution algebra L!(H:®?), still denoted

by p, in the usual way: if ® € L!(H:),

p(®) = /H » (X)p(X)dX = / / / ®(p,q,t)p(p,¢,t) dpdg dt.
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The integral here is a Bochner integral, and p(®) is an operator on L?(R™)
satisfying [|p(®)]| < || 2],

Given ® € L1(H!), we can expand it in a Fourier series in the central
variable t:

[o o}
B(p,q,t) =Y  B(p,q)e*™*".
—oo

(This series can be interpreted, for example, as the limit in the L! norm of its
Cesaro means.) Since p(p, ¢,t) = €2™p(p, q), we have

p(®)=3, / / / ox(p, q)p(p, q)e” ™tV dp dg dt

= / / ®_1(p, 9)p(p, q) dp dg.

Thus, the only part of ® that contributes to p(®) is the (—1)th Fourier com-
ponent ®_;, so we might as well consider p as a representation of L!(R2")

(with a nonstandard convolution structure, to be discussed below) rather than
of L!(Hr®d). Accordingly, for F € L!(R?") let us define

(1.28)  p(F)= / / F(p,q)p(p,q) dpdg = / F(p,q)e*™(*P+1X)gp dq.

(p(F) is sometimes called the “Weyl transform” of F, but this is historically
inaccurate. In fact, the “Weyl transform” of F' should be p(F'), as we shall
explain in Chapter 2.) The explicit formula for the operator p(F’) is as follows:

o(F)f(z) = / F(p,)e?™9*+™%4 f(z + p) dp dg
- [ F(y — z,0)e™ 1+ f(y) dy dg.

In other words, p(F’) is an integral operator with kernel

(1.29) Kr(e,) = [ Fly -2, g7 g
R (v-2 257,

where F3 denotes Fourier transformation in the second variable. From this we
easily deduce:
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(1.30) Theorem. The map p from L!(R?") to the space of bounded operators
on L?(R™), defined by (1.28), extends uniquely to a bijection from S'(R?") to
the space of continuous linear maps from S(R") to S'(R"). Moreover, p maps
L?(R?™) unitarily onto the space of Hilbert-Schmidt operators on L>(R"), and
p(F) is a compact operator on L*(R") for all F € L}(R?").

Proof: The kernel K is obtained from F' by partial Fourier transforma-
tion followed by an invertible and measure-preserving change of variable. These
operations make sense when F' is an arbitrary tempered distribution and define
K as a tempered distribution. In this case the operation f — [ Kr(-,y)f(y) dy
defines a continuous linear map from S(R") to S'(R"). Explicitly, if f,g €
S(R"™),

( / Kr(v)f(y)dy,g) = (Kr,g ® F) = (F,h)

where h € S(R?") is defined by

h(p,q) = / e~2mias =T F T ¥ p)g()ds.

By the Schwartz kernel theorem (see Treves [138]), every continuous linear
map from S(R") to S'(R") is of this form. Moreover, the map F — K is
clearly unitary on L?(R?"), which shows that p(L?(R")) is the set of Hilbert-
Schmidt operators. (For background on Hilbert-Schmidt operators, see Reed-
Simon [122].) In particular, p(F') is compact for F € L! N L?, and hence for
all F € L?! since ||p(F)|| < ||F|1 and the norm limit of compact operators is
compact. 1

Remark. For conditions for the operator p(F') to be bounded on L?(R"),
1 < p < o0, see Mauceri [102].

For future reference, we record how the original representation p(p, ¢) com-
bines with the integrated representation p(F'). The following proposition is an
easy consequence of the definitions.

Proposition (1.31). If F € S'(R?") and a,b € R", we have

pla,b)p(F) =p(G)  and  p(F)p(a,b) = p(H)
where
G(p,q) = em (=0 F(p—a, q—b) and  H(p,q) = e™(***P F(p—a, g-b).

Twisted Convolution. We return for a moment to L!(H™4). This
space is a Banach algebra under convolution,

®*¥(X)= / (Y)¥(Y'X)dY = / (XY H)U(Y)dy,



26 CHAPTER 1

and the representation p is an algebra homomorphism:
p@)(®) = [[ XUV XY)dX dY = p(@+T).

We wish to transfer this algebra structure to L!(R2"). For F € L!(R?") we
have

p(F) = p(F°) where F° ¢ LI(H:fd), F%(p,q,t) = F(p, q)e~2 i,
and if F,G € Ll(Rz"),
F+G°(p,¢,1)
1
— // F(p', ql)e—21n't' G(p _pl, q-— ql)e—2m'(t—t')+m'(p'q—q'p)dpldqldtl
0JJR2n

— e—21rit // F(pl,qI)G(p _pl’ q-— ql)eni(plq_q:p)dpidql.

That is,
F'xG° = (F|G)°,

where
(1.32) FhG(p,q9) = / / F(o',d)G(p—p', ¢ — ¢')e™® "7 dp'dg’

= / F(p-p', q—q)G(@',¢)e™?" 1) dp'dg'.

We call F'j G the twisted convolution of F and G. Its definition is set up so
that

p(F§ G) = p(F)p(G)-

Twisted convolution enjoys most of the properties of ordinary convolution on
R?" except that it is not commutative. Like ordinary convolution, it extends
from L! to other L? spaces and satisfies Young’s inequality:

1 1 1
IFYGll- < IFIIGl, when -+ =7+1.

r

But with respect to L? estimates, twisted convolution is even better than ordi-
nary convolution:



THE HEISENBERG GROUP 27

(1.33) Proposition. If F,G € L}(R?") then F |G € L?(R?") and ||[F} G||2 <
IE1l2l|Gll2-

Proof: This follows from the fact, observed above, that the map F' — KF
defined by (1.29) is an isometry on L?:

IFhGllz = | Kryallz =

/ Kr(z,y)Ka(y,z)dy

< IKFl2lKallz = | Fllz||G]l2-

The second equality is a restatement of the fact that p(F' §j G) = p(F)p(G), and
the next estimate follows from the Schwarz inequality. 1

L2(z,z)

One can obtain other L? estimates for twisted convolution by interpolating
between Proposition (1.33) and Young’s inequality.

The Uncertainty Principle. The uncertainty principle in its general
form states that if A and B are quantum observables (i.e., self-adjoint oper-
ators), the probability distributions of A and B cannot both be concentrated
near single points in any state u such that ((AB — BA)u,u) # 0. To make
this precise, when u is a probability measure on R we shall adopt the second

moment of y about a € R,
1/2
o-aram)]

as a measure of how much u fails to be concentrated at a. When y is the distri-
bution of the observable A = [ AdII()) in the state u, i.e., u(E) = (II( E)u, u),

we have

[ / (A -a)® d#(")] " (A= a)’u, u)!/? = ||(A - a)ul.

The general uncertainty principle can then be enunciated as follows.

(1.34) Theorem. If A and B are self-adjoint operators on a Hilbert space H,
then
I(4 = a)ul| (B — b)ull = |{(AB — BA)u, u)|

for all u € Dom(AB) N Dom(BA) and all a,b € R. Equality holds precisely
when (A—a)u and (B—b)u are purely imaginary scalar multiples of one another.
Proof: We have
(AB - BAy, u) = ([(A— a)(B —b) — (B — b)(A - a)]u, v)
= ((B — b)u, (A — a)u) — (A — a)u, (B — b)u)
= 2t Im((B — b)u, (4 — a)u)
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and hence
((AB — BA)u, u) < 2|[((B - b)u, (4 — a)u)| < 2[|(A — a)u| (B — b)u||.

The first inequality is an equality precisely when ((B — b)u, (A — a)u) is imag-
inary, and the second one is an equality precisely when (A — a)u and (B — b)u
are linearly dependent. 1§

If we apply this result to the position and momentum operators X and D
on L?*(R), we obtain:

(1.35) Corollary. Ifu € L%(R) and a,b € R we have
1
(1.36) I(X = a)ull2[I(D = b)ullz 2 —|lull2,

with equality if and only if

21r:'b1:e—wrr(:t:—a)2

u(z) = ce forsome ce€C, r>0.

Proof: The inequality is valid by Theorem (1.34) since [D, X] = (2mi)~11.
(The preceding proof works when u € Dom(DX) N Dom(X D), but the re-
sult remains valid for all v € L?, with the understanding that, for example,
|(D — b)u|ja = oo if u ¢ Dom(D). This may be established by an approxima-
tion argument which we leave to the reader.) Equality holds iff

u'(z) — 2mibu(z) = 2nr(z — a)u(z)
for some real r, and the solutions of this differential equation are the Gaussians
described above. I

Another interesting variant of the uncertainty principle is the following:

(1.37) Corollary. If u € L?*(R), we have
1
(1.38) 1Xullz + 1 Dullz > —luliz,

with equality if and only if u(z) = ce~"%

Proof: (1.38) follows from (1.36) (with a = b = 0) together with the
numerical inequality af < 3(o? + %) (o, B > 0). Equality holds here iff & = 8,
which forces r = 1 above. I
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(1.36) and (1.38) are actually equivalent. To deduce (1.36) from (1.38),
apply (1.38) to the functions us(z) = o'/?u(az), a > 0. Since [|Xuqll2z =
a~!||Xu||; and ||Duq||z = a||Dul|2, the result is

_ 1
a”?[|Xullz + o*[|Dullz 2 o [lull3-

Minimizing the left side over all a > 0 yields (1.36) with a = b = 0. Applying
the latter result to the function v(z) = e~2"¥(®+%)y(z + a), one obtains (1.36)
in general.

These results generalize in the obvious way to n dimensions. Namely, if
u € L?(R"),

1
(1.39) I(X; — a;)ullzll(D; = bj)ullz 2 =llullz  (a;,b; € R),

1
(1.40) 1X5ullz + [1Djullz > o=[lull2-
Equality holds in (1.39) [resp. (1.40)] for a fixed j iff
u(z) = v(z) exp(2wibjz; — nr(z; — a;)?) [resp. u(z) = v(z) exp(—7z3) ]

where v is independent of z;, and it holds in (1.39) [resp. (1.40)] for all 5 iff
u(r) = c exp Z(27ribja=j — wrj(z; — aj)?) [resp. u(z) = c exp(—nz?)].
1

There are a number of other versions of the uncertainty principle in the
literature: see de Bruijn [37] and the papers [34], [35], [119], [120], and [121] of
Cowling, Price, and Sitaram (in various combinations).

One of the recurring themes of this monograph is the beauty and impor-
tance of the Gaussian functions

f(:l:) — ezA:c+bz+c‘

(Here A is an n X n complex matrix with Re A negative definite, b € C*, and
¢ € C.) We have just seen the first indication of their fundamental nature,
in the fact that when A is real and diagonal they are precisely the extremal
functions for the uncertainty inequalities. In fact, every Gaussian is an extremal
for the uncertainty inequalities for some set of operators {D}, X}}7_; obtained
from {Dj, X;}7_, by a symplectic linear transformation. (We shall explain
this in detail in Section 4.5.) We shall see that the Gaussians play a special
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role in a number of other contexts. For the moment, we merely point out two
sobriquets that Gaussians have acquired from their scientific applications. In
the one-dimensional case, the functions

f(t) = e2™teme(t-)" (4w reR, a>0)

are known as Gabor functions, after a paper of Gabor [53] in which their
utility as simple components for building electrical signals was demonstrated.
(See Section 3.4.) Also, the functions

f(=) = plp @ [2"4e™] = etrietrintgmriet),

obtained by translating the basic Gaussian 2"/4¢~ "= *in phase space, are known
in quantum physics, and especially quantum optics, as coherent states.

4. The Fourier-Wigner Transform

In this section we study the matrix coefficients of the representation p. If
f,9 € L*(R"), the matrix coefficient of p at (f,g) is the function M on H, (or
H:*d) defined by
M(p,q,t) = (p(p,q,t)f,9)-

Clearly M(p,q,t) = e2™**M(p, ¢,0), so the ¢ dependence carries no information
and can best be ignored. Accordingly, for f,g € L?(R"™), we define the function
V(f,9) on R*" by

(1.41) V(£,9)(2,q) = (p(p, q)f, 9) = (2™ @D+ X) £ g)
— /e2riqz+wiqu(m +p)de

= / 2™ f(y + 1p)g(y — 1p) dy.

