Towards a Proper Proof Theory of the Modal μ -Calculus Gerhard Jäger University of Bern Ordinals, subsystems of second order arithmetic, . . . = selling coals to Newcastle (Eulen nach Athen tragen) Important for Wilfried $$eta$$ uchholz: - well-foundedness - β -models - ullet München \hookrightarrow μ # μ -calculus, its well-founded derivations and its β -models ### Some central questions: - ullet Is there a cut-free (finite), sound and complete formalization of the modal μ -calculus? - Is there a cut-elimination procedure for the modal μ -calculus? - What is the complexity of the model checking problem? #### Main references - C. Dax, M. Hofmann, M. Lange, A proof system for the linear time μ -calculus, in: Proceedings 26th Conference on Foundations of software Technology and Theoretical Computer Science, LNCS 4337, Springer, 2006. - G. Jäger, M. Kretz, T. Studer, Canonical completeness of infinitary μ , The Journal of Algebraic and Logic Programming, to appear. - T. Studer, On the proof theory of the modal mu-calculus, Studia Logica, to appear. # The syntax of the modal μ -calculus Var: set of variables X, Y, Z, \dots Lab: finite set of labels a, b, c, \ldots # Formulas (A, B, C, \ldots) : - $\bullet \perp \mid \quad \top \quad \mid \quad X \quad \mid \quad \sim X \quad \mid$ - \bullet $(A \lor B) \mid (A \land B) \mid \langle a \rangle A \mid [a]A \mid$ - $(\mu X)A \mid (\nu X)A$ (both for A positive in X) # The semantics of the modal μ -calculus A μ -structure $\mathfrak M$ consists of - ullet a non-empty set $|\mathfrak{M}|$, the universe of \mathfrak{M} , - $\mathfrak{M}(X) \subset |\mathfrak{M}|$ for all X from Var - $\mathfrak{M}(a) \subset |\mathfrak{M}| \times |\mathfrak{M}|$ for all a from Lab For $S \subset |\mathfrak{M}|$: $\mathfrak{M}[Z:=S]$ is the μ -structure which maps Z to S and otherwise agrees with \mathfrak{M} . Definition of the value $||A||_{\mathfrak{M}}$ of the μ -formula A: $$\|\bot\|_{\mathfrak{M}} := \emptyset$$ $$\|T\|_{\mathfrak{M}} := |\mathfrak{M}|$$ $$\|X\|_{\mathfrak{M}} := \mathfrak{M}(X)$$ $$\|\sim X\|_{\mathfrak{M}} := |\mathfrak{M}| \setminus \mathfrak{M}(X)$$ $$\|A \vee B\|_{\mathfrak{M}} := \|A\|_{\mathfrak{M}} \cup \|B\|_{\mathfrak{M}}$$ $$\|A \wedge B\|_{\mathfrak{M}} := \|A\|_{\mathfrak{M}} \cap \|B\|_{\mathfrak{M}}$$ $$\|\langle a \rangle B\|_{\mathfrak{M}} := \{s : (\exists t)(\langle s, t \rangle \in \mathfrak{M}(a) \& t \in \|B\|_{\mathfrak{M}}\}$$ $$\|[a]B\|_{\mathfrak{M}} := \{s : (\forall t)(\langle s, t \rangle \in \mathfrak{M}(a) \Rightarrow t \in \|B\|_{\mathfrak{M}}\}$$ $$\|(\mu X)A\|_{\mathfrak{M}} := \bigcap \{S \subset |\mathfrak{M}| : \|A\|_{\mathfrak{M}[X:=S]} \subset S\}$$ $$\|(\nu X)A\|_{\mathfrak{M}} := \bigcup \{S \subset |\mathfrak{M}| : S \subset \|A\|_{\mathfrak{M}[X:=S]}\}$$ For all X-positive A, the operator Φ_A , depending on \mathfrak{M} , $$\Phi_A: \text{Pow}(|\mathfrak{M}|) \to \text{Pow}(|\mathfrak{M}|), \qquad \Phi_A(S) := \|A\|_{\mathfrak{M}[X:=S]}$$ is monotone. **Remark 1** Independent of \mathfrak{M} , the least and greatest