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Introduction

Introduction

@ Explicit Mathematics as introduced by Feferman.
@ Weak theories exist for applicative part.

@ Up to now, theories with types were of strength at least PRA.

Goal / Question

We want a theory with types, (full) type induction and of strength the
polynomial time computable functions. Which types can be allowed to
match these requirements?
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Introduction

Provably Total

Definition
A function F : W" — W is called provably total in an L theory T, if there
exists a closed £ term tg such that

(i) T tg: W"— W and, in addition,

(ii) TEtrwy---w, = F(Wl,...,W,,) for all wy,...,w, in W.

w for w € W means the corresponding standard term.
T is an applicative theory comprising combinatory algebra.
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The Applicative Base

PT was introduced by Thomas Strahm. It is based on the Logic of Partial
Terms with the binary words as basic elements.

Logic of Partial Terms

Language L individual variables a, b, c, .. .; individual constants ks,
P, Po, P1. dw, €, So,S1, Pw, Cc; constants * and X; binary
function symbol -, unary relation symbols | and W, binary
relation symbol =.

Terms Inductively by - from constants and variables.
Formulae Inductively by the usual connectives from relations.

Axioms/Rules Axioms and rules of Hilbert Calculus with equality plus
axioms about definedness.
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Applicative Base

Important Abbreviations

0 :=sge 1:=s;€
(s1,52) := pst (s)i:==pis (i=0,1)
sCti=ccst=0
s<t:=Ilws Clwt lws := 1xs

W,(s) == (W(s) As < a),
(Ix < t)A = (Ax e W)(x < tAA),
(Vx < t)A = (WxeW)(x <t — A),
(t: W= W) = (¥x € W)(tx € W),
(t: W™ s W) = (Vx € W)(tx : W™ — W).

Daria Spescha (IAM) Types and polytime operations Munich, 2008/04/05

8 /30



Axioms of Base Theory B

| Partial combinatory algebra and pairing
Axioms defining the behaviour of the well-known combinators k and
s and of pairing p and projections pg and p;
Il Definition by cases on W
{x a,beWAa=b
dwxyab =
y a,beWAa#b
Il Closure, binary successors and predecessor
W contains the € and is closed under successors sg,s; and
predecessor py. Furthermore, sg,s; and pyw behave as expected.
IV Initial subword relation
cc is a total “predicate” on W. It behaves decently on W, deciding
whether the first word is a initial subword of the second.
V Word concatenation and multiplication
% concatenates two words as expected. Xxy =  Xx*...%X
—
length of y often

Daria Spescha (IAM) Types and polytime operations Munich, 2008/04/05 9 /30



Applicative Base

Induction

f: Wi WAA[] A (Vx € W)(Alpwx] — A[x]) — (Vx € W)A[x] (C-lw)
where A[x] belongs to the formula class C
Definition (X5,/Z%)

A formula A[f, x] belongs to X5, (Z\t;v_) if it is of the form

(3y < X)B|f, x,y] where Bl[f, x, y] positive and W-free (and not
containing V).

Theories PT and PT™

PT =B+ (Zh-lw)
PT~ =B+ (Tyy -lw)
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Important Properties of PT~ (and PT)

Lemma (A-Abstraction, Fixpoint)

In B, we have A-abstraction for any term t and a term rec serving as fixed
point operator.

v

Theorem

The provably total functions of PT~ coincide with the functions
terminating in polynomial time.
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Introduction of theory with types, PET

Language

“Theory of Types and Names"

The Language L+ is L extended with type variables X, Y, ..., binary
relation symbols €, % (naming), constants w, id, dom, un,int, inv

Additional Shortcuts

R(a) := IXR(a, X))
a&bi=3X(R(b,X)Aac X)
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Introduction of theory with types, PET Finite axiomatisation

Axioms of PET

Axioms are the axioms of B plus the following:

IxR(x, X) (Expl1)
R(a, X)AR(2,Y) = X =Y (Expl2)
VzZ(zeX = zeY)—=X=Y (Expl3)
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Introduction of theory with types, PET Finite axiomatisation

Axioms of PET

Axioms are the axioms of B plus the following:

IxR(x, X) (Expl1)
R(a,X)AR(a,Y) = X=Y (Expl2)
Vz(ze X —zeY)—=X=Y (Expl3)

)

aeW — R(w(a)) AVx(x € w(a) « W,(x)) (w,
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Introduction of theory with types, PET Finite axiomatisation

Axioms of PET

Axioms are the axioms of B plus the following:

IxR(x, X) (Expl1)
R(a,X) AR(a,Y) = X =Y (Expl2)
Vz(ze X —zeY)—=X=Y (Expl3)
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Introduction of theory with types, PET Finite axiomatisation

Axioms of PET

Axioms are the axioms of B plus the following:

IxR(x, X) (Expl1)
R(a,X) AR(a,Y) = X =Y (Expl2)
Vz(ze X —zeY)—=X=Y (Expl3)
aeW — R(w(a)) AVx(x € w(a) « Wy(x)) (wy)
R(id) AVx(x € id < Jy(x = (y,y))) (id)

)

R(a) A R(b) — R(un(a, b)) A Vx(x € un(a,b) < (x €aV x € b)) (un
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Introduction of theory with types, PET Finite axiomatisation

Axioms of PET

Axioms are the axioms of B plus the following:

IxR(x, X)

R(a,X)AR(a,Y) = X=Y

Vz(ze X —zeY)—=X=Y

aeW — R(w(a)) AVx(x € w(a) « W,(x))
R(id) AVx(x € id < Jy(x = (y,y)))

R(a) A R(b) — R(un(a, b)) A Vx(x € un(a, b) «

R(a) A R(b) — R(int(a, b)) A Vx(x € int(a, b) «
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Introduction of theory with types, PET Finite axiomatisation

Axioms of PET

Axioms are the axioms of B plus the following:

IxR(x, X)

R(a,X)AR(a,Y) = X=Y

Vz(ze X —zeY)—=X=Y

aeW — R(w(a)) AVx(x € w(a) « W,(x))
R(id) AVx(x € id < Ty(x = (v, y)))

R(a) A R(b) — R(un(a, b)) A Vx(x € un(a, b) «

(a
R(a) A R(b) — R(int(a, b)) A Vx(x € int(a, b) «
R(a) — R(inv(f,a)) AVx(x € inv(f,a) < fx € a)
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Introduction of theory with types, PET Finite axiomatisation

Axioms of PET

Axioms are the axioms of B plus the following:

IxR(x, X)

R(a,X)AR(a,Y) = X=Y

Vz(ze X —zeY)—=X=Y

aeW — R(w(a)) AVx(x € w(a) « W,(x))
R(id) AVx(x € id < Ty(x = (v, y)))

R(a) A R(b) — R(un(a, b)) AVx(x € un(a, b) <

R(a
(
(

R(a
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Introduction of theory with types, PET Finite axiomatisation

Axioms of PET

Axioms are the axioms of B plus the following:

IxR(x, X)

R(a,X)AR(a,Y) = X=Y

Vz(ze X —zeY)—=X=Y

aeW — R(w(a)) AVx(x € w(a) « W,(x))
R(id) AVx(x € id < Jy(x = (y,y)))

R(a) A R(b) — R(un(a, b)) AVx(x € un(a, b) <

R(a) A R(b) — R(int(a, b)) A Vx(x € int(a, b) «—
R(a) — R(inv(f,a)) AVx(x € inv(f,a) < fx € a)
AVx(x € dom(a) « Fy((x,y) € a))

pwx € X — x € X) — (Vx € W)(x € X)

(a
(a

R(a) — R(dom(a))
e X A (Vx € W)(

€
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(T SN SRV WA S = B Restricted Elementary Comprehension

Comprehension: Preparations

Definition (Class of X formulas and set of variables FWy(A))
A=(s=t), slor(seX) Aisa Zb formula and FUy(A) := 0.
A=W,(t) Aisa X2 formula and FWy(A) := {a} if a & FV|(t).

A= (BAC)or(BVC) with B and C in £& and if no conflict arises
between FV, and FWy, then A is a ZPP formula and
FViw(A) = FViy(B) U FViy(C).

A= 3xB with B € ¥% and x ¢ FWy(B), then A is a & formula and

FViy(A) := FVin(B).
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Restricted Elementary Comprehension
Comprehension: Preparations
Definition (pa(B, x))

For a X2 formula A, we define a term pa(B, x) by induction on the
complexity of B in £?, where x ¢ FV4y(B) and x not bound in B:

pa(s = t, x) ;== inv(Ax.(s, t),id),
pa(sl,x) :=inv(Ax.(s,s),id),
pa(s € Wy, x) := inv(Ax.s, w(a)),
pa(s € X, x) == inv(Ax.s, pa(X)),
pa(C A D, x) :==int(pa(C, x), pa(D, x))
pa(CV D, x) = n(pA(C x), pa(D, x))
pAByC; x) := dom(pa(C[(x)o/x; (x)1/y], x))-

where 114(X) assigns an individual variable not occurring in A to the free
type variable X.

v
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(T SN SRV WA S = B Restricted Elementary Comprehension

Restricted Elementary Comprehension

Theorem (Restricted elementary comprehension in PET)

For A a Zrl} formula with FV1(A) = {X1,...,X,} and
FVw(A) = {w1,...,wn}. Let z; :== pa(Xi)(1 < i< n) and
pax = pa(A, x), then we have:

Q FVi(pax) = (FVI(A\{x}) U{z1, ..., 2z},

@ PET FW(W) AR(Z, X) — R(pax)

Q@ PETHW(W) AR(Z, X) — (VX)(x € pax < A).

