Prof. Dr. Markus Heydenreich Kilian Matzke

Stochastik (LAG): Übungsblatt 9

Hausaufgaben

Aufgabe H9.1 Eine Münze zeige "Kopf" mit Wahrscheinlichkeit $p \in (0,1)$ und "Zahl" mit Wahrscheinlichkeit 1-p. Diese Münze werde (unabhängig) wiederholt geworfen. X bezeichne die Anzahl der Würfe, bevor zum ersten Mal beide Seiten der Münze zu sehen waren (d.h. X ist die Länge des initialen "Laufs"). Berechnen Sie $\mathbb{E}[X]$.

Aufgabe H9.2 Eine Münze zeige "Kopf" mit Wahrscheinlichkeit $p \in (0,1)$ und "Zahl" mit Wahrscheinlichkeit 1-p. Diese Münze werde (unabhängig) wiederholt geworfen, bis zum ersten Mal n-mal in Folge Kopf zu sehen war. Sei X die Anzahl an Würfen, die dafür nötig war. Berechnen Sie $\mathbb{E}[X]$.

Aufgabe H9.3 Seien $(X_n)_{n\in\mathbb{N}}, (Y_n)_{n\in\mathbb{N}}$ zwei Folgen von Zufallsvariablen und $x,y\in\mathbb{R}$. Zeigen Sie:

- (a) Gilt $\mathbb{E}[|X_n x|] \xrightarrow{n \to \infty} 0$, so folgt $X_n \xrightarrow{P} x$.
- (b) Gilt $X_n \xrightarrow{P} x$ und $Y_n \xrightarrow{P} y$, dann gilt auch $aX_n + bY_n \xrightarrow{P} ax + by$ für $a, b \in \mathbb{R}$.
- (c) Sei $(X_n)_{n\in\mathbb{N}}$ eine Folge von Zufallsvariablen mit $X_n \sim \text{Ber }(\frac{1}{n})$. Zeigen Sie, dass $X_n \xrightarrow{P} 0$.
- (d) Sei $X_n \sim \text{Bin } (n, p)$ für $n \in \mathbb{N}$ und $p \in (0, 1)$. Zeigen Sie, dass $\frac{1}{n} X_n \xrightarrow{P} p$.

Aufgabe H9.4 Seien $(X_n)_{n\in\mathbb{N}}$ eine Folge unabhängiger und identisch verteilter Zufallsvariablen mit $\mathbb{E}[X_1] = 0$ und $\mathbb{V}ar(X_1) = \sigma^2 < \infty$. Definiere $Y_n := X_n X_{n+1}$ und weiter $S_n = \sum_{i=1}^n Y_i$. Zeigen Sie, dass $S_n/n \xrightarrow{P} 0$.