fixed point terms $(\mu X)A$ and $(\nu X)A$ are interpreted as the real least and greatest fixed points, respectively. #### **Definition 2** - 1. A formula A is called μ -valid if we have $|\mathfrak{M}| \subseteq ||A||_{\mathfrak{M}}$ for every μ -structure \mathfrak{M} ; in this case we write $\mu \models A$. - 2. A formula A is called μ -satisfiable if there exists a μ -structure \mathfrak{M} such that $||A||_{\mathfrak{M}} \neq \emptyset$. #### Remark 3 - 1. There exists a natural and trivially sound Hilbert-style axiomatization of the modal μ -calculus due to D. Kozen. - 2. According to a result of I. Walukiewicz it is also complete. - 3. The completeness proof requires a complicated machinery: tree automata, games, very technical syntactic reductions. # The infinitary calculus $K_{\omega}(\mu)$ Extend the language to: $$\bullet$$ \bot $|$ \top $|$ X $|$ $\sim X$ $|$ $$\bullet$$ $(A \lor B) \mid (A \land B) \mid \langle a \rangle B \mid [a]B \mid$ • $$(\mu X)A \mid (\nu X)A \mid (\nu^n X)A \quad (A \text{ positive in } X, \ 0 < n < \omega)$$ μ -formulas are formulas without subformulas of the form $(\nu^n X)B$. #### Reduction: $A^- := \text{replace in } A \text{ all subformulas } (\nu^n X)B \text{ by } (\nu X)B$ **Axioms of** $K_{\omega}(\mu)$. For all finite formulas sets Γ and all variables X: $$\Gamma, \ \top \qquad || \qquad \Gamma, \ X, \ \sim X$$ **Logical rules of K** $_{\omega}(\mu)$ **.** For all finite formula sets Γ, Δ , all labels a and all formulas A, B: $$\frac{\Gamma, A, B}{\Gamma, A \vee B}$$ $$\frac{\Gamma, A \qquad \Gamma, B}{\Gamma, A \wedge B}$$ $$\frac{\Gamma, A}{\langle a \rangle \Gamma, [a] A, \Delta}$$ μ -rules of $\mathbf{K}_{\omega}(\mu)$. For all finite formula sets Γ and all X-positive formulas A[X]: $$\frac{\Gamma, A[(\mu X)A[X]]}{\Gamma, (\mu X)A[X]}$$ ν -rules of $\mathbf{K}_{\omega}(\mu)$. For all finite formula sets Γ and all X-positive formulas A[X]: $$\frac{\Gamma, A[\top]}{\Gamma, (\nu^1 X) A[X]} \qquad || \qquad \frac{\Gamma, A[(\nu^n X) A[X]]}{\Gamma, (\nu^{n+1} X) A[X]}$$ $$\Gamma$$, $(\nu^n X)A[X]$... (for all $0 < n < \omega$) $$\Gamma$$, $(\nu X)A[X]$ Given a μ -structure \mathfrak{M} and an X-positive formula A[X], the greatest fixed point gfp(A) of the operator $$\Phi_A : \operatorname{Pow}(|\mathfrak{M}|) \to \operatorname{Pow}(|\mathfrak{M}|), \qquad \Phi_A(S) := \|A\|_{\mathfrak{M}[X:=S]}$$ is approximated by setting $$J_A^{\alpha} := \Phi_A(\bigcap_{\beta < \alpha} J_A^{\beta})$$ Then: $$gfp(A) = \bigcap_{\alpha} J_A^{\alpha} = \bigcap_{\alpha < ||A||} J_A^{\alpha}$$ Typically, the closure ordinal ||A|| of Φ_A is beyond ω ; hence there are two problems with respect to $\mathbf{K}_{\omega}(\mu)$: - soundness of $\mathbf{K}_{\omega}(\mu)$ - completeness of $\mathbf{K}_{\omega}(\mu)$ ## Measuring the complexities of formulas For $$\sigma = \langle \sigma_1, \dots, \sigma_m \rangle$$ and $\tau = \langle \tau_1, \dots, \tau_n \rangle$ we set: $$\sigma * \tau := \langle \sigma_1, \ldots, \sigma_m, \tau_1, \ldots, \tau_n \rangle$$ $$\boldsymbol{\sigma} \sqcup \boldsymbol{\tau} := \begin{cases} \langle \max(\sigma_1, \tau_1), \dots, \max(\sigma_m, \tau_m), \tau_{m+1}, \dots, \tau_n \rangle & \text{if } m \leq n, \\ \langle \max(\sigma_1, \tau_1), \dots, \max(\sigma_n, \tau_n), \sigma_{n+1}, \dots, \sigma_m \rangle & \text{if } n < m \end{cases}$$ $$<_{lex} := \left\{ egin{array}{l} { m strict\ lexicographical\ ordering\ of} \\ { m finite\ sequences\ of\ ordinals} \end{array} ight.