The map V has no standard name; we shall call it the Fourier-Wigner trans-
form, for reasons that will become clear in Section 1.8. It is clear from the
Schwarz inequality that V(f,g) is always a bounded, continuous function on
R?" satisfying ||V (f, 9)lleo < [Ifll2l9[l2-

V can be extended in an obvious way from a sesquilinear map defined on
L*(R") x L?(R") to a linear map V defined on the tensor product L(R") ®
L%*(R"), which is naturally isomorphic to L?(R?"). Namely, if F € L*(R?")
we define

H(F)p, q) = / ST F(y + 1p.y — 1p)dy.
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We then have V(f,g) = I7(f ®79), where f @9(z,y) = f(z)d(y). V is the com-
position of the measure-preserving change of variables (y,p) — (y+ %p, y— % P)
with inverse Fourier transformation in the first variable. Therefore it is unitary
on L?(R?"), maps S(R?") onto itself, and extends to a continuous bijection
of S'(R?") onto itself. Transferring these results back to V, we obtain the
following;:

(1.42) Proposition. V maps S(R") x S(R") into S(R?") and extends to a
map from §'(R") x S'(R") into S'(R2™). Moreover, V is “sesqui-unitary” on
L?; that is, for all f1,¢1, f2,92 € L*(R"),

(V(f1,91), V(f2,92)) = (f1, f2(91,92)-

In the language of representation theory, this proposition says that p is
square-integrable (modulo the center). The irreducibility of p is an easy corol-

lary:
(1.43) Proposition. The representation py, is irreducible for any h € R\{0}.

Proof: Suppose M C L?(R") is a nonzero closed invariant subspace and
f#0€ M. If gLM then gLe?™(hrD+aX) f for all p,q € R™; in other words,
V(f,9) = 0. But this implies that ||f||2|lg|]2 = 0, whence ¢ = 0 and M =
L*(R™). 1

Here is what happens to V(f,g) when f and g are transformed by the
operators p(a, b).

(1.44) Proposition. For any a,b,c,d € R" we have
V(P(aa b)f, p(c, d)g) (p,9)

(a-) — em‘(dp+da+pb—cq—cb—qa)V(f, g)(p +a—c,q+b— d)
In particular,

(b) V(p(a,5)f, 9)(p,q) = e" P~V (£,g)(p + a, g+ b)

(c) V(f, p(c,d)g)(p,q) = €™ @DV (f,9)(p — ¢, ¢ — d)

(d) V(p(a,b)f, p(a,b)g)(p,q) = P~V (£, 9)(p,q)

Proof: We have
V(p(a,d)f, p(c,d)g)(p,q) = (p(—c, —d)p(p,9)p(a,])f, )
and, in H,,,
(—¢,—d,0)(p,q,0)(a,b,0) = (p+a—c, ¢g+b—d, 3(dp+da+pb—cqg—cb—qa)).

(a) follows easily from these equations, and (b), (c), and (d) are special cases
of (a). 1



32 CHAPTER 1

The matrix elements of the integrated representation can also be expressed
in terms of the Fourier-Wigner transform. Indeed, we have
(1.45)

(o(F)f9) = [[ Fo0)0tp,0)1,9) dpda = / F(p,9)V(f, 9)(p, q) dpda.

An interesting thing happens when we use the conjugate of a Fourier-
Wigner transform as input for the representation p:

(1.46) Proposition. If ¢,9 € L2(R") and ® = V(¢,¢) then

W®)f = (f,4)p for feI*R™).
Proof: By (1.45) and Proposition (1.42), we have

(p(2)f, 9) = / V@BV, 9) = (V(F,9), V(4,9))
= (f,8){9,9) = (£, 8)(¢,9),

whence the result is immediate.

In other words, the operators p(®) where @ is a Fourier-Wigner transform
are precisely the operators on L? with one-dimensional range. This leads to a
nice formula for the twisted convolution of Fourier-Wigner transforms:

(1-47) Proposition. V(¢1,'¢1) h V(¢2,¢2) = (’(,bz, ¢1)V(¢2,1/)1).
Proof: Let ®; = V(¢;,%;) and ¥ = V(¢2,%1). Then
p(21)p(®2)f = p(21)(f, $2)tb2 = (f, b2 )2, 1)1 = (¥2, 1) p(¥) -
But p(®1)p(®2) = p(®1}®2) and p is faithful, so &, | Pa=(12,¢1)¥. I

We conclude this discussion with some calculations of Fourier-Wigner
transforms of Gaussians that we shall need later.

(1.48) Proposition. Let

#(z) =24, @ =V(4,4), 3 =V(4,p(a,b)¢)

Then

(2 B(p,q) = = IIC™)

(b) 3% (p, q) = eTilbp—ag) ,—(x/2)[(p—0a)*+(¢—b)*]
—(n a2 2

() p(®)p(a,b)p(2) = e~ (*/DH) 5(B).

(d) Bh §o =~/ D+ g
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Proof: (a) follows from the Fourier transform formula for Gaussians

(Appendix A):
Q(p, q) = 2"’/2 / e2ﬂiqye—"((y+(p/2)]2—1r[(y—(p/2)]2 dy

— 9n/2(-7/2)p* /e%iqye—%y’ dy = e~ (*/D@*+d*)

(b) follows from (a) and Proposition (1.44c). As for (c), by Proposition (1.46),

p(2)p(p,0)p(2)f = p(®)[(f,8)p(a,b)¢]
= (f, ) (p(a, b)$, d)d = (f, #)®(a,b)d = e~ (*/D@*+¥)) ) )f,

Finally, by Proposition (1.31) and (b) we have p(a, b)p(®) = p(®2?), so by (c),
p(® 1 8°b) = e~ (*/2(a*+6*) 5(&). Since p is faithful, (d) follows.

Radar Ambiguity Functions. We shall give a brief account of how
Fourier-Wigner transforms turn up in the theory of radar.

A radar apparatus transmits an electromagnetic signal that reflects off
a target and returns to the apparatus. The signal may be represented by a
complex function of time, f(t). [Technically, f(¢) = u(t) + iv(t) where u is the
amplitude of the physical signal and v is the Hilbert transform of u. The energy
of the signal is %" f||3-] We assume that the frequencies of f are concentrated
around some (large) number w, so that we can write f(t) = fo(t)e2™“* where
fo(t) is slowly varying in comparison to €2™*“*. Let r be the distance of the
target from the apparatus and v = dr/dt its radial velocity. We assume that the
signal f is essentially limited to a time interval At which is large in comparison
to the period w™! but small enough so that r and v may be considered as
constant in this interval. The reflected signal then arrives back at the apparatus
after a time delay 7 = 2r/c (where c is the propagation speed of the signal) and
with frequencies dilated by a factor 1 — (2v/c) because of the Doppler effect.
Since the frequencies of the transmitted signal are mostly near w, we may
assume instead that the frequencies are shifted by the amount —¢ = —2wv/c.
In short, when these approximations have been made, the returning signal is

fre(t) = f(t — 7)e~ 20t

Now suppose there are two targets that produce returning signals f; 4,
and f,,4,. If these signals are similar to each other there will be a difficulty
in distinguishing the two targets, so we are concerned with the mean squared
difference,

(1’49) /|f1‘1¢1 - f‘rz¢2|2 dt = 2/ |f|2 dt — 2R‘e(f1‘1¢1’ffz¢2)'
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Only the second term on the right depends on the targets, and since f(t) =
fo(t)e2™“* we have

(frides frags) = 2727 / fo(t = 7)) fo(t — mp)e?™i($2—0)t g,

The integral varies slowly with 7 and 75, but the exponential in front is rapidly
oscillating; so if we want (1.49) to be large in a way that is stable under small
perturbations of 7y and 72, |(fr, ¢,, fr.¢.)| must be near zero. If weset 7 = 71 —7

and ¢ = ¢; — ¢2, we have
(Frigrs Frags) = €72797 /f(t)f(t + 7)e"2 ot gy,

Since only the absolute value is important, and since nothing essential is changed
by switching the two targets, we could equally well consider

As(7, ¢) = /f(t)f(t +7)e” 2" dt
or  Ay(T,4) = e ™% A (T, ¢)

o a(r,8) = Aa(-7,~8) = [ FOTA= )T

and we have

A3 = V(f ’ f )
A;, Az, and A3 and the squares of their absolute values are all referred to in
one place or another as the ambiguity function of the signal f. Whichever
variant is used, the intuitive significance is that if |A;(7, ¢)| is large, two targets
whose associated time and frequency shifts differ by 7 and ¢ will be hard to
distinguish. In this connection, we observe that by the Schwarz inequality,

4,(7,$)| < 4;(0,0) = ||fIl3,
and by Proposition (1.42),

J[14iz o ar s = 518

This last equation may be interpreted as saying that for a signal f of fixed
energy 1| f||3, there is a fixed amount of ambiguity distributed over the (7, ¢)
plane that cannot be eliminated. This is sometimes called “conservation of
ambiguity” or the “radar uncertainty principle.”

Ambiguity functions were introduced into radar theory by Woodward [157],
and the connection with the Wigner transform (cf. Section 1.8) was noted by
Klauder [90]. A detailed account of the use of ambiguity functions in radar
design can be found in Cook-Bernfeld [31]. Recently there has been interest
in analyzing ambiguity functions by explicit use of the connection with the
Heisenberg group: see Auslander-Tolimieri [9] and Schempp [125].
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5. The Stone—von Neumann Theorem

We have constructed a family {p» : o € R\{0}} of irreducible unitary
representations of H,,. We now prove the classic theorem of Stone [133] and von
Neumann [146], which says in effect that any irreducible unitary representation
of H, that is nontrivial on the center is equivalent to some p;. Since the
irreducible representations that are trivial on the center are easily described, as
we shall see below, we shall obtain a complete classification of the irreducible
unitary representations of H,,.

Nowadays the Stone-von Neumann theorem is usually obtained as a corol-
lary of the Mackey imprimitivity theorem. Here we present von Neumann’s
original proof, a pretty argument that does not deserve the obscurity into which
it has fallen. It actually does more than classify the irreducible representations:
it also shows that any primary representation of H,, is a direct sum of copies
of an irreducible representation, and hence that H,, is a type I group.

(1.50) The Stone—von Neumann Theorem. Let 7 be a unitary represen-
tation of H, on a Hilbert space H, such that 7(0,0,t) = €>™*I for some
h € R\{0}. Then H = @ H, where the H,’s are mutually orthogonal sub-
spaces of ‘H, each invariant under w, such that 7 | H, is unitarily equivalent to
pr for each a. In particular, if 7 is irreducible then w is equivalent to pp.

Proof: We present the proof for h = 1; the argument in general is exactly
the same. The crucial point is to identify the elements of H that correspond to
the Gaussian e~™*  in the Schrodinger representation. Concerning the latter,
we adopt the following notation:

¢($) — 2n/4e—1rz’, ¢ab(m) — p(a, b)¢(a:) — 2n/4e21ribz+1riabe—1r(z+a)2’

e=V(4,9), ¥ =V($¢")
By Proposition (1.48), we then have

(151) (479, 4%) = @%(p, q) = ™ (P00 —~(x/@=0)+(g-b)"]

(1.52) B e = e~ (*/A(+) g

Returning to the representation m, we mimic some constructions that we
made with p in Section 1.3. First we set =(p, ¢) = 7(p, ¢,0), and we have

(1.53) =(p,q)w(r,s8) = 7r(p +r,q+s, %(ps - qr)) = e’"'(P"_q")r(p +r,q+83).

We consider the integrated version of ,

m(F) = / F(p,q)n(p,q)dpdg  (F € L'(R?*")),
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and just as with p, we have

(1.54) =(F)n(G) ==(FhG),

(1.55) x(F)n(a,b) = 7(G) where G(p,q) = e™(*I~?) F(p — a, ¢ — b),

(1.56) (a,b)w(F) = n(H) where H(p,q) = e™tP~2D F(p — a, ¢ — b).
Moreover, = is faithful on L!(R2?"). Indeed, if #(F) = 0 then, by (1.55) and
(1.56), for any u,v € H and a,b € R",

0 = (n(a, b)r(F)r(—a,—b)u,v)
= / / e?m (=D F(p, q)(m(p, g)u, v) dpdy.

