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1. Motivation
Logical framework (

:::

LF) added to Martin-Löf Type
Theory (

:::::::

MLTT) in order to provide an infrastructure for
defining set constructions.

LF obtained by adding
one type level Type on top of the standard type level
Set,
s.t. Set ∪ {Set} ⊆ Type,
and by closing both Set and Type under the
dependent function type

(x : A) → B

and (possibly) the dependent product

(x : A) × B
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Logical Framework

Type

Set → Set Set

N → SetN → N

N

Set
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Simplification by LF
Without the LF, elimination for N is given by

Γ, x : N ⇒ C[x] : Set

Γ ⇒ step0 : C[0]

Γ, x : N, y : C[x] ⇒ stepS[x, y] : C[S(x)]

Γ ⇒ n : N

Γ ⇒ P(step0, (x, y)stepS[x, y], n) : C[n]

together with an equality version of it,
With the LF, it is given by

P : (C : N → Set)

→ (step0 : C 0)

→ (stepS : (n : N) → C n → C (S n))

→ (n : N) → C n
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Syntax for the Logical Framework
Most theorem provers for dependent type theory based
on the LF.

In order to simplify our interpretation in KPI+ we use a
version where we have

A : Set
El(A) : Type

rather than
A : Set

A : Type
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Problem
LF amounts to adding a universe (namely Set) to type
theory.

Why doesn’t this increase its strength?

Because of this we avoided until now the LF in proof
theoretic analyses of extensions of MLTT.

Goal: Extend the methodology of proof theoretic
analyses so that LF is included.

Aim: show |ML1W + LF| = |ML1W| similarly for other
variants of MLTT.
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2. Models of ML1W without LF
Let CTerm

::::::::
= set of closed terms.

::::::::::::::::

Environment η = finite functions Var → CTerm.
Model of ML1W without LF introduced by defining a
PER model in KPI+ := KPlr + ∃I.“I inaccessible′′.
For certain terms A corresponding to set expressions
we define for environments η s.t. FV(A) ⊆ dom(η)

[[A]]η ⊆ CTerm2

Then we show by induction on derivations that, if

ML1W ⊢ Γ ⇒ θ

then
KPI+ ⊢ Correct(Γ ⇒ θ)
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Models of ML1W (no LF)
For simplicity we treat [[A]] as a set of terms rather than
a set of pairs of terms.

For instance

Correct(x : A ⇒ B : Set) :=

Correct(∅ ⇒ A : Set)

∧∀r ∈ [[A]].PER([[B]][x7→r]) ∧ Closure([[B]][x7→r])

Correct(x : A ⇒ b : B) :=

Correct(x : A ⇒ B : Set)

∧∀r ∈ [[A]].b[x := r] ∈ [[B]][x7→r]
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3. Models of ML1W + LF
With the LF the judgement A : Set is no longer special.

A : Set has the same status as a : A.
Instead “A : Type” is special.

We need to define [[A]]η for type expressions rather
than set-expressions.

Correctness statements as before, but with Set
replaced by Type .

Need to define [[Set]].
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Interpretation of Elements of Type
Idea: [[Set]] =

⋃
α∈Ord Setα which is a proper class.

Problem: If we interpret

[[N → Set]] := {a | ∀n ∈ [[N]].a n ∈ [[Set]]}

we will interpret large elimination, which increases the
proof theoretical strength.

Large elimination means that for C := Wx : A.B or
C := N we can define f : C → D by induction over C

for any D : type.
Small elimination means that we require D : Set.
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Interpretation of Elements of Type
We need to make sure that

[[N → Set]] =
⋃

n∈N

([[N]] [[→]] Setκn)

(where κn = nth admissible above I).

For this we define

[[N → Set]]n = [[N]] [[→]] Setκn
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Interpretation of Elements of Type
What is [[Set → Set]]?

Cannot restrict it to Setκn → Setκn.
E.g. for any n ∈ N we have
λx.(Wy : El(x).x) ∈ Setκn [[→]] Setκn+1.

We can define [[Set → Set]]e for any e :: nat → nat e.g.

λx.(Wy : El(x).x) ∈ [[Set → Set]]λn.n+1

[[(Set → Set) → Set]]e defined for e :: (nat → nat) → nat.
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Functionals of Finite Types
Let the finite types be ǫ, nat, α → β, α × β.

