Towards a Proper Proof Theory of the Modal μ -Calculus

Gerhard Jäger University of Bern Ordinals, subsystems of second order arithmetic, . . . = selling coals to Newcastle (Eulen nach Athen tragen)

Important for

Wilfried
$$eta$$
uchholz:

- well-foundedness
- β -models
- ullet München \hookrightarrow μ

μ -calculus, its well-founded derivations and its β -models

Some central questions:

- ullet Is there a cut-free (finite), sound and complete formalization of the modal μ -calculus?
- Is there a cut-elimination procedure for the modal μ -calculus?
- What is the complexity of the model checking problem?

Main references

- C. Dax, M. Hofmann, M. Lange, A proof system for the linear time μ -calculus, in: Proceedings 26th Conference on Foundations of software Technology and Theoretical Computer Science, LNCS 4337, Springer, 2006.
- G. Jäger, M. Kretz, T. Studer, Canonical completeness of infinitary μ , The Journal of Algebraic and Logic Programming, to appear.
- T. Studer, On the proof theory of the modal mu-calculus, Studia Logica, to appear.

The syntax of the modal μ -calculus

Var: set of variables X, Y, Z, \dots

Lab: finite set of labels a, b, c, \ldots

Formulas (A, B, C, \ldots) :

- $\bullet \perp \mid \quad \top \quad \mid \quad X \quad \mid \quad \sim X \quad \mid$
- \bullet $(A \lor B) \mid (A \land B) \mid \langle a \rangle A \mid [a]A \mid$
- $(\mu X)A \mid (\nu X)A$ (both for A positive in X)

The semantics of the modal μ -calculus

A μ -structure $\mathfrak M$ consists of

- ullet a non-empty set $|\mathfrak{M}|$, the universe of \mathfrak{M} ,
- $\mathfrak{M}(X) \subset |\mathfrak{M}|$ for all X from Var
- $\mathfrak{M}(a) \subset |\mathfrak{M}| \times |\mathfrak{M}|$ for all a from Lab

For $S \subset |\mathfrak{M}|$: $\mathfrak{M}[Z:=S]$ is the μ -structure which maps Z to S and otherwise agrees with \mathfrak{M} .

Definition of the value $||A||_{\mathfrak{M}}$ of the μ -formula A:

$$\|\bot\|_{\mathfrak{M}} := \emptyset$$

$$\|T\|_{\mathfrak{M}} := |\mathfrak{M}|$$

$$\|X\|_{\mathfrak{M}} := \mathfrak{M}(X)$$

$$\|\sim X\|_{\mathfrak{M}} := |\mathfrak{M}| \setminus \mathfrak{M}(X)$$

$$\|A \vee B\|_{\mathfrak{M}} := \|A\|_{\mathfrak{M}} \cup \|B\|_{\mathfrak{M}}$$

$$\|A \wedge B\|_{\mathfrak{M}} := \|A\|_{\mathfrak{M}} \cap \|B\|_{\mathfrak{M}}$$

$$\|\langle a \rangle B\|_{\mathfrak{M}} := \{s : (\exists t)(\langle s, t \rangle \in \mathfrak{M}(a) \& t \in \|B\|_{\mathfrak{M}}\}$$

$$\|[a]B\|_{\mathfrak{M}} := \{s : (\forall t)(\langle s, t \rangle \in \mathfrak{M}(a) \Rightarrow t \in \|B\|_{\mathfrak{M}}\}$$

$$\|(\mu X)A\|_{\mathfrak{M}} := \bigcap \{S \subset |\mathfrak{M}| : \|A\|_{\mathfrak{M}[X:=S]} \subset S\}$$
$$\|(\nu X)A\|_{\mathfrak{M}} := \bigcup \{S \subset |\mathfrak{M}| : S \subset \|A\|_{\mathfrak{M}[X:=S]}\}$$

For all X-positive A, the operator Φ_A , depending on \mathfrak{M} ,

$$\Phi_A: \text{Pow}(|\mathfrak{M}|) \to \text{Pow}(|\mathfrak{M}|), \qquad \Phi_A(S) := \|A\|_{\mathfrak{M}[X:=S]}$$
 is monotone.

Remark 1 Independent of \mathfrak{M} , the least and greatest fixed point terms $(\mu X)A$ and $(\nu X)A$ are interpreted as the real least and greatest fixed points, respectively.

Definition 2

- 1. A formula A is called μ -valid if we have $|\mathfrak{M}| \subseteq ||A||_{\mathfrak{M}}$ for every μ -structure \mathfrak{M} ; in this case we write $\mu \models A$.
- 2. A formula A is called μ -satisfiable if there exists a μ -structure \mathfrak{M} such that $||A||_{\mathfrak{M}} \neq \emptyset$.

Remark 3

- 1. There exists a natural and trivially sound Hilbert-style axiomatization of the modal μ -calculus due to D. Kozen.
- 2. According to a result of I. Walukiewicz it is also complete.
- 3. The completeness proof requires a complicated machinery: tree automata, games, very technical syntactic reductions.