Thus by the Fourier inversion theorem,

F(p,q)(m(p,q)u,v) =0  for a.e. (p,q),

and since u and v are arbitary, FF =0 a.e.
Now let us take F' to be the function @ defined above. By (1.51), (1.52),

(1.54), and (1.56),
(1.57) 7(®)n(a, B)m(®) = m(B $%) = e~ (/D) (),

In particular, taking a = b = 0 we obtain 7(®)? = =(®), and since ® is even
and real it is easily seen that 7(®) is self-adjoint. Thus 7(®) is an orthogonal
projection which is nonzero since ® # 0 and 7 is faithful. Let R denote the
range of 7(®). If u,v € R then u = 7(®)u and v = 7(®)v, so by (1.53),

(1.58)  (7(p,q)u, 7(r, s)v) = (m(~r, —s)7(p, @)7(®)u, 7(2)v)
= €m0 (x( @) (p — 1, — 8)T(®)u, v)
— Tilps—gr) o —(x/2)[(p—r)*+(q—9)’] (u,v).

Let {vq} be an orthonormal basis for R, and let H, be the closed linear span
of {7(p,q)va : p,q € R"}. By (1.58), HoLHp for a # B, and H, is invariant
under 7 by definition. Hence N = (@ 'HO,)'L is also invariant under 7, and
we have m(®)|N = 0. But this implies that /' = {0}, for otherwise we could
apply the above reasoning to 7w |V to conclude that x(®)| AN were a nonzero
orthogonal projection.

We claim that 7 | H, is equivalent to p for all a. Indeed, fix an « and let
vP? = 7(p, q)va. Then by (1.52) and (1.58),

(79,07%) = (¢9,47")  forall p,q,1s.

It follows that if u = )" a;xvPi% and f = Y a;r$Pi?* then ||ul|y = || f|l2, and in
particular u = 0 iff f = 0. Therefore the correspondence v?? — ¢P? extends by
linearity and continuity to a unitary map from H4 to L?(R") that intertwines
7| Hq and p. §
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We can now give a complete classification of the irreducible unitary rep-
resentations of H,. Suppose 7 is such a representation. By Schur’s lemma
(cf. Appendix B), 7 must map the center Z of H,, homomorphically into the
group {cI : |¢|] = 1}, so 7(0,0,t) = e2™**'] for some h € R. If h # 0, the
Stone-von Neumann theorem shows that 7 is equivalent to p. If A = 0, on the
other hand, = factors through the quotient group H,/Z, which is isomorphic
to R2®. The irreducible representations of the latter are all one-dimensional
(Schur’s lemma again) and hence are just the homomorphisms from R2" into
the circle group, namely, (p, q) — €27¥(®P+b9) We have therefore proved:

(1.59) Theorem. Every irreducible unitary representation of H, is unitarily
equivalent to one and only one of the following representations:

(a) pn (h € R\{0}), acting on L*(R"),

(b) oas(p,q,t) = e2(aP+b9) (g h € R™), acting on C.

The Group Fourier Transform. If G is a locally compact group, let
G denote a collection of irreducible unitary representations of G containing
exactly one member of each equivalence class. If 7 € G we denote by H, the
Hilbert space on which = acts. Given f € LY(G) and 7 € G, we define the

operator f (7r) on H, by
fm = [ f@n@yds= [ fEme s,

where dz denotes Haar measure. The map f — fis called the group Fourier
transform. For a large class of groups G there exists a measure y on G (the
“Plancherel measure”) such that for all sufficiently nice functions f on G one
has the Fourier inversion formula

(1.60) @) = [ (Frya(@)) dur)
and the Plancherel formula
(1.61) /G f(@)f dz = /Gtr(f(w)*f(vr)) dy(r) = /auf(w)n%fsdy(w).

(Here tr denotes trace and || - ||ns denotes the Hilbert-Schmidt norm.)

_We now compute the Plancherel measure for H,,, using the parametrization
of H, given by Theorem (1.59). Qur analysis will show that we need only
consider the representations pp; that is, the one-dimensional representations
0qp form a set of Plancherel measure zero.
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If f € L'(H,), h € R\{0}, and ¢ € LZ(R™), f(pn)¢ is given by
Flon)d(z) = f / f(p, ¢, t)pn(—p, —gq, —t)4(z) dp dg dt
_ / / f(p, g, t)e~2miaz+mikpa=2iht g o _ b dp dg dt
= [h|™" / / f(h7 Nz —y), g, t)em D=2 G (y) dy dg dt.
Thus, f(ps) is an integral operator with kernel

Kj(z,y) = |h|™" / f(R7Y(z — y), g, t)e” ™ v Da=2mibe dg dy
= |h|—"f2,3f(h—1(a: - v), %(m + ), h)’

where F; 3 denotes Fourier transformation in the second and third variables.
Moreover,

(1.62)

Flon)on(m, 0,t) = / / £ d' )on(=p's—d' —t")on(p, 4, t) dp'dg’ '

= / / f@',d,t")on(p-p', a—4¢', t—t'—3(¢'p—p'q))dp'dq dt’
= Gg(pn)

where -
g(p', qlat’) = f(p —p’, q-— q', t— t’)c’"h(" 99 P).

Hence, in view of (1.62), the integral kernel of f(ph)ph(p,q,t) is

F(z,y)
= |h|—n // f(p_.h—l(m_y)’ q_q’, t_tl)ewi[(z—y)q—q’p]—1ri(y+z)q'—21riht'dqldtl

= |h|—"/ fle—=h7 Y (z—y),d, t')e’"'[(z—y)q—(q—q')p]—ﬁi(z+y)(q—q’)—21rih(t—t')dq'dtl_
If f is such that all the integrals converge nicely, then, we have
tr(Flpn)on(p, a.t)) = / F(z,z)dz
= b / / f(p, ¢, t')emPla=a)=2rizle=)~2mik(e=t) 4ot gt g
= |h|~" // f(p, q"t')e"ip(q—q')—%ih(t—t’)g(q - q’)dq’dt

— Ihl—n /f(P, g, tl)e—21n'h(t—t’) dt'.
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But by the (ordinary) Fourier inversion formula,

f(p,q,t) = / / f(p,q,t")e~ 220~ gt'dh = / tr(f(pn)pn(ps 4, 1)) |R|" dh.

Thus (1.60) holds if we define the Plancherel measure on H, tobe |h|™ dh on the
family {ps} and 0 on the family {o,,}. Moreover, by (1.62) and the (ordinary)
Plancherel theorem,

1Fon)Is = / Kb (z, )| de dy
= |h|_2"/ |f2,3f(h—1(a: -y), %(a: +y), h)|2 dr dy
= B f \Fas f(ps 2, )2 dp dz

= |h|7" / |73 f(p, g, k)|* dpdg,

so that (1.61) also holds:

17112 = / I F(on) s dh.

There is much more that can be said about the group Fourier transform
on H,; see Geller [55], [56], [57].

6. The Fock—Bargmann Representation

There is a particularly interesting realization of the infinite-dimensional
irreducible unitary representations of H,, in a Hilbert space of entire functions.
We shall carry out the analysis for the representation p and indicate at the end
how to generalize to pj.

Let

¢o($) — 2n/4e—1rz

be the standard Gaussian on R". Since ||¢o|2 = 1, by Proposition (1.42) the
map f — V(f, o) is an isometry from L?(R") into L?(R2?"). Explicitly, we
have

V(£,40)(p,9) = (£, p(=P,—0)%0)
=2n/4/f(m)CZRiqz—nipqe_,r(z_p)zdx

_ on/tg—(x/2)(p*+4*) / f(z)e2 =@ Hin)—m~(x/D(p+i0)’ g
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For z € C" let us define

Bf(z) = 2"/ /f(x)e2rzz—1rzz—(1r/2)z2dm.
Then we have

V(f,0)(p,q) = e" /P Bf(2),  with z=p+iq.

Bf is called the Bargmann transform of f. For f € L?, the integral defining
Bf(z) plainly converges uniformly for z in any compact subset of C", so that
Bf is an entire analytic function on C". Moreover, since the map f — V(f, ¢o)
is an isometry on L?, B is an isometry from L%(R") into L?(C", e"’"'zdz).
(Here and in the sequel, dz denotes Lebesgue measure on C".) Hence B is an
isometry from L?(R") into the Fock space

Fn= {F : F is entire on C" and ||F||% = / |F(z)2e "5 dz < oo } :

We shall show below that B maps L?(R") onto F,, and also explain the con-
nection between F,, and the physicists’ Fock space. First, we investigate the
properties of F,. We denote the scalar product on F, by (, )=.

(1.63) Theorem. Let
7r|°|
Cal(2) = V 2%,

Then {(q : |a| 2> 0} is an orthonormal basxs for F,.

Proof: Orthonormality is easily proved by integrating in polar coordi-
nates:

a'ﬁ' aj— —rlz: |2
ateia] (G Co)7 H / zy el dz

2
=H/ / ¢?0(@i ~Bi)poy+hi+1e="r" dg dr.
1 Jo Jo

The 6-integral is zero unless 8 = a, in which case we get

a! 2 n - * 20;+1 _—nr? - 8\ -8 a!
“epllGally = (27) Il[/o Pt dr=1:I/o (2)% eras = 20

This calculation shows more generally that if

n R
Br={z€ C":|z| £ R} and CR,a = n=lel H/ 8%
- Jo
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then {cl—z’lfz“} is an orthonormal set in L?(Bg, e"”"'zdz). To prove com-

pleteness, then, suppose F' € F,, and let ) aq2® be the Taylor series of F
about 0. For all R > 0 this series converges to F' uniformly on Bg, hence in

L?(Bg, e""l"zdz). From the preceding remark it follows that cl—zzzaa is the
ath Fourier coefficient of F' with respect to the set {c;zzz"},

Qo = Cl_zla/ F(z)‘E"e‘""'zdz,
) Br
and the Parseval formula holds:
F(2)2e " dz = CR olAcl?.
[ 1F 3 chalal

Let R — oo: then cgo — x~12la!, so these equations become

IFII% = > I{f,Ca) £ I

Therefore {(.} is a basis. I

(1.64) Corollary. If F € F, then the Taylor series of F' converges to F' in the
topology of F,.

(1.65) Corollary. If F € F, then |F(z)| < e(™/?I:*||F|| £ for all z € C™.

Proof: The preceding argument shows that the Fourier series of F' with
respect to the basis {(,} is the Taylor series of F. Thus, if F = ) aq(s, the
Schwarz inequality yields

|F(z)| = |Z aq(m!® fal)/2 2>
< (S laal?)” (Srfayisle) = i eteriee,

By Corollary (1.65), for each z the map F' — F(z) is a bounded linear
functional on F,, so there exists E, € F,, such that

F(z) = (F,E,)r.

It is easy to identify E,; we have

E.(w) =) (E:(a)7la(w) =) Ca(2)la(w) = ) (x*z7w/al)

w2

(1.66)

=e1l'
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Put in other terms, the function K(z,%) = e™*¥ is the reproducing kernel for
the space F,:

F(z) = /e"’EF(w)e'"l""zdw, for FeF, =ze€C"

We observe also that

el

o ﬁzz
(1.67) IE:1% = Zwlz > = el

An important consequence of the existence of a reproducing kernel is that
every bounded operator on F, can be written as an integral operator. More
precisely, we have:

(1.68) Proposition. If T is a bounded operator on F,, let Kr(z,w) =
TEy(z). Then K7 is an entire function on C?" that satisfies

(a) Kr(,w) €F, for all w and Kr(z,-) € Fy, for all z,
(b)  |Kr(z,®)| < el/DUFHGD T,

(©) TF(z)= / Ko(z, 8)F(w)e="1%dw for all F € F, and z € C™.
Proof: We have
TF(z)=(TF, E,)5y = (F,T*E,)r = /T*(Ez)(w)F(w)e‘"l'”'zdw,

and

T*E,(w) = (T*E,, Ey) = (TEuw, E;) = TEy(z).

These formulas show that K7 is entire (since E, depends antiholomorphically
on z) and satisfies (a) and (c). As for (b), by (1.67),

\K1(2,D)| < |TEw||7||E:ll < T | Boll#|| E: |l 7 = /DUl +ED )

In this connection the following observation is sometimes useful:

(1.69) Proposition. An entire function K(z,W) of z and @ is uniquely deter-
mined by its restriction to the diagonal z = w.

Proof: Let u = (z + W) and v = —3i(z — @), so that z = u + v and
W = u — tv. Then K(z,W) = G(u,v) where G is entire. But G is determined
(by Taylor’s formula, say) by its values for u and v real, and u and v are real
precisely when z = w. |
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(1.70) Corollary. A bounded operator T on F, is uniquely determined by
the function Kr(z,%z) = (TE,, E,).