Let e :: α mean that e is a Kleene index for a functional
of finite type α.

ǫ is the trivial type (contains only element 0).
We can contract ǫ × α, α × ǫ, ǫ → α to α and α → ǫ to
ǫ.

Btype(A) is defined as a finite type as follows:
Btype(Set) := nat.
Btype(El(t)) := ǫ.

Btype((x : A)
→

×
B) := Btype(A)

→

×
Btype(B).
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Ctype
We need to guarantee as well that if e.g.

ML1W ⊢ x : A, y : B ⇒ Context

then [[A]]↓ ∧ ∀a ∈ [[A]].[[B]][x7→a]↓.

This will require that certain α = κn do exist.
E.g. [[El(t)]]↓ if t ∈ Setκn.

Ctype(A) is defined as a sequence of finite types:
Ctype(Set) := ∅.
Ctype(El(t)) := nat.

Ctype((x : A)
→

×
B)

:= Ctype(A) ++ (Btype(A) → Ctype(B)).
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[[A]]~g↓

We define for ~g :: Ctype(A) whether [[A]]~g↓:

[[Set]]∅↓ := ⊤.
[[El(t)]]n↓ := ∃α.(α = κn ∧ t ∈ Setα).

[[(x : A)
→

×
B]]

~f,~g↓

:= [[A]]
~f↓ ∧ ∀h :: Btype(A).∀a ∈ [[A]]

~f;h.[[B]]
~g(h)
[x7→a]

↓.
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[[A]]~g,h

We define [[A]]~g,h for ~g :: Ctype(A), h :: Btype(A):

[[Set]]∅;n

:= {a | ∃α.α = κn ∧ a ∈ Setα}.

[[El(t)]]n;ǫ

:= {a | ∃α.α = κn ∧ a ∈ Elα(t)}.

[[(x : A) → B]]
~f,~g;h

:= {a | ∀k :: Btype(A).∀b ∈ [[A]]
~f;k.a b ∈ [[B]]

~g(k);h k

[x7→b]
}.

[[(x : A) × B]]
~f,~g;h

:= {a | π0(a) ∈ [[A]]
~f;π0(h) ∧ π1(a) ∈ [[B]]

~g(π0(h));π1(h)
[x7→π0(a)]

}.
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Example

[[Set → Set]]∅;f

:= {a | ∀k :: nat.∀b.(∃α.α = κn ∧ b ∈ Setα)

→ (∃α.α = κf n ∧ a b ∈ Setα)}

Especially

λx.(Wy : El(x).x) ∈ [[Set → Set]]∅;λn.n+1
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Correct( Γ ⇒ θ)

Btype(x1 : A1, . . . , xn : An ⇒ A : Type)

:= Btype((x1 : A1) → · · · → (xn : An) → A : Type).

Similarly for Ctype.

For ~f,~g :: Ctype(Γ ⇒ A : Type), we define

Correct(Γ ⇒ A : Type)
~f,~g :=

Correct(Γ ⇒ Context)
~f

∧∀~k :: Btype(Γ).∀~r ∈ [[Γ]]
~f;~k.

[[A]]~g(~k)↓

∧∀l :: Btype(A).PER([[A]]~g(~k);l) ∧ Closure([[A]]~g(~k);l).
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Correct( Γ ⇒ θ)

For ~f,~g :: Ctype(Γ ⇒ A : Type), we define

Correct(Γ ⇒ a : A)
~f,~g;l :=

Correct(Γ ⇒ A : Type)
~f

∧∀~k :: Btype(Γ).∀~r ∈ [[Γ]]
~f;~k.

a[~x 7→~r] ∈ [[A]]~g(~k);l ~k.

Now prove by Meta-induction on the derivation that if

ML1W ⊢ Γ ⇒ θ

then there Meta-exist ~f, g s.t.

KPI+ ⊢ Correct(Γ ⇒ θ)
~f;g
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Conclusion
LF doesn’t add strength, but very difficult to deal with it
(unless one treats it as a proper universe).

From a foundational point of view this means that the
logical framework adds a lot of syntactic complexity to
type theory (meaning explanation).

⇒ LF is too “strong” for just providing an
infrastructure for defining type theories.
Approach by P. Aczel to provide a “weaker” form of
the LF.

Methodology for upper bounds seems to work for many
variants of MLTT.
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