$$ **Remark 4** $<_{lex}$ is a well-ordering on any set of sequences of bounded lengths, though not a well-ordering in general. **Definition 5** The rank rk(A) of a formula A is inductively defined by: $$rk(A) := rk(\sim A) := \langle 0 \rangle$$ (A atomic) $rk(A \vee B) := rk(A \wedge B) := (rk(A) \sqcup rk(B)) * \langle 0 \rangle$ $rk(\langle a \rangle B) := rk([a]B) := rk(B) * \langle 0 \rangle$ $rk((\mu X)A[X]) := rk(A[\top]) * \langle 0 \rangle$ $rk((\nu X)A[X]) := rk(A[\top]) * \langle \omega \rangle$ $rk((\nu^n X)A[X]) := rk(A[\top]) * \langle n \rangle$ In addition, $$lh(A) := lh(rk(A)).$$ Lemma 6 We have, e.g., - 1. $lh(A) = lh(A^-)$; rk(A) pointwise less than or equal to $rk(A^-)$. - 2. $rk(A[(\nu^n X)A[X]]) <_{lex} rk((\nu^{n+1}X)A[X]) <_{lex} rk((\nu X)A[X])$. **Definition 7** The *Fischer-Ladner closure* $\mathbb{FL}(D)$ of a μ -formula D is inductively defined by: - $D \in \mathbb{FL}(D)$, - $(A \lor B) \in \mathbb{FL}(D)$ or $(A \land B) \in \mathbb{FL}(D)$ \Rightarrow $A, B \in \mathbb{FL}(D)$, - $\langle a \rangle B \in \mathbb{FL}(D)$ or $[a]B \in \mathbb{FL}(D)$ \Rightarrow $B \in \mathbb{FL}(D)$, - $(\mu X)A[X] \in \mathbb{FL}(D) \Rightarrow A[\top], A[(\mu X)A[X]] \in \mathbb{FL}(D),$ - $(\nu X)A[X] \in \mathbb{FL}(D) \Rightarrow A[\top], A[(\nu X)A[X]] \in \mathbb{FL}(D).$ **Definition 8** The *strong closure* $\mathbb{SC}(D)$ of a μ -formula D is inductively defined by: - $D \in \mathbb{SC}(D)$, - $(A \vee B) \in \mathbb{SC}(D)$ or $(A \wedge B) \in \mathbb{SC}(D)$ \Rightarrow $A, B \in \mathbb{SC}(D)$, - $\langle a \rangle B \in \mathbb{SC}(D)$ or $[a]B \in \mathbb{SC}(D)$ \Rightarrow $B \in \mathbb{SC}(D)$, - $(\mu X)A[X] \in \mathbb{SC}(D) \Rightarrow A[\top], A[(\mu X)A[X]] \in \mathbb{SC}(D),$ - $(\nu X)A[X] \in \mathbb{SC}(D) \Rightarrow A[\top], A[(\nu^n X)A[X]] \in \mathbb{SC}(D),$ - $(\nu^{n+1}X)A[X] \in \mathbb{SC}(D) \Rightarrow A[(\nu^n X)A[X]] \in \mathbb{SC}(D),$ - $(\nu^1 X)A[X] \in \mathbb{SC}(D) \Rightarrow A[\top] \in \mathbb{SC}(D).$ **Lemma 9** For any μ -formula D: $$A \in \mathbb{SC}(D) \Rightarrow A^- \in \mathbb{FL}(D).$$ **Lemma 10** If D is a μ -formula, then the restriction of $<_{lex}$ to the set $\{rk(A): A \in \mathbb{SC}(D)\}$ is a well-ordering. #### **Saturation** **Definition 11** Let D be some μ -formula. A finite subset Γ of $\mathbb{SC}(D)$ is called D-saturated if the following conditions are satisfied: $$\mathbf{K}_{\omega}(\mu) \nvdash \Gamma$$ $$A \lor B \in \Gamma \ \Rightarrow \ A \in \Gamma \ \text{and} \ B \in \Gamma$$ $$A \land B \in \Gamma \ \Rightarrow \ A \in \Gamma \ \text{or} \ B \in \Gamma$$ $$(\mu