We now return to consideration of the Heisenberg group. The represen-
tation p can be transfered via the Bargmann transform to a representation J3
of H, on B(L?(R")) (which, as we shall shortly see, coincides with F,). To
describe this representation, it will be convenient to identify the underlying
manifold of H,, with C® x R:

(p,q,t) «— (p + g, t).
In this parametrization of H,, the group law is given by
(z,t)(2",t') = (z + 7', t +1' + }Im=2").
The transferred representation S is then defined by
B(p +iq, t)B = Bp(p, ¢,1).
As with p, we set
B(w) = A(w,0), ie., A(w,t)=-e*"B(w).

We proceed to calculate 3. Let z = p + iq, w = r + is. Then for f € L2(R"),

[8(w)Bf](2) = [Bp(r,3)f](2)
= (DY (5(r, 5) f, $0)(p,9)
= (/D emilpo—any (£ 40)(p+71,q+3)  [by Prop. (1.44b)]
— (7/2)|2]? j—wilmzW —(x/2)|z+w|’ g flz + w)

= e—("/z)l'”'z_"ﬁBf(z + w).
In other words,
(1.71) B(w,t)F(z) = e~ ("Dl —wwt2ritp ;4 o),
At this point we observe that

B¢o(z) — 211/26—(‘lr/2)|2:|2 /6—21rzz—2rzzdx —1= Eo(z),

and hence, if w =r + 13,

(1.72) B(p(r, s)o)(2) = B(w)(1)(z) = e~ (F/DNel’ =5 — o~ (x/DIwl B _,(z),
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Thus all the E,,’s are in the range of B, and since (F, E,)7 = 0 only when
F =0, it follows that B(L%(R")) = F, as claimed.

Incidentally, in physicists’ terminology, (1.72) says that the coherent states
in the Fock model are just the functions E,.

Next, we compute the infinitesimal representation of 3, that is, the opera-
tors corresponding to X; and D; under B. Here again it will be more suitable
to consider the complex linear combinations

(1.73) A; = \/7_rB(Xj +iDj)B-1, A; = 7B(X; - iDj)B_l.
We set

w—r+'3 i—.]; i_'i .a_—l i.‘.ii
=TT Bw; T 2\0r; '0s;)’  Ow; 2\or; ' '0s;)
Since

1 0 1 0

X;if = 7s; 7 P(r,8)flr=s=0  Djf = 75;-/)(" 8)flr=s=0,

omi

by (1.71) we have

A;F = ﬁB (6_ + zaar )p(r s)B~ F|,_,=o
j

(1.74) 2mi 0s;
) 1 OF
faw Bw; P(W)Flw=0 = 2257
J 7
AF = ;{:_:B (éas_ - 253;_) p(r,8)B~ F|r=,_o
(1.75) ! !

= 52 B0)Flomo = VAL F

We leave it as an easy exercise for the reader to verify that the operators A;
and A}, defined on the obvious domains

Dom(A;) = {F € F, : 0F/0z; € F,}, Dom(A}) = {F € Fy : z;F € Fa},
are adjoints of each other. Moreover, they satisfy the commutation relations
(1'76) [Aj’Ak] = [A;’ :] =0, [AJaA:] JkI

The operators A; and A} act very simply on the basis {(o}. If we define
1; to be the multi-index whose jth entry is 1 and whose other entries are 0, we
clearly have

— . j La _ a+l;
- = a;z , zjz" =z~ "7,
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and hence

(1‘77) AJCQ = AY/ aJ C&—l,' ) A;Ca = \/ aJ + 1 Ca+1,- ’
where (o—1; = 0 if j = 0. In particular,

(1.78) o= (4D - (43)™Go

Incidentally, by expanding F' € F, in terms of the basis {(4} and using
the Parseval equation, one can easily derive the formula

I2;Fl|% = |IFll% + ||10F/ 82| %,
from which it follows that
Dom(4;) = Dom(AJ"-‘).

Let us now compute the inverse Bargmann transform. Since B is unitary,
for F € F, and g € L?*(R"), we have

(B™'F,g) = (F,Bg)r =2"/* / / R O e L e K
and hence
B F(z) = 2"/* / F(z)eme—mz*~(x/0Z =1z g,

provided that the integrals are absolutely convergent. This will be the case
if |[F(2)] £ Cedl#l* for some 6 < 7 /2, and in particular if F' is a polynomial.
For a general F € F, the integral giving B~! F(z) may not converge, but we
can compute B~!F by applying it to the partial sums of the Taylor series of
F and taking the limit of the resulting functions in the L? norm. With this
understanding, we can reformulate the Bargmann transform and its inverse as
follows. We define the Bargmann kernel B(z, z) by

(1.79) B(z,m) — 2n/4e21rzz—1rz’_(1r/2)zz (z €EC" =z€ Rn),
and we then have

(1.80) Bf(z) = /B(z,:c)f(m) dz, B~ lF(z) = /B(E, a:)F(z)e—""lzdz.

For future reference, we exhibit the relationship between Hilbert-Schmidt
operators on L?(R") and on F.
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(1.81) Proposition. Suppose k € L2(R?"), and let

Tf(z) = / Ko y)f(y)dy,  f e IAR™).

Then
BTB™'F(z) = / K(z,8)F(w)e~""’dw, Fe Fp,

where K is the (2n-dimensional) Bargmann transform of k.

Proof: We first observe that the Bargmann kernels B,,, and B,, in dimen-
sions 2n and n are related by

Bs, ((z,w), (a:,y)) = Bn(z,z)Bn(w,y),

so that, with B = B,,,
K(z,w) = / B(z,)B(w,y)k(z, y) dz dy.
If F is a polynomial, we can apply formula (1.80) to write

BTB™'F(z) = / / B(z, z)k(z,y)B(w,y)F(w)e ™" dw dy dz.

One easily computes that ||B(z,-)||lz = e™l*"/2, so by the Schwarz inequality,
the above integral is majorized by
— —r|w|?
18, Nallll [ 1B, el Fw)le™1o" duw
= e 2y [Pl 2,

which is finite since F' is a polynomial. Thus we can integrate in z and y first
to obtain

BTB™'F(z) = / K(z,@)F(w)e~™*I"dw,
and this formula remains valid for arbitrary F' € F,, by continuity. §

Finally, we indicate how to modify the construction of the Fock—Bargmann
representation for values of Planck’s constant other than 1. If h > 0, we define
the Fock space to be

F! = {F: F is entire on C" and h"/ |F(z)|2e_"h|‘|2dz <o}
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and the Bargmann transform By : LZ(R") — F2 to be

Bif(2) = ™D (o4 (p,9)f, é1)

where
o n/4 .
z=p+1q and ér(x) = (.’;) e~ (®/h)="

in other words,

Bhf(z) ( ) /f(z)emrzz—(w/h)z —(rh[2)2? dzr.

Then the representation
Br(w) = Bhpn(r,s)B;* (w=r+1s)

is given by
2 —
,Bh('lD)F(Z) — e—(1rh/2)|w| —ﬂkZWF(z + ‘lD).

On the other hand, if h < 0, the Fock space F* consists of antiholomorphic

functions:
f,’,’ ={Foc:Fe¢ f,',hl }, where c(z) =%

The Bargmann transform is

By f(7) = e IM/DI (50 (p, 0)F, pa)

where Z = p — iq and ¢y is as above, in other words,

Bhf(f) _ (Ih') /f(:z:)e —2xzZ+(n/h)z2+(xh [2)F? dz.
The representation
Bu(w) = Bup(r,s)By"  (w=r+is)
is then given by
Br(w)F(z) = MM/l +rheZ oz o ).

Some Motivation and History. We begin by explicating the relation-
ship between our space F, and the Fock space of quantum mechanics. If H is
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any separable Hilbert space, the Fock space over H is the complete tensor
algebra over H:

F(H) = é(@’kﬂ),

where ®FH is the kth tensor power of H for k£ > 1 and ®*H = C. The Hilbert
space structure on F(H) may be described as follows: if {e;} is an orthonormal
basis for H, then {e;, ® -+ ® ¢;, } is an orthonormal basis for ®*H, and the
union of all these, together with the basis {1} for ®°H, is an orthonormal basis
for F(H).

If H represents the state space for a quantum particle, ®*(H) can be
considered as the state space for a system of k particles of the same type,
and F(H) the state space for a system in which any number of particles can
occur. In practice, however, particles are either bosons or fermions, which
means that the k-particle states must be either symmetric or antisymmetric
under interchancge of two particles. (The antisymmetry in the case of fermions
is precisely the Pauli exclusion principle.) In these two cases, F(H) should be
replaced by the boson Fock space F,(H) consisting of all symmetric tensors
or the fermion Fock space F,(H) consisting of all antisymmetric tensors.

Our concern here is with the boson Fock space. The symmetrizer S which
projects F(H) onto F,(H) is given on ®*H by

1
S('u1®'“®uk)=qucr(l)®"'®u0(k)

where o ranges over the group of permutations of k letters. It is easy to verify
that if {e;} is an orthonormal basis for H, then

[
{E(!: JS(CI ®62 ®"'): Zaj=k, k=0,1,2,--.}

is an orthonormal basis for F,(H), where the superscripts a; denote tensor
powers.

Now let H = (C™)*, and let {e;}} be the standard coordinate functions
on C". The elements of ®*H are then k-linear functionals on C", which are in
one-to-one correspondence with homogeneous polynomials of degree k on C™.
In order to make the normalizations come out right, we introduce a factor of

v/ 7k /k! into this correspondence:

1 n n —_
S(el ®...®en )¢_, lel...zn = Fz , |a|_k,
or in other words,
E, «— (4.
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This correspondence clearly defines a unitary map from .’F,((C")*) onto our
space F,.

There are analogues of our operators A; and A} on an arbitrary F,(H).
Namely, given bases {¢;} and {E,} for H and f,(H) as above, one defines A;
and A} on the basis {Eq} by

AjEq = \fGEq—1,,  A3Eq= /0 ¥ 1Eq4y,.

It is not hard to verify that
A (Z v<’=)) =) VE+15(;@v™), +®) e @*H.
0 0

More generally, for any u € H one can define A} by replacing e; by u in this
formula, and then define A, to be the adjoint of A}. A} and A, map the k-
particle states into (k+1)-particle states and (k—1)-particle states, respectively;
they are called creation and annihilation operators in quantum field theory.

The Fock spaces F(H), Fs(H), and F,(H) were introduced by Fock [48].
It was also Fock [47] who first described (on the level of formal calculation) the
use of A = 3/9z, A' = z to solve the commutator equation [4,A'] = I. The
rigorous development of the representation of H, on F, and the intertwining
operator B is due to Bargmann [11]; the same ideas also appear in work of
Segal [126], [127], done independently at about the same time.

We pulled the Fock space and the Bargmann transform out of a hat by using
the Fourier-Wigner transform. It is perhaps more enlightening to see the heuris-
tic method by which Bargmann [11] derived them. To begin with, we observe
that if P; and @Q; are self-adjoint operators satisfying the canonical commuta-
tion relat1ons (1.9) with h = 1, then the operators 4; = 7'/2(Q; + iP;) and
A} = n1/%(Q; — iP)) satisfy the commutation relatlons (1.76), and conversely
The latter relations are also satisfied by the differential operators 7=1/29/ 0z;
and 7'/2z;, so we are led to look for a Hilbert space of holomorphic functlons
on which these operators are adjoints of each other. As a candidate for such a
space, we try the space M of entire functions in L?(C™, w(z,%)dz) where w is
a suitable positive weight function, and the condition we require is

1/2/,;,1,~c;¢.,(1z,_7r 1/2/Fa—zwdz for F,GEMN
J

But if we integrate by parts, assuming that F', G, and w are such that the
boundary term vanishes, since F' is holomorphic we obtain

=~O0(Fw) . — Ow
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so we must have 0w /0Z; = —7z;w for all 3, or, with z = = + 1y,

ow .Ow .
3z, + zayj = —2n(z; + ty; w.

Since w is positive, this means that

ow Oow

-6;- = —27ra:,w and = —27l’ij, or Vz,y(logw) = (—-27[’.’17, —27f’y),
J

ay;
so that logw = —n(z? + y?) + C = —nlz|> + C. We may choose C = 0; then

w = e"'l"z, so we obtain the space F,.
Next, we look for an operator

Bf(:)= [ f(z)B(z, ) ds

that maps L?(R") onto F,, and intertwines the operators

1 0

A D)) = 74 i wed K —iDy) = e =

with 71/2z; and 7=1/20/9z;. Again, a formal integration by parts yields

/ [(X; £iD;)f(z)] B(2,z)dz = / f(@)[(X; FiD;)B(z,z)] de,

so the intertwining conditions will be satisfied if

19 18 2B

(72 + 50 ) By = 7B2), (72— 5 ) Blao) = or(s12),
or

0B 9B 108

5:;; = 2n(z; — z;)B, 5;; =nz;B - -2-3_:% = w(2z; — 2;)B.
H

o O(log B) d(log B)
—~ = 2m(zj — z;), ——— =7(2z; — z;),

Oc;

and integrating these equations gives

0z;

log B = 2nrzz — nz? — inz% + C.