Remark

As a consequence of comprehension and type induction, induction is
available for 2 formulae.
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Lower Bounds: Preparatory Work

Lemma (Properties of the subword relation)

The following statements are provable in PET:
QO xeWANzeEeWAXCpwz— xC z,
Q@ xeEWAYyeWAzeWAxCyAy Cz— xC z (Transitivity),
QO xeWAyeWAxCy—-x<y.
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Lower Bounds: “Bounded Induction”

aEWAee XA(VxCa)lpwx€X —x€X)—acX (T-19)

Lemma

We have that (T-lw) and (T-I5,) are provably equivalent in PET without
(T-lw).
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Bound

Lemma

There is a closed term max such that PET proves:

Q r:
Q f:
Q f:
Q f:

ing Functions f : W — W

W — W — maxf : W — W,

Wi WAf*=maxt Axe WAy e WAXx Cy — f*x < f*y),
Wi— WA f* =maxf Ax € W — fx < f*x),

Wi WA =maxf AxXe WAy eWAxCy— fx < fry.
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Bounding Functions f : W — W

Lemma

There is a closed term max such that PET proves:

Q@ f W—W — maxf: W — W,

QFfF W—WAFff=maxf Axe WAy eWAxCy— fx < f*y),
Q@ FfF WH—WAFf*=maxf Ax e W — fx < f*x),

QFf W—WAFff=maxf AxXEeWAyeWAxCy— fx <f'y.

Proof (Sketch)

max 1= Af.Ax.f(maxare fx) Where maxa, is a functional detecting the
argument maximising the function f up to x.

Proof of (1) by proving f : W = W — maxaef : W — W by (T-I5,) on
(Fy < a)((maxargf)x = y). Proof of (2) and (3) by induction.
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Lower Bounds

Lower Bounds

Theorem
PT™ is contained in PET. J
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Lower Bounds

Theorem

PT™ is contained in PET.

Proof
Steps of proving PET (ZSV_-IW):

Q@ Take Y& formula Alx] = (3y < fx)B[f,x, y] and assume
f:W—WAA[e] A (Vx € W)(A[x] — Alsox] A Als1x])
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Lower Bounds

Theorem

PT™ is contained in PET.

Proof
Steps of proving PET (ZSV_-IW):

Q@ Take Y& formula Alx] = (3y < fx)B[f,x, y] and assume
f:W—WAA[e] A (Vx € W)(A[x] — Alsox] A Als1x])

@ Prove (Jy < &x)B[x,y] < (3y < f*c)(y < fx A Blx,y]) for c e W
and x C c.

v
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Lower Bounds

Theorem
PT™ is contained in PET.

Proof
Steps of proving PET (Z\t}\/_-lw):
Q@ Take Y& formula Alx] = (3y < fx)B[f,x, y] and assume
f:W—WAA[e] A (Vx € W)(A[x] — Alsox] A Als1x])

@ Prove (Jy < x)B[x,y] < (Jy < f*c)(y < fx A B[x,y]) for c e W
and x C c.

© With Comprehension we can construct type X such that
(Vx Ce)(xe X < (Fy < fc)ly < fxAB[x,y])) as f*c e W

v
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Lower Bounds

Theorem
PT™ is contained in PET.

Proof
Steps of proving PET (Z\t}\/_-lw):
Q@ Take Y& formula Alx] = (3y < fx)B[f,x, y] and assume
f:W—WAA[e] A (Vx € W)(A[x] — Alsox] A Als1x])

@ Prove (Jy < x)B[x,y] < (Jy < f*c)(y < fx A B[x,y]) for c e W
and x C c.

© With Comprehension we can construct type X such that
(Vx Ce)(xe X < (Fy < fc)ly < fxAB[x,y])) as f*c e W

Q ce XA (Vx Cc)(pwx € X — x € X) immediate from above.

v
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Lower Bounds

Theorem
PT™ is contained in PET.

Proof
Steps of proving PET (ZSV_-IW):
Q@ Take Y& formula Alx] = (3y < fx)B[f,x, y] and assume
f:W—WAA[e] A (Vx € W)(A[x] — Alsox] A Als1x])

@ Prove (Jy < x)B[x,y] < (Jy < f*c)(y < fx A B[x,y]) for c e W
and x C c.