X)A[X] \in \Gamma \ \Rightarrow \ A[(\mu X)A[X]] \in \Gamma$$ $$(\nu X)A[X] \in \Gamma \ \Rightarrow \ (\nu^i X)A[X] \in \Gamma \ \text{for some} \ 0 < i < \omega$$ $$(\nu^{n+1}X)A[X] \in \Gamma \ \Rightarrow \ A[(\nu^n X)A[X]] \in \Gamma$$ $$(\nu^1 X)A[X] \in \Gamma \ \Rightarrow \ A[\top] \in \Gamma$$ **Lemma 12** Let D be some μ -formula. For every finite subset Γ of $\mathbb{SC}(D)$ which is not provable in $\mathbf{K}_{\omega}(\mu)$ there exists a finite subset Δ of $\mathbb{SC}(D)$ which is D-saturated and contains Γ . **Definition 13** Let D be some μ -formula. Then \mathfrak{S}_D is the Kripke structure which is defined by the following three conditions: - \bullet $|\mathfrak{S}_D|$:= collection of all *D*-saturated sets - \bullet For any label a, $$(\Gamma, \Delta) \in \mathfrak{S}_D(a) \quad :\Leftrightarrow \quad (\Gamma, \Delta) \in |\mathfrak{S}_D|^2 \text{ and } \{B : \langle a \rangle B \in \Gamma\} \subset \Delta.$$ \bullet For any variable X, $$\mathfrak{S}_D(X) := \{ \Gamma \in |\mathfrak{S}_D| : X \notin \Gamma \}.$$ # Signed truth sets (similar to Streett and Emerson) Fix a μ -formula D and a $\sigma = \langle \sigma_1, \dots, \sigma_m \rangle$ of suitable length. Then signed truth sets $||A||_D^{\sigma}$ are inductively defined as follows: $$\|\bot\|_D^{\sigma} := \emptyset \qquad \|\top\|_D^{\sigma} := |\mathfrak{S}_D|$$ $$\|X\|_D^{\sigma} := \mathfrak{S}_D(X) \qquad \|\sim X\|_D^{\sigma} := |\mathfrak{M}| \setminus \mathfrak{S}_D(X)$$ $$\|A \vee B\|_D^{\sigma} := \|A\|_D^{\sigma} \cup \|B\|_D^{\sigma} \qquad \|A \wedge B\|_D^{\sigma} := \|A\|_D^{\sigma} \cap \|B\|_D^{\sigma}$$ $$\|\langle a \rangle B\|_D^{\sigma} := \{\Gamma : (\exists \Delta)(\langle \Gamma, \Delta \rangle \in \mathfrak{S}_D(a) \& \Delta \in \|B\|_D^{\sigma})\}$$ $$\|[a]B\|_D^{\sigma} := \{\Gamma : (\forall \Delta)(\langle \Gamma, \Delta \rangle \in \mathfrak{S}_D(a) \Rightarrow \Delta \in \|B\|_D^{\sigma})\}$$ For fixed point formulas: Given an X-positive formula A[X] we first introduce the monotone operator $$\Phi_A : \text{Pow}(|\mathfrak{S}_D|) \to \text{Pow}(|\mathfrak{S}_D|), \quad \Phi_A(S) := ||A[S]||_D^{\sigma}.$$ Based on this Φ_A , we now set $(\sigma_m$ associated to this fixed point) $$\|(\mu X)A[X]\|_{D}^{\sigma} := I_{\Phi_{A}}^{<\sigma_{m}}$$ $$\|(\nu^{1}X)A[X]\|_{D}^{\sigma} := \|A[\top]\|_{D}^{\sigma}$$ $$\|(\nu^{k+1}X)A[X]\|_{D}^{\sigma} := \|A[(\nu^{k}X)A[X]]\|_{D}^{\sigma}$$ $$\|(\nu X)A[X]\|_{D}^{\sigma} := \bigcap_{i<\omega} \|(\nu^{i}X)A[X]\|_{D}^{\sigma}$$ **Remark 14** For any μ -formula D there exist suitable σ such that for all A: $||A||_{\mathfrak{S}_D} \subseteq ||A||_D^{\sigma}$. **Lemma 15 (Truth lemma)** Let D be some μ -formula. Then for all (suitable) sequences of ordinals σ , all A from $\mathbb{SC}(D)$ and all D-saturated subsets Γ of $\mathbb{SC}(D)$ we have $$A \in \Gamma \quad \Rightarrow \quad \Gamma \notin ||A||_D^{\boldsymbol{\sigma}}.$$ **Theorem 16 (Truth theorem)** Let D be some μ -formula and A from $\mathbb{SC}(D)$. Then for all D-saturated subsets Γ of $\mathbb{SC}(D)$ we have $$A \in \Gamma \quad \Rightarrow \quad \Gamma \notin ||A||_{\mathfrak{S}_D}.