The constant C is chosen to be log 2*/* to make the transform unitary, and the
derivation is thereby complete.
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7. Hermite Functions

The monomials (o(2) = 1/ el /a!z® obviously play a distinguished role
among all orthonormal bases for the Fock space Fy, and one might therefore
suspect that the corresponding functions B~!(, should also be important in
L*(R™). This is indeed the case. We call B~1(, the ath (normalized, n-
dimensional) Hermite function and denote it by A,.

To compute h, we utilize the operators

Zj=(X;+iD;)=«"'?B~'A;B, Z}=(X;-iD;)=n"'B"'A}B
and their products
Z% =28 ...22 Z** =71 ...Z%n

We observe that

10f -1,.9

Z5f@) = 2if(@) = gr g = 37" 7 (T F),

*a -1 e nz? 3 \* —wz?
Z* f(z) = (2_7r) e (%) (e f(x)).
We have already noted in (1.72) that

so that

ho(z) = (B~1Co)(x) = (B~ Eo)(z) = 2"/4e~"%".
Therefore, by (1.78),

1r|a|
ha(z) = \/g (B~ A*G)(z) =\ —7 (2"ho)(2)

In particular, taking n = 1, we obtain the one-dimensional Hermite func-

tions ) J_
1/4 5
hi(z) = 2 -1 22 d_ e‘2’""2).
Vil \2/x dzJ
These are not quite the same as the Hermlte functions usually found in the liter-

ature, because they are built from e -7z rather than e~* /2 and are normalized
diﬁ'erently. The classical Hermite functlons on R are defined by

(1.81)

d' 2

—.’B

hi(z) = (~1)e /e
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It follows easily that
21 /4

hj(m) = \/—

Returning now to the n-dimensional case, it is easy to read off from the
above calculations a number of basic properties of the Hermite functions:

(i) The n-dimensional Hermite functions are products of one-dimensional
Hermite functions; namely,

ha(T) = ha,(%1) " ha, (Tn)-

(i1) The function H,(z) = e"zha(a:) is a polynomial of degree |a|, called
the ath Hermite polynomial. We have

J(\/-2_7F$)

wlal
Hy(z) = 2("/4)"""'\/ — % + (terms of degree < |a|).

(iii) Every polynomial of degree < k on R" is a linear combination of
Hermite polynomials of degree < k. This follows from the preceding formula

by induction on k.
(iv) Since [Z;, Z}] = 7~ 16;.1, one finds by induction that

[Zj, Z*a] — W—lajz*(a—l,-).

(v) We have

a; . a;j+1
(1.82) Zihy = 1/?’ ha-1;, Z5he = \/ J7r ho+i; -

Of course this follows immediately from the corresponding property (1.78) of
the (.’s, but it can also be verified directly by using (iv) and the formula

ho = /7ol /al Z*2h,.

(vi) In dimension one we have

ZZ* = (X +iD)(X —iD) = X%+ D? +i[D,X] = D* + X% + (2r)"'I.

The operator

1 &2

2 2y _ _t 9

2m(D? + X?%) = 2mwz? o da?
is called the Hermite operator (adapted to our use of e~ rather than
e=="/2; the usual Hermite operator is z2 — (d/dz)?). The one-dimensional

Hermite functions are the eigenfunctions of this operator: by (1.82) we have

2m(D? + X))k = (2022* — 1)ht = 24/7(k + 1) Zhiy1 — hi = (2k + 1)hi.
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In n dimensions, this equation together with (i) shows that h, is an eigenfunc-
tion of the Hermite operators in each variable,

(1.83a) 2m(D? + X)ha = (2aj + 1)ha,

as well as of the n-dimensional Hermite operator 2w(D? + X2), that is,
27 E;’(Df + X;‘-’):

(1.83b) 21(D? + X%)hy = (2|a| + n)hq.

(vii) {ha} is an orthonormal basis for L2(R"™). This follows from the cor-
responding property of the (,’s, but we can prove it directly from (1.81) as

follows. We have
wlal+18l I
(R, hg) = 1/a!—m(ho, Z°Z*Phy).

Since Zjho = 0, if aj > B; for any j then repeated application of (iv) shows
that (hqa, hg) = 0, while if @ = B it shows that ||hqa||2 = ||ho]||2, and the latter
number is 1. As for completeness, if g € L? and (g, ha) = 0 for all a, then by
(iii), (g, P(m)e‘"’) = 0 for all polynomials P. But then

/g(m)e—nzze2riz€ dr = ; ‘/‘g(m)e"'zz(z—?;—c—)i dz =0,

so by Fourier uniqueness, g(:z:)e_’”’2 =0 a.e., and hence g = 0.
(viil) The Hermite functions are eigenfunctions of the Fourier transform F.
Indeed, since ¥ X; = —D;F and FD; = X;F, we have

FZ} = F(X; —iD;) = (=Dj — iX;)F = —iZ} F.

Moreover, Fho = hg, so

lel [mlal
(1.84) Fh, = Wa_!f'z*aho — (_z')lal 7ra_' Z*hy = (—i)lalha.

We conclude this section by deriving two classical generating function iden-
tities for Hermite functions. The first one is more or less equivalent to the fact
that the Bargmann transform maps the orthonormal basis {h,} for L?(R")
to the orthonormal basis {(q} for F™; the second one is somewhat deeper. In
order to obtain uniformity of convergence, we shall need the following lemma.
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(1.85) Lemma. There is a constant C, depending only on the dimension n,
such that

Ihalleo < C(la] + 1)™/2.

Proof: In dimension 1 we have ||kj|l2 = 1 and, by (1.82),

1 . 1 . : 1 [25+1
ID;113 = 502 = Z99hsll3 = 5=lIVi hims = Vi + Thinll = 5 ,

T

since h;j_j Lh;;1. Moreover, the Fourier inversion formula implies that ||2;]|cc <
2|1, so by the Schwarz inequality and the Plancherel theorem,

Il < [s@1de < ( [+ eiscorn dE)I/ 2 (Ja+er d€)1/2

1/2
= (1h;lI3 + |\ Dh;|3)" * =/
=225 +1+4r.

The n-dimensional case now follows easily in view of (i) above. 1

(1.86) Theorem. We have

Z ha(x)Ca(z) — 211/4621r1:z—1r1:2—(1r/2)z2 — B(z,m),
lee| 20

where B(z,z) is the Bargmann kernel (1.79). The series converges uniformly
on R" x K for every compact K C C", and also in L*(z) for each z.

Proof: The assertions about convergence follow from Lemma (1.85) and
the fact that (,(z) = {/=l®l/a!z* tends to zero rapidly as |a| — oo for z in
any compact set. To sum the series, observe that by (1.81),

2n/4 1 el rz? 3 \° —2n(z—2)?
o= 7= (7)< (3) le=o-

Hence, by Taylor’s theorem,

e—21r(:z:—z)2 — Z (2ﬁ)lalmha($)g _ 2—1:/46—1r1.-2 z ha(m)Ca(2Z),

on/4nz?

and the desired result follows immediately on replacing z by z/2. I
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(1.87) Mehler’s Formula. For z,y € R" and w € C with [w| < 1 we have

2 n/2 —7m(1 + w?)(z? + y?) + 47wy

2: lalh()h()—( ) [ Y
w'™ho(T)hal(y — exp — 2 ’
|a]50 l1—w l1—w

(Here u = 2/(1 — w?) lies in the right half plane, and the square root in u™/?

is the branch that is positive for u > 0.) The series converges absolutely and
uniformly on compact sets of R?" x {|w| < 1}, and also in L?(y) for each = and
w.

Proof: The assertions about convergence follow easily from Lemma (1.85)
and the orthonormality of {h,}. To sum the series, we replace z by wz in
Theorem (1.86):

Z w'“'ha(m)ca(z) — 2n/4621rwzz—1rz2—(1r/2)wzzz.

We apply the inverse Bargmann transform to both sides. On the one hand, for
fixed w and z, the left side converges in the Fock space norm by Lemma (1.85),
and its inverse Bargmann transform is clearly

B! (Z w'“lha(m)ca) @) = 3wl ha(2)ha(y).
On the other hand, the right side satisfies

|2n/4e21rwzz—1rzz—(1r/2)z2| < Ce(n/2)(|w|2+€)|z|2 < C¢e6|z|2

for some § < 7/2, so we can apply (1.80) to see that its inverse Bargmann
transform is

2n/2 /e21rwzz—1r::2—(1r/2)wzzz+21ry?—1ry2—(1r/2)'Eze—1r|z|2dz
=2n/2e—«(z2+y’)/e(x/z)(—w’z’—7’+4wzz+4y?z‘)e—1r|z|’dz

By Theorem 3 of Appendix A, this last integral equals

2.2 _ 2 2,2
(1- w?) " exp |(-m) 2L

and the result follows immediately. 1

Several people have obtained extensions of Mehler’s formula in which expo-
nentials of more general quadratic functions are expanded in series of Hermite
functions; see Louck [97] and the references given there.
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8. The Wigner Transform

The Wigner transform of two functions f and g is the Fourier transform
of their Fourier-Wigner transform:

W(f,9)(& z) = f / e~ E+= 0V (£, 0)(p, q) dp dg.

W(f,g) was first introduced into the literature in the case ¢ = f by Wigner
[156]; the general case seems to have been first studied by Moyal [108]. Since

(1.88) V(f,9)(p,9) = / 2™ f(y + Lp)g(y — 3p) dy,
we have
W(f,9)(¢, )= / / / e~ 2miEp+2a=v9) £(y 4 1p)g(y — 3p) dy dpdy,

so by the Fourier inversion theorem,

(1.89) W(f,9)(¢,7) = / e~ f(z + 1p)3(y — 1p) dp

The expressions (1.88) and (1.89) are deceptively similar; it is hard to believe
that they are always Fourier transforms of one another! In fact, a simple cal-
culation shows that

(1.90) W(f,9)(& x)=2"V(f,9)(2z,—2¢), where g(z)= g(—=z).

Like V, the sesquilinear transform W can be regarded as the restriction to
functions of the form f(z)g(y) of the linear transform

(L.91) WF(E2) = [P (e + p,2 - dp) b,

defined for functions F of 2n variables. W is the composition of the measure-
preserving change of variables (z,p) — (z + % p, T — %p) with Fourier transfor-
mation in the second variable, so it preserves the classes S(R?") and S'(R?")
and is unitary on L2(R2"). Therefore:

(1.92) Proposition. W maps S(R") x S(R") into S(R?") and extends to a
map from S'(R") x §'(R™) into S'(R?"). Moreover, W maps L?(R") x L?(R")
into L*(R?") N Co(R?") and satisfies

(1.93) (W(f1,91), W(f2,92)) = (f1, f2){91,92)

and [W(f,9)lleo < [I£ll2llgll2-
Proof: The assertions about S and S’ and the unitarity relation (1.93)

are consequences of the properties of W. The estimate on |[W(f,9)|lco comes
from the Schwarz inequality, and the fact that W(f,g) € Co for f,g € L? then
follows since S is dense in L2. I
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(1.93) is often called Moyal’s identity.

We summarize the basic transformation properties of W(f,g) in the fol-
lowing proposition. The verifications of these formulas are all easy exercises
which we leave to the reader.

(1.94) Proposition. For t € R\{0}, let f(z) = |t|*/2f(tz). Then:

(@) WS, ¢ )& z) = W(f,9)(tT'¢, tz).
(b)  W(p(a,b)f, p(c,d)g) (£, )
= emibe—ad)+2mil(a—c)e+(b-d)zl 7 ¢, 9)(é—3(b+d), z+ 1(a+0)).
() W(F,9)¢ ) = W(f,9)(z, ).
d) Wi, f)=W({f,9).

As a special case of Proposition (1.94b), we have

(1.95a) W(p(a,b)f, p(a,b)g)(¢,z) = W(f,9)(§ = b, = + a),
or, what is sometimes more convenient, with p'(a, b) = p(—b, a) as in (1.27),
(1.95b) W(p'(a,5), p'(a,b)g)(&,7) = W(F,9)(¢ — a, = — b).