© With Comprehension we can construct type X such that
(Vx Ce)(xe X < (Fy < fc)ly < fxAB[x,y])) as f*c e W

Q ce XA (Vx Cc)(pwx € X — x € X) immediate from above.
@ By (T-1%): ce X O

v
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Structures for PET

Definition (Lt structure)
A Lt-structure M* is a tuple

(M, T,E,R,w,id,dom, un, int, inv)

where (i) M is a L-structure, (ii) 7 is a non-empty set of subsets of |M|,
(iii) &€ is the usual € relation on |[M| x 7, (iv) R is a non-empty subset of
|IM| x T, and (v) w,id, dom, un, int, inv are elements of |M]|.
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Upper bounds

Model Construction

@ Take model M of PT™.
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Upper bounds

Model Construction

@ Take model M of PT™.

@ Choose decent interpretation for constants.
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Upper bounds

Model Construction

o Take model M of PT™.
@ Choose decent interpretation for constants.

@ Inductively define
Ty = {ext(m) : m € Rc}, Ry := {(m, ext(m)) : m € Ry},
5= (M, Ty, Rk, w,id, dom, un, int, inv) where Ry C | M| and
ext(m) C |[M| for m € Ry:
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Upper bounds

Model Construction

o Take model M of PT™.
@ Choose decent interpretation for constants.

@ Inductively define
Ty = {ext(m) : m € Rc}, Ry := {(m, ext(m)) : m € Ry},
5= (M, Ty, Rk, w,id, dom, un, int, inv) where Ry C | M| and
ext(m) C M| for m € Ry:
k=0 Ry:={id} U{wa:ac WM}
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Upper bounds

Model Construction

o Take model M of PT™.
@ Choose decent interpretation for constants.
@ Inductively define
Ty = {ext(m) : m € Rc}, Ry := {(m, ext(m)) : m € Ry},
5= (M, Ty, Rk, w,id, dom, un, int, inv) where Ry C | M| and
ext(m) C |[M| for m € Ry:
k=0 Ry:={id} U{wa:ac WM}
k >0 Ry :={un(a, b),int(a,b):a,b € Rxk_1}
U{inv(f,a),doma: a € Rx_1} and e.g.
ext(un(a, b)) ={me |M|: M;_,=mé&EaVvméeb}
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Upper bounds

Model Construction

o Take model M of PT™.
@ Choose decent interpretation for constants.
@ Inductively define
Ty = {ext(m) : m € Rc}, Ry := {(m, ext(m)) : m € Ry},
5= (M, Ty, Rk, w,id, dom, un, int, inv) where Ry C | M| and
ext(m) C |[M| for m € Ry:
k=0 Ry:={id} U{wa:ac WM}
k >0 Ry :={un(a, b),int(a,b):a,b € Rxk_1}
U{inv(f,a),doma: a € Rx_1} and e.g.
ext(un(a, b)) ={me |M|: M;_,=mé&EaVvméeb}
o Set 7 := Uyen Zk and R := ey Ri-
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Upper bounds

Upper Bounds

Theorem (Model extension)

Any model M* constructed as described above from a model M of PT~
satisfies the following conditions:

QO MEA < M*E Aforany L sentence A,

@ M* = T-y,
@ M* = PET.
v
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Upper Bounds

Theorem (Model extension)
Any model M* constructed as described above from a model M of PT~
satisfies the following conditions:

QO MEA < M*E A forany L sentence A,

Q@ M* = TH,

@ M* = PET.

Proof of 2

We show that every type X € 7 is weakly Z\ljv_ definable, i.e. that

X ={me|M|: M= Alm]} for A X5 formula with a fixed bound. This
is proved by induction on the level kK when X is added to Rx.

v
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Extensions and Further Work

Uniformity

Cantini showed that the Uniformity Principle UP can be added to PT
without strengthening the theory.

(Vx)(3y € W)A(x,y) — (Ty € W)(Vx)A(x, y) for A positive  (UP)
UP entails the following bounded uniformity axiom:
Vx(Jy < t)A[x,y] — 3y < t)(Vx)A[x, y] for A positive (UP’)
In the presence of UP’ we can add an universal type to PET:
R(a) — R(alla) AVx(x € alla < Vy((x,y) € a)) (all)

Lemma

PT + (UP) is contained in PET + (all) and PET + (all) is a conservative
extension of PT + (UP) for closed L formulae.
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Other Extensions

Choice (Vx € W)(Jy € W)A(x, y) —
(3f : W — W)(Vx € W)A(x, fx)
for A positive and containing type variables only
in the form t € X
Totality VxVy(xyl)

Extensionality VfVg(Vx(fx ~ gx) — f = g)

Theorem

The provably total functions of PET augmented by any combination of the
principles (all), Choice, Totality, and Extensionality coincide with the
polynomial time computable functions.
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Extensions and Further Work

Further Work

We are currently studying the addition of disjoint join:
Join: R(a) A f:a— R — R((a, F)A
Vx(x € j(a, f) « (x)o € aA(x)1 € f(x)o)

Furthermore, we plan to study weak theories of partial (self referential)
truth.
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