$$ Corollary 17 (Completeness) For all μ -formulas A we have $$\mu \models A \Rightarrow \mathbf{K}_{\omega}(\mu) \vdash A.$$ # Finitization of $K_{\omega}(\mu)$ Let $\mathbf{K}_{<\omega}(\mu)$ be the variant of $\mathbf{K}_{\omega}(\mu)$ in which the infinitary rule $$\Gamma$$, $(\nu^n X)A[X]$... for all $0 < n < \omega$ Γ , $(\nu X)A[X]$ is replaced by its finite version $$\dots$$ Γ , $(\nu^n X)A[X]$ \dots for all $0 < n < \ell(\Gamma, (\nu X)A[X])$ Γ , $(\nu X)A[X]$ Clearly: $$\mathbf{K}_{\omega}(\mu) \vdash A \Rightarrow \mathbf{K}_{<\omega}(\mu) \vdash A$$. Soundness of $\mathbf{K}_{<\omega}(\mu)$ – and hence also of $\mathbf{K}_{\omega}(\mu)$ – by: - ullet exploiting the *small model property* of the modal μ -calculus or - adapting a deductive system originally developed by Dax, Hofmann and Lange for the linear time μ -calculus and extended by Studer to the full μ -calclus and shown to be complete. # The simplified systems ${f S}$ and ${f S}_\omega$ Language of S: language of modal logic (without μ , ν) plus propositional constants P_A and Q_A for all X-positive modal formulas A[X] Language of \mathbf{S}_{ω} : language of modal logic (without μ , ν) plus propositional constants P_A , Q_A , Q_A^1 , Q_A^2 , . . . for all X-positive modal formulas A[X] # Axioms and rules of \mathbf{S}_{ω} As for $\mathbf{K}_{\omega}(\mu)$, but with the rules for μ and ν replaced by: $$\frac{\Gamma, A[P_A]}{\Gamma, P_A}$$ $$\frac{\Gamma, A[\top]}{\Gamma, Q_A^1} \qquad \qquad \parallel \qquad \frac{\Gamma, A[Q_A^n]}{\Gamma, Q_A^{n+1}}$$ $$\Gamma, \ Q_A^n \dots$$ (for all $0 < n < \omega$) Hence S_{ω} is the non-iterated subsystem of $K_{\omega}(\mu)$. #### Axioms and rules of S Axioms and rules for disjunction, conjunction and the modal operators as before; in addition $$\frac{\Gamma, A[P_A]}{\Gamma, P_A} \qquad || \qquad \frac{\Gamma, A[Q_A]}{\Gamma, Q_A}$$ #### **Definition 18** - 1. An S-preproof of Γ is a possibly infinite tree whose root is labelled with Γ and which is locally correct with respect to the rules of S. - 2. Assume we are given a branch $\Gamma_0, \Gamma_1, \ldots$ within an S-preproof. A thread within this branch is a sequence of formulas A_0, A_1, \ldots such that $A_i \in \Gamma_i$ and A_{i+1} corresponds to A_i in the rule which leads from Γ_{i+1} to Γ_i . # Example 19 Consider an S-preproof which contains a rule $\frac{\Gamma, B, A[Q_A]}{\Gamma, B, Q_A}$ Then there are, for example, traces \ldots, B, B, \ldots and $\ldots, Q_A, A[Q_A], \ldots$ **Definition 20** An S-preproof of Γ is an S-proof of Γ if - every finite branch ends in an axiom of S and - ullet every infinite infinite branch contains a thread with infinitely many occurrences of a formula Q_A . We write $S \vdash \Gamma$ if there exists an S-proof of Γ . **Theorem 21** For all Γ we have: - 1. $S \vdash \Gamma \Rightarrow \mu \models \Gamma$. - 2. $S_{\omega} \vdash \Gamma \Rightarrow S_{<\omega} \vdash \Gamma \Rightarrow S \vdash \Gamma$.