The function W( f, g) is of greatest intrinsic interest in the case ¢ = f. In
this case we shall write

W(f,f)=Wf

and call W f the Wigner distribution of f. W f was proposed by Wigner [156]
as a substitute for the nonexistent joint probability distribution of momentum
and position in the quantum state f. The motivation is as follows. Since the
uncertainty principle imposes a limit on the precision with which momentum
and position can be determined in the state f (f € L?, || f||2 = 1), it does not
make sense to speak of a joint probability distribution for these observables.
However, if such a distribution existed, with density o(§, z), then the inverse
Fourier transform of o,

// e2"'"(”€+9’)a(§, z) d¢ dz,

would be the expected value of the function e2™(P€+92) with respect to 0. The
latter quantity has a natural and consistent interpretation in quantum mechan-
ics, namely, the expected value of e2™(PD+¢X) in the state f:

(e?mPHN £, f) = (po(p, 0)f, £} = V(£, ),
so we are led to take o = V(f, f)" = Wf.
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W f is usually not a genuine probability density, because it may assume
negative values. (Indeed, if f is odd we have W f(0,0) = —|| f||3.) It is, however,
always real, by Proposition (1.94d), and in some sense it tries very hard to
be a joint density for momentum and position. The following results provide
supporting evidence for this heuristic assertion.

In the first place, W f has the right marginal distributions: if we integrate
out either position or momentum, we get the probability distribution for the
other one.

(1.96) Proposition. We have
[wieade=1fOF ad  [WiEod=1fE)P
Proof: Letting u =z + 3p and v =z — 3p, we have
[wieards = [[ e fa + 1o)Fe = Tr) dpds

B // &2 f(u)e =27 f(v) du dv
= flefe).

This proves the first assertion, and the second one follows from the Fourier
inversion formula:

/ Wf( z)dE = f f ‘2"'ff’f(x+2p)f(z— 1p)dpd¢
/ 50)f(z + 1p)f(z — 1p)dp = |f()P".

Remark. We have been a bit sloppy here. An examination of these cal-
culations shows that they are rigorously correct if f € L' (which guarantees
that Wf(¢,-) € L') and f € L! (which guarantees that W f(-,z) € L). If
f is merely in L?, the integrals [ W f(§,z)dz and [W f(,z)d¢ need not be
absolutely convergent, but the above formulas remain valid if they are suitably
interpreted, a task which we leave to the reader.

As a corollary, under suitable hypotheses to ensure convergence, we obtain

J[ewieardeds = [w1s@)rde = (X, 1),
[[ewsendeds = [eifers = ;s .
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This implies that the center of mass of W is (£, T) where £ and T are the
centers of mass of |]?|2 and |f|? respectively.

The next result shows that if the position or momentum spectrum of f
is limited, there is a corresponding limitation on the support of W f. In what
follows, “supp(f)” means the smallest closed set outside of which f = 0 a.e.,
and we may assume that f = 0 everywhere outside supp(f).

(1.97) Proposition. Let m; and 7, be the projections from R™ x R" onto the
first and second factors, and for E C R" let H(E) denote the closed convex
hull of E. Then

m (supp(Wf)) C H (supp(f)) and  my(supp(Wf)) C H(supp(f)).

Proof From (1.89), Wf(f, z) = 0 unless there is some p for which r + 1 3P
and z — -p are in supp(f); in this case z, being halfway between these points,
is in H (supp( f )) This proves the second assertion, and the first one follows in

the same way since W f(§,z) = Wf(—:v,f) by Proposition (1.94c). I

In view of these results, the Wigner distribution W f can be viewed as a
sort of portrait of the quantum state f in phase space. Another fact which
supports this point of view is that

W(e?m(eX=D) )¢, z) = W f(€ — a, = — b),

so that momentum-position translations of f (cf. the discussion following (1.27))
correspond to ordinary translations of W f. In this connection we should observe
that W f determines f up to a phase factor: '

(1.98) Proposition. Wf = Wy if and only if f = cg for some ¢ € C with
le] = 1.

Proof: From formula (1.89) and the Fourier inversion theorem we see that

Wf =Wy if and only if
f(z+ 2p)f(;1: - ) g(z + %p)g(m - %p) for almost every z, p,

in other words, f(u)f(v) = g(u)g(v) for almost every u,v. The assertion is now
obvious. 1

A more classical interpretation is also available. Take n = 1, and let f(t)
represent the amplitude of a vibration—say, a sound wave—at time . Then the
Fourier representation f(t) = [e?™w!f (w)d/.u tells how f is synthesized from
waves of definite frequencies, and W f gives a picture of f in time-frequency
space. This is rather like what is done in music. f might represent a musical
composition, but composers almost never try to describe either f or f directly;
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rather, they make a “time-frequency plot” of f by writing notes on musical
staves. For this reason, de Bruijn [37] has dubbed W f the “musical score” of
f.

For any f in L%, by the Schwarz inequality we have |W f(£,z)| < || flI3,
and hence

‘/EWf(E,z)dﬁdz < |If113 - meas(E).

On the other hand, by Proposition (1.96),

/ /R W f(¢,2)de dz = |1l

Hence the mass of W f cannot almost all be concentrated in a set E in phase
space unless meas(E) > 1. This is a form of the uncertainty principle; some
quantitative versions of the uncertainty principle for W f can be found in
de Bruijn [37].

Let us return to the question of the positivity of W f. Although W f may
assume negative values, it tends to be positive “on the average”: it is easy to
make W f positive by convolving it with a suitable function G.

(1.99) Proposition. Suppose G € (L' + L?)(R?") satisfies [(W f)G > 0 for
all f € L2(R"™). Then W f x G > 0 pointwise for all f € L?(R"). In particular,
this is the case if G = Wg for some g € L%(R"); in fact,

Wf * Wg(é.,w) = Iv(f, g)(—.’l,‘,f)|2
where f(z) = f(—z).
Proof: We observe that by (1.95) and Proposition (1.94a) (with t = —1),
Wf(£ -, - y) = Wf('? - £’ y-— :1:) = W(p(_wa f)f)(’?, y)

and hence

W+ G(€,z) = / / W (o(=z, €)F)(n, ¥)G(n, y) dn dy.

This proves the first assertion. If G = Wg then G is real, so by Moyal’s identity
(1.93) the above equation gives

W * Wg(€,z) = (W(o(—z,€)f), Wg)
= (o(—=z,6)f, )P = [V(F, 9)(—=,6)[>. 1

Other examples of G’s satisfying the condition [(W f)G > 0 for all f may
be found in Janssen [85].
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To understand the meaning of Proposition (1.99), let us consider a specific
example. For a > 0, let

#0(z) = (2a)"/4e"o=" and &, = W¢l.
A simple calculation shows that
Ba(6,x) = 2"~ ETHOTE) = 4 (2)4y/0(€) where  $u(z) = (20)"2e72,

so Proposition (1.99) shows that W f+®, > 0 for all f € L and a > 0. Now, ¢,
is a Gaussian of total mass 1 whose central peak has width roughly || X;¢.||2 =
1/+/4ma, so convolving W f by ®, more or less amounts to averaging W f over
balls of radius 1/v/4ma in z and over balls of radius y/a/4~ in £. The uncertainty
principle does not allow position and momentum to be measured simultaneously
with complete precision, but it allows position to be measured with an error e
and momentum to be measured with an error § provided that e§ > (47)~!. So
it should be possible for the averages of position and momentum over balls of
radius € = 1/v/4ma and 6 = (/a/4w to have a joint distribution—and this is
WF*xd,.

More generally, if we average over larger balls (that is, convolve with more
spread-out Gaussians) we get something strictly positive, while averaging over
smaller balls doesn’t work, as the following result of de Bruijn [37] shows:

(1.100) Proposition. Let

.'132

®,5(é,7) = 2n(ab)—n/2 exp(—2r) (% + 3 ) , a,b>0,

and suppose f € L} (R"). Ifab =1 then Wf +« ®,3 > 0. If ab > 1 then
Wf*®,p >0. If ab <1 then W f x ®, , may be negative.

Proof: We have proved the first assertion above. If ab > 1, pick ¢ < a
and d < b with ¢d = 1. By the semigroup property of Gaussians (easily verified
by taking Fourier transforms),

Wi*x@ap=(Wfx®ca)*Pacp—a

But Wf*®.q4 > 0and ®,_.p—a4 > 0, so the second assertion follows. As for the
last one, we leave it as an exercise for the reader to verify that if f(z) = ze~"* ?

on R, or more generally f(z) = z1e~™ on R", then W f * ®,,;(0,0) < 0 if
ab< 1.1
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There remains the question of when W f is itself nonnegative. We have
seen that this is the case when f(z) = e~™** . More generally, if

f(z) = e~*Az*bz+e  where A € GL(n,C), be C", c€C,

(1.101) T :
and Re A is positive definite,

then W f > 0. It is not hard to prove this by a brute force calculation of W f,
and the reader is welcome to do so. We shall return to this point in Section
4.5, when we shall have the machinery to make it utterly transparent. The
remarkable thing, however, is that the functions (1.101) are the only ones with
nonnegative Wigner distributions.

(1.102) Theorem. (Hudson [77]) If f # 0 € L}(R") and W f > 0 then f is
of the form (1.101).

Proof: For z € C™ let 4,(x) = e~™= ~2™:=_ i is easily checked that
Wi, (€,z) = on/2 exp(—-27ra:2 — 27(¢ + Re 2)? + 4n(Im z)z) >0,

so that if W f > 0, (1.93) yields

(s, F)I? = f (W, )(WS) >0 for all z.

Therefore, if we set
G(z) = (s, f) = [ F@)e™-2mxds,
G is a nonvanishing entire function of z. Moreover,
e B

SO

IG(2)| < |Ifllzll$:ll2 < Ce™".

We claim that G(z) is therefore of the form e*4**%**¢,  Granted this, we
must have Re(A) negative definite since G|R" = (Te_"z)A € L?. But then
T(m)e‘”z = F~1(G|R")(z) is of the form (1.101), and hence so is f.

As for the claim: this is a reasonably well known fact, at least in dimension
1, but here is a direct proof. Since G is entire and nonvanishing, the function

H(z) =logG(0)+‘4”] %(tt))dt
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(where [0, z] is the line segment from 0 to z) is entire, and G = ¢f. The bound
on G means that

(1.103) Re H(z) < C' + |z|>.
Let H(z) =) ay,z*. Given r > 0, we set
2(01,...,0n) = 2(0) = (re’®r ... ,re'%), 0<6; <2m,

so that . _
Re H(2(6)) = 3 ) _(aar'®le’*® + a,rile=io?),

The right side is a Fourier series, so

aqriel = 2 z P or a
o = T Jyp BTN 08 fox a0,
1
Reay = L ~/[‘0,21r]" [ReH(z(G))]dG,
and hence

lao|r!®! + 2Reaq <

2
(2m)n /[0,2"]" [[Re H(2(8))| + Re H(2(6))] do
4
— (2m)m [0,27]"
< 4(C' +7r?),

max (Re H(z(9)), 0)dd

by (1.103). Letting r — oo we conclude that a, must vanish unless |a| < 2, so
H is a polynomial of degree < 2. I

A generalization of Hudson’s theorem, pertaining to Wigner distributions
of more general (non-L?) functions, can be found in Janssen [87].

9. The Laguerre Connection

In this section we calculate the Fourier-Wigner and Wigner transforms of
the Hermite functions. The answers turn out to involve the Laguerre polyno-

mials Lﬁj ), defined for nonnegative integers j and k by

k .
Dy — (k+5)  (==)"
L@ =Y GomiGrmy m

m=0
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(For each j, the polynomials Li’ ) are orthogonal on (0, 00) with respect to the
measure z’e~* dz.)

It suffices to consider the one-dimensional case, since n-dimensional Her-
mite functions are products of one-dimensional Hermite functions, and the
Fourier-Wigner and Wigner transforms preserve the product structure; that
is,

V(ha, hs)(p,q) = H V(hay, hg,)(Pi»95),

J=1
and siinila.rly for W.
(1.104) Theorem. Suppose p,q € R and w = p +iq. Then

B e DIl (rw)i=* L (xw]?)  for j > k,

V(hj, he)(p,q) = o
’ /5 e IO (— TS LD (xful?) forj < k.

In particular,
e &1 3 w 2
V(hj, h;)(p,q) = e~ /Dl L (z]w|?).

Proof: The simplest method is to perform the calculations in Fock space.
We have

V(hhhk)(p, q) (P(P, )hJ’ hk (w)CJ’ Ck)f

k
W"":' / =B (x/Dlwl? (; 4 p)igke=mlel’ g,
_ 7r-7+ e—("/2)|w|2 j!w"—m /zmzke nzﬁ—rlzlzdz
STkl 24 (G —m).
o i m
= [T e PO (O / The~m Tl gy
7'k! = ml(j —m) ow

But

/Eke—"m—"lzlzdz = (E_uw, zk)}- = (2%, E_,)r = (—w)~.
Hence the sum in the last formula for V(h;, hi) becomes

Z m'(] )'( l)k m —mm.

m=0
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If j > k we make the substitution m — k — m, obtaining

V(hj, he)(p,q) = \/;":e—(vrlz)luq2 Z VT w) (= |w]2)™

(k—m)!(j +m)!m!

k! _ w/2)|w ) — =
= |51 Rl

while if ; < k we make the substitution m — 7 — m and obtain similarly

Vs, he)(p,0) = [ eI (R LED ).

This result sems to have been first pointed out in the case j = k by
Klauder [90]. In the general case it was proved independently by Itzykson [81],
Miller [106], and Vilenkin [145], and it has since been rederived by Peetre [116],
Howe [74], and possibly others. Let us examine some consequences of it for the
Laguerre functions

1i(t) = e~ 2 LO(2).

In the first place, the orthonormality of the I;’s in L2(0, oo) follows immediately
from the unitarity of V:

co co p2w
/0 Li(t)l(t) dt = /o /o 1(xr?)l(nr?)r 8 dr
=/Clj(7r|w|2)lk(7r|w|2)dw=(V(hj,hj), V(h, b)) = 6.

Secondly, if we set
L;(p,q) =1;(v(p* + %)),

then, by Proposition (1.46), the operator p(L;) is the orthogonal projection
onto h;. Hence, by (1.83), the spectral resolution of the Hermite operator
n(D? + X?) is given by

n(D? +X?) =) (G + 3)n(L;)).

More generally, suppose ¢(t) is any measurable function on (0,00) that
is O((1 + t)V) for some N. Then we can expand ¢ in a series of Laguerre
functions:

¢ = EO:CJ'IJ', Cj =/0 B(t)A;(t) dt.
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(The series converges in L? if ¢ € L? or in a suitable weak sense for more

general ¢.) If
®(p, q) = #(7(p* + %)),

we then have ® = 3 ¢;£? (the sum converging at least in S'(R?)), and p(®) =
Y- cjp(L;). We can therefore summarize the situation as follows:

p|6(x(s* +4%)| = 8(x(D* + X?)),

where the right side denotes the ordinary functional calculus of self-adjoint
operators and ¢ is the function on the spectrum of 7(D? + X?2) defined by

3G+ 1) = /0 " S0)1(8) dt.

This result is due to Peetre [116], who used it to give Fourier-analytic derivations
of various properties of Laguerre functions. (See also Itzykson [81].)

Closely related to these results is a formula due to Geller [55] that expresses
the group Fourier transform of radial functions on H,, (i.e., functions f(p,g,t)
that depend only on p? + ¢2 and t) in terms of Laguerre transforms. The
connection between Laguerre functions and Fourier analysis on H, has been
exploited in the study of various translation-invariant operators on H,, by de

Michele and Mauceri [39], Jerison [88], Nachman [110], and Beals, Greiner, and
Vauthier [20].

Next we compute W (h;, hi). This can be done easily by applying equation
(1.90) to our formula for V(hj, hi), since the h;’s are all either odd or even.
However, for the sake of variety, we shall present an independent derivation,
following Janssen [85], that utilizes the Bargmann transform in a somewhat
different way.

(1.105) Theorem. Suppose €,z € R and z = = +1{. Then

2(_1)k\/’Jc::e_%'zlz(zﬁz)j—kLg_k)(47r|2|2) for j > k,

h. z) =
W( it hk)(é.’ ) {2(_1)] f-!!e_2r|z|2(2\/7—rz)k—jL.(ik—J')(41r|z|2) forj S k.

In particular,
Whj(€, z) = (—1) e 2" L0 (4n|2|2).
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Proof: For u € C, let
Bu(.’B) — B(u,a:) — 21/4621ruz—1rzz—(1r/2)u"
Then by formula (1.89), W(B,, By)(§, ) equals
21/2e21rz(u+v)—(1r/2)(u2+v’)—21rz":/‘e—21rip[£+i(u—v)/2] e(—‘1r/2)p’dp

=2621rz(u+v)—(1r/2)(u2+vz)—21rz’—21r[€+i(u—v)/2] 2

=% —2m|z|? 21r(?u+zv) —Tuv

—21r|z|’ Z (_W)l(27r7)m(27rz)num+lvn+l

!!'m!n!
l,m,n=0

min(j,k) 1o, =\j—1 k—1
-21r z|? 7 (—W) (27[’2)" (27[’2')
& Z“ ) Z NG =NE=0

2,k=0

On the other hand, by Theorem (1.86),

W(B., By) = Z ,k, * v W (h;, hi).
Jxk—

Hence

—amtzz [ 3! minGE) nerz)-Y(2rz)E-

and the same manipulations as in the proof of Theorem (1.104) can be used to
express this last quantity in terms of Laguerre polynomials. 1

Remark. If we compare the formulas for V(h;,h;) and Whj = W(hj, h;)
in Theorems (1.104) and (1.105), we obtain the following result. If

Fj(w) = e—("/z)l"’lng-o)(wlw|2), w € C = R?,

then R -
F;(z) = 2(—1)’ F;(22).

If this equation is written out in polar coordinates, it reduces to the formula
oo
/ e_'2/2L§-0)(r2)Jo(rs)r dr = (—1)’6"2/2L§°)(32)
0

(where Jj is the Bessel function of order zero), which can be found in tables of
Hankel transforms.
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10. The Nilmanifold Representation

In this section we discuss yet another interesting way of realizing the ir-
reducible representations of H,,. We restrict attention to the representation p
and leave the generalization to pn, h # 1, to the reader.

Here it will be convenient to use the polarized form HE®! of the Heisenberg
group. We recall that this is R2**! with the group law

(p,a,t)(P,d,t)=(@+p,q+4d,t+t +pg'),

and that the map a : HP®! — H,, defined by

a(p,q,t) = (p, 4, t — 3Pq)

is an isomorphism. The representation p of H,, corresponds to the representa-
tion pP°! = p o a of HE!, given by

1.106 Pol(5 q,8)f(z) = 2™ (tH92) £z 4 p) = 2™it2miaX 2mipD £,
p

Let T denote the subset of HR? consisting of points whose coordinates are

all integers:
I'={(p,q,t) EHE: p,g€Z" and t € Z}.

Then T is a discrete subgroup of HE®', and the right coset space
. M =T\Hp
is a compact nilmanifold. It is easily verified that the half-open unit cube
Q2+ = [0,1)2"+! c HEO

is a fundamental domain for I', that is, each right coset of I' contains precisely
one point of Q?"*!, Hence M can be considered topologically as the closed

unit cube an“ with certain pieces of its boundary identified with each other,
a sort of “twisted torus.” (In fact, M is a nontrivial circle bundle over the 2n-
torus.) Moreover, Haar measure on HE°'—namely, Lebesgue measure—induces
an invariant measure on M, so measure-theoretically we can think of M as
the cube Q?"*! with Lebesgue measure. We shall identify functions on M
with I-invariant functions on HR® or with functions on @?"*1, as the occasion
warrants.

The action of HR® on M by right translation determines the regular rep-
resentation R of HR? on L?(M):

R(X)f(TY) = f(TY X).
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L?(M) breaks up into a sum of R-invariant subspaces H; according to the
action of the center of HE®!:

M; = {f € L*(M): R(0,0,t)f = e*™'f}, j€Z.
In other words,

(1.107) f e Hj < f(p,a,t) = €™ f(p,q,0).
If we think of f € L?(M) as a function on Q2?"+1, the expansion f = Y f;,

fj € MH;, is just the Fourier series of f in the variable ¢:

£i(p, g, t) = 37 / f(p,q, 7)€ 2" dr.
Q2n+1

By the Stone-von Neumann theorem, the restriction of the representation R to
H; is equivalent to a direct sum of copies of p;. Our interest here is in the case
Jj = 1, where, as we shall see, the restriction of R is irreducible.

Let us define a map T from functions on R” to functions on HE®! as follows:

Tf(p,q,t) = Z f(p + K)e?miKag2mit,
Kezn

If f € S(R™), say, this series clearly converges nicely to a C* function on HR.
Moreover, if (a,b,5) € T,

Tf((a,5,5)(p,9,t)) =Tf(p+a,qg+b,t+j+aq)
— Zf(p +a+ K)e21rz'K(q+b)e21ri(t+j+aq)

= Z f(p +a+ K)ezﬂi(¢+K)qe21rit.
But on relabeling the index K of summation as K — a, we see that this last

sum is nothing but Tf(p, g,t). Thus Tf is I-invariant, and we may (and do)
regard it as a function on M. As such, T'f is in H; by (1.107), and we have

ITflIZ2car) = /Q — ITf(p,q,t)|* dpdg dt

=2 /[o,l)» |f(p+ K)?dp  (by Parseval)

= [I1I3,

. 2
> fp+K)e™K9| dpdg
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so T is an isometry from L?(R") into H;. T is actually surjective onto H,, for
if g € H; we can expand g in a Fourier series on Q?"11:

g(p’ q, t) = 62““ Z aJKe2"i(Jp+Kq), (p, q’t) € Q2n+l-
JKEZn

We then have g = T f where f is the function defined piecemeal on R" by

f(z+K)= ZaJKez"”’ for ze€[0,1)", KeZ"
J

Finally, observe that

T[o™(p,9,t)f] (¢, 4", ¥) = Z 2milt+Ha@ K] f(p 4 p 4 K)e?mKT 2mit
- Z fo' +p+ K)ez""K(q'+q)621ri(t’+t+p'q)
= [R(p,q,)Tf](P', 4, t").

We have therefore proved:

(1.109) Theorem. The transform T defined by (1.108) is a unitary map from
L*(R™) to H, which intertwines pP® and R|H;. In particular, R|H; is an
irreducible unitary representation of HR! that is equivalent to pP°.

Remark. For |j] > 2, the representation R|H; is not irreducible, but it is
of finite multiplicity. See Auslander [7] or Brezin [26] for a detailed analysis of
its structure. For j = 0, functions on H, can be identified with functions on
the 2n-torus R%2"/Z2", and the irreducible subspaces are the one-dimensional
spans of the functions e?™*(/P+Kd) J K ¢ Z".

The central variable ¢ enters the above calculations, as usual, in a rather
trivial way, so we can provide an alternative description of the space H; and
the transform T that does not mention it. Namely, if f € H;, f is determined
according to (1.107) by the function

fo(p,q) = f(p,q,0)

on R?". (Here we regard f as a function on HE®.) The I-invariance of f
translates into the following quasi-periodicity property of fo:

(1.110) fo(p +a, ¢+ b) = e~ 2% fy(p,q) for a,be€ Z".

A function satisfying (1.110) is competely determined by its values on the unit
cube Q2" in R?", and its absolute value is actually periodic in all variables.
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Moreover, the norm of f in L?(M) equals the norm of f, in L?(Q?"). Hence if
we define

H = {f : f satisfies (1.110) and /Qz” |f(2)|dz < oo} ,

the map f — fy is unitary from H; to H!. The corresponding map T :
L*(R"™) — H! is given by

(1.111) Tof(p,0) = (T a)= Y. fo+ K s,
KezZ»

and the corresponding representation Ry of HR® on H! is given by
(1112) Ro(r, sat)f(p7 q) = f(P +r,q+ 8)62,".(“'3?).

The transform T and its close relative Tj are referred to in the literature as
the Weil-Brezin transform (the name we shall adopt) or the Zak transform.
To was described by Weil [151, pp. 164-5], although it is implicitly present in
much earlier works; and T' was introduced later by Brezin [26]. Meanwhile, Tj
and the representation R, were discovered independently by Zak [158], [159],
who found them useful for solving problems in solid state physics involving
motion in a periodic potential and for studying other quantum phenomena in
which periodic variables occur. Zak calls the representation Ry (or rather its in-
finitesimal version) the kq representation, k and ¢ being the standard names
of the quasi-position and quasi-momentum variables in solid state physics.

We now discuss some interesting properties of the Weil-Brezin transform
T, and the representation Ry.

(i) The infinitesimal representation dRy of h, on H! is given by

dRy(r,s,t)f = Z (rjgz—’f; + s,-aa—"]fj +27risjpjf) + 2mitf.
1

This follows easily from (1.112). A similar formula holds for the infinitesimal
representation dR on H;, provided that one considers elements of H; as I'-
invariant functions on HE® rather than functions on M. (The coordinates p;
are not well defined on M. The reader may check that if f € H;, the function
0f/0q; + 2mip;f is I-invariant although 0f/0¢; and 27ip;f individually are
not.)

(ii) The operators p(a,0) = €2™**D and p(0,b) = €2™**X on L?*(R") com-
mute when a and b are both in Z"®, and the Weil-Brezin transform provides the
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spectral resolution for this family of commuting normal operators. Indeed, if
a€Z",
T0(621n'an)(p, q) — Zf(p +a+ K)e2qu

= Z f(P + K)e21ri(K—a)q = e—21riaqT0f(p, Q),
and if b € Z",

To(e2™X £)(p, q) = Zf(p + K)e2mibp+K) g2miKg
= 2™ Ty f(p, q).
Combining these results with the fact that p(a,0)p(0,b) = €™**p(a, b), we have
(L118)  To(p(a,b)f)(p,a) = (—1)*e2"Cr-20T f(p,q) for a,be Z".

" (iii) Tp is not only an isometry from L?(R"™) to L?(Q?") but also a con-
traction from LP(R"™) to LP(Q?") for 1 < p < 2. Indeed, for p = 1 we have

T — + K eZm'Kq dod
[To £l /an IZf(P ) p dg
< [ i+ Kldp=1flh

and the case 1 < p < 2 follows by interpolation.

(iv) The following slightly bizarre property of the space H! was observed
by Zak and Janssen [86].

(1.114) Proposition. Every continuous function in H! has zeros.

Proof: Suppose f € H! is continuous. Since R2" is simply connected,
if f were nonvanishing we could write f(p,q) = e2™i¥ (.9 for some continuous
function 9. The quasi-periodicity (1.110) implies that for every a,b € Z" there
exists K, j € Z such that

¥(p+a, g+b) =9(p,q) —ag + Kap.
But this is self-contradictory: on the one hand,
¥(a,b) = ¥(0,d) — ab+ K, 0 = (0,0) — ab+ K, 0 + Ko p,
and on the other,

’l/)(a, b) = ¢(a, 0) + Ko’b = ¢(0, 0) + Ka,O + Ko’b. |
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(v) We now assume n = 1. Given 7 € C with Im7 > 0, let

¢r(1') — em“r:::2 .

Then ¢, € L?(R), and we have

[o o]
To¢+(u,v) = Z g2mikvtmir(utk)® e”‘fuzﬂs(z, q),

k=—00

where

(o ]
. 2 .
z =m(v + Tu), g=¢e™", Y3(z,q) = E q* ek,
—00

Y3 is one of the basic Jacobi theta functions, in the notation of Whittaker and
Watson [154], the others being

91(2,9) = —ie*t A9y (2 + §m(r - 1), g),
192(2’ q) = i91(2 + %Wa q) = eiz+i1rr/4193(z + %7”'7 q)s
194(27 q) = i93(‘2' - %7‘-1 q),

where ¢ = ™" throughout. Since
To (0P (r, 3)ér)(u,v) = Ro(r, $)Todr(u,v) = eE™** Ty (u +r, v + 3),

these other theta functions can be obtained (up to factors involving only el-
ementary exponential functions) as Weil-Brezin transforms of the functions
pP°\(r, s)$, where s+ 7ris (1 — 1), 37, or 3.

These relations suggest that the Heisenberg group and the nilmanifold M
should be of use in the study of theta functions. That is indeed the case, and
this connection has been much exploited in recent years. See Auslander [7],
Auslander-Tolimieri [8], Igusa [80], and Mumford [109].

11. Postscripts

The Heisenberg group plays a role in many other parts of analysis besides
the subjects discussed in this monograph. In this section we provide a brief de-
scription of some of these areas and a few selected references, mostly expository
works from whose bibliographies the reader can obtain a more complete guide
to the literature. At the outset, let us mention the article of Howe [75], which
surveys several aspects of the Heisenberg group that are considered here from
a somewhat different point of view.
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Several Complex Variables. As is well known, the unit disc in C can be
mapped onto the upper half plane by a fractional linear transformation, and the
boundary of the upper half plane (namely the real axis) can be identified with
the group of horizontal translations of the plane. There is a similar situation
in higher dimensions. We work in C"**! and denote points in C**! by (¢, 7)
where ( € C" and 7 € C. The analogue of the unit disc is the unit ball,

Bny1={(¢,7) € C™ o [(1P +|7? < 1},
and the analogue of the upper half plane is the Siegel domain
Doy ={(¢,7)eC*™ :Im7 > |(|2}.
It is easily checked that the fractional linear transformation

¢(¢,7) = (,'(TS 1)’ z(:tll))

maps Bp4; onto Dy4;. Finally, the analogue of the horizontal translation
group is the Heisenberg group H,,, which acts on C™*! by holomorphic affine
transformations:

Ly, 7)=(C+z 7—4t+ z'|:<z|2 — 2i%().

Here we are using complex cooridnates z = p+1q on H,, as we did in discussing
the Bargmann transform. The reader may verify that L is indeed a left action,

Lz,6y Lz ¢y = Lz,0)(20 215

and that the transformations L(, sy map the domain D,4; and its boundary
0D, 4, onto themselves. The action on 0D, 4, is simply transitive, so H, can
be identified with 0D, 4, by the correspondence

(1.115) (2,t) « L(,4(0,0) = (z, i|z|* — 4t).

At this point it should be said that in the complex analysis literature it is
customary to use a different parametrization of H,,. Namely, one replaces the
coordinate ¢ by —t/4 so that (z,t) € H, becomes identified with (z, t +:|z|?) €
6D,.+1.

Since the action L of H, is holomorphic, the Cauchy-Riemann opera-
tors on D,4; are invariant under it, and the induced complex of operators
on 8D, 41, the so-called J; complex, can actually be considered as a complex
of left-invariant operators on H, via the identification (1.115). One can then
apply Fourier-analytic techniques on H,, to study these operators in detail.
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The unit ball and the Siegel domain D,, 4, are the simplest members of the
class of strongly pseudoconvex domains, which is of fundamental importance
in the theory of several complex variables. One can show that if @ C C**! is
strongly pseudoconvex, for any P € 02 there is a holomorphic coordinate sys-
tem with origin at P in which 9 closely approximates D, near the origin.
Using this fact, the analysis on the Heisenberg group can be transferred to 02
to yield refined information about the  and J; complexes on general strongly
pseudoconvex domains. This program was initiated in Folland-Stein [51]; see
also the survey articles of Folland [49], Stanton [130], and Beals-Fefferman-
Grossman [15], and the references given there.

The identification of H,, with 8D,,4, also leads to another derivation of the
Fock-Bargmann representation, as was pointed out to the author by F. Ricci.
Transfer Lebesgue measure on H,, to 8D, 41, and consider the subspace H? of
L?(8Dy+1) consisting of functions that are nontangential limits of holomorphic
functions on D, ;. f F € H2 and h € R, let

Fu(¢) = /1 e F(—¢,r)e ™ 2dr = /R F(—C, s +i|¢[2)e~mhe+lcD/2 4,

(We use —( instead of ¢ just to make the formulas below turn out more neatly.)
The first equation shows that Fj(() is an entire function of ¢ for each h, as
the contour of integration can be deformed to be locally independent of (. The
second one shows that e—™hI¢I*/ 2Fn(¢) is, for each (, the Fourier transform of
the function s — F(—(, s + £|(|?), evaluated at h/4. Since the latter func-
tion extends holomorphically to the half plane Im s > 0, one sees by Cauchy’s
theorem that F}({) = 0 for h < 0. Moreover, by the Plancherel theorem,

I1F|3 = % / /C |Fa(¢)[2e~ ™l d¢ dh.
0 n

This formula exhibits H? as the direct integral of the Fock spaces F* (k > 0)

defined in Section 1.6.
The Heisenberg group acts unitarily on H? by left translation:

U F(¢,7) = F(L (7)) = F(C — 2, 7 + 4t +i]2|* — 2i%().
Applying the transform F' — F}, we obtain

(U0 F),(€) = / F(=C — z, s +i|C]? + 4t +i|z]? + 2iz¢)e (e +iKID /24
= / F(=C — z, s + 4t — 2Im 2 + 3| + z[?)e~ ™+ /244
— /F(—'C —2z,8 +z|( +z|2)e—1r:'h(a—4t+2Im?(+i|(|’)/2d8

— e—rih(—4t—2ﬁ(—i|z|2)/2/F(_C__z, 8+z~|C+z|2)e—1rih(a+ilc+z|2)/2ds

_ ezxiht—wh?c—(xhﬂ)IzI’Fh(C + 2),
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which is the Fock-Bargmann representation on H, on F*. (For A < 0, one

plays the same game with ﬁz, the space of boundary values of antiholomorphic
functions on Dy 4;.)

Representation Theory. The Stone-von Neumann theorem provided in-
spiration for, and is a paradigmatic special case of, two of the fundamental
results of modern representation theory: the Mackey imprimitivity theorem
and the Kirillov classification of irreducible unitary representations of nilpotent
Lie groups. See Mackey [99] for a lucid account of the path that leads from the
Stone-von Neumann theorem to the imprimitivity theorem, and Mackey [100]
for more information on the imprimitivity theorem and its applications. For the
Kirillov theory and some of its extensions, see Moore [107] and Wallach [150].

Partial Differential Equations and Harmonic Analysis. In the past two
decades a considerable amount of study has been devoted to partial differ-
ential operators constructed from non-commuting vector fields, in which the
non-commutativity plays an essential role in determining the regularity prop-
erties of the operators. (One of the most important instances of this situation
is the 3, complex on the boundary of a domain on C"t1, as discussed above.)
The operators of this sort that can be most readily analyzed are left-invariant
operators on graded nilpotent Lie groups (such as the Heisenberg group) that
are homogeneous with respect to the natural dilations on these groups. In
this setting one can develop non-Abelian, non-isotropic analogues of many of
the tools of Euclidean harmonic analysis—singular integrals, Green’s functions,
various function spaces (Sobolev, Lipschitz, Hardy, etc.). These techniques,
together with the representation theory of the groups, yield precise results for
invariant differential operators, which can then be transferred to more gen-
eral operators. Among the foundational papers in this subject are Folland-
Stein [51], Rothschild-Stein [124], and Rockland [123]; see also Folland [49],
Folland-Stein [52], Helffer-Nourrigat [68], Taylor [136], and Taylor [137].

In 1957 Hans Lewy shocked the world of analysis by producing the first
example of a differential equation that is not locally solvable. Lewy’s unsolvable
operator is nothing but (X + ¢Y) on H,, to which he was led because of its
connection with complex analysis. (It is essentially 3, on H;.) More recently,
Greiner, Kohn, and Stein [60] have used the techniques mentioned above to
give a complete characterization of the functions g for which (X +:Y)f =g is
solvable.

Abstract Heisenberg Groups. There is an analogue of the Heisenberg group
(or, more precisely, of the reduced, polarized Heisenberg group) associated to an
arbitrary locally compact Abelian group G. If G is such a group, let T' denote
the group of complex numbers of modulus one and G the group of continuous
homomorphisms from G to T. (G is a locally compact group with the compact-
open topology.) The Heisenberg group of G is the locally compact group
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H(G) whose underlying space is G x G x T and whose group law is

(9, % 2)(9",x',2") = (99, xX', z2'X'(9)).

H(G) has a family of Schrodinger representations p;, indexed by a nonzero
integer j, that act on L?(G) by

pi(9,x,2)f(¢") = #x(g")’ f(99')-

The analogue of the Stone-von Neumann theorem (again a special case of the
Mackey imprimitivity theorem) is the fact that up to unitary equivalence, the
p;’s exhaust all irreducible unitary representations of H(G) that are nontrivial
on the center. (The representations that are trivial on the center are just the
characters of G x 6‘, lifted to H(G).) The groups H(G), in which G is an
adele group or the additive group of a vector space over a local field, have been
applied to problems in number theory by Weil [151].