The infinitary calculus $K_{\omega}(\mu)$

Extend the language to:

$$\bullet$$
 \bot $|$ \top $|$ X $|$ $\sim X$ $|$

$$\bullet$$
 $(A \lor B) \mid (A \land B) \mid \langle a \rangle B \mid [a]B \mid$

•
$$(\mu X)A \mid (\nu X)A \mid (\nu^n X)A \quad (A \text{ positive in } X, \ 0 < n < \omega)$$

 μ -formulas are formulas without subformulas of the form $(\nu^n X)B$.

Reduction:

 $A^- := \text{replace in } A \text{ all subformulas } (\nu^n X)B \text{ by } (\nu X)B$

Axioms of $K_{\omega}(\mu)$. For all finite formulas sets Γ and all variables X:

$$\Gamma, \ \top \qquad || \qquad \Gamma, \ X, \ \sim X$$

Logical rules of K $_{\omega}(\mu)$ **.** For all finite formula sets Γ, Δ , all labels a and all formulas A, B:

$$\frac{\Gamma, A, B}{\Gamma, A \vee B}$$

$$\frac{\Gamma, A \qquad \Gamma, B}{\Gamma, A \wedge B}$$

$$\frac{\Gamma, A}{\langle a \rangle \Gamma, [a] A, \Delta}$$

 μ -rules of $\mathbf{K}_{\omega}(\mu)$. For all finite formula sets Γ and all X-positive formulas A[X]:

$$\frac{\Gamma, A[(\mu X)A[X]]}{\Gamma, (\mu X)A[X]}$$

 ν -rules of $\mathbf{K}_{\omega}(\mu)$. For all finite formula sets Γ and all X-positive formulas A[X]:

$$\frac{\Gamma, A[\top]}{\Gamma, (\nu^1 X) A[X]} \qquad || \qquad \frac{\Gamma, A[(\nu^n X) A[X]]}{\Gamma, (\nu^{n+1} X) A[X]}$$

$$\Gamma$$
, $(\nu^n X)A[X]$... (for all $0 < n < \omega$)
$$\Gamma$$
, $(\nu X)A[X]$

Given a μ -structure \mathfrak{M} and an X-positive formula A[X], the greatest fixed point gfp(A) of the operator

$$\Phi_A : \operatorname{Pow}(|\mathfrak{M}|) \to \operatorname{Pow}(|\mathfrak{M}|), \qquad \Phi_A(S) := \|A\|_{\mathfrak{M}[X:=S]}$$

is approximated by setting

$$J_A^{\alpha} := \Phi_A(\bigcap_{\beta < \alpha} J_A^{\beta})$$

Then:

$$gfp(A) = \bigcap_{\alpha} J_A^{\alpha} = \bigcap_{\alpha < ||A||} J_A^{\alpha}$$

Typically, the closure ordinal ||A|| of Φ_A is beyond ω ; hence there are two problems with respect to $\mathbf{K}_{\omega}(\mu)$:

- soundness of $\mathbf{K}_{\omega}(\mu)$
- completeness of $\mathbf{K}_{\omega}(\mu)$

Measuring the complexities of formulas

For
$$\sigma = \langle \sigma_1, \dots, \sigma_m \rangle$$
 and $\tau = \langle \tau_1, \dots, \tau_n \rangle$ we set:

$$\sigma * \tau := \langle \sigma_1, \ldots, \sigma_m, \tau_1, \ldots, \tau_n \rangle$$

$$\boldsymbol{\sigma} \sqcup \boldsymbol{\tau} := \begin{cases} \langle \max(\sigma_1, \tau_1), \dots, \max(\sigma_m, \tau_m), \tau_{m+1}, \dots, \tau_n \rangle & \text{if } m \leq n, \\ \langle \max(\sigma_1, \tau_1), \dots, \max(\sigma_n, \tau_n), \sigma_{n+1}, \dots, \sigma_m \rangle & \text{if } n < m \end{cases}$$

$$<_{lex} := \left\{ egin{array}{l} {
m strict\ lexicographical\ ordering\ of} \\ {
m finite\ sequences\ of\ ordinals} \end{array}
ight.$$

Remark 4 $<_{lex}$ is a well-ordering on any set of sequences of bounded lengths, though not a well-ordering in general.

Definition 5 The rank rk(A) of a formula A is inductively defined by:

$$rk(A) := rk(\sim A) := \langle 0 \rangle$$
 (A atomic)
 $rk(A \vee B) := rk(A \wedge B) := (rk(A) \sqcup rk(B)) * \langle 0 \rangle$
 $rk(\langle a \rangle B) := rk([a]B) := rk(B) * \langle 0 \rangle$
 $rk((\mu X)A[X]) := rk(A[\top]) * \langle 0 \rangle$
 $rk((\nu X)A[X]) := rk(A[\top]) * \langle \omega \rangle$
 $rk((\nu^n X)A[X]) := rk(A[\top]) * \langle n \rangle$

In addition,

$$lh(A) := lh(rk(A)).$$

Lemma 6 We have, e.g.,

- 1. $lh(A) = lh(A^-)$; rk(A) pointwise less than or equal to $rk(A^-)$.
- 2. $rk(A[(\nu^n X)A[X]]) <_{lex} rk((\nu^{n+1}X)A[X]) <_{lex} rk((\nu X)A[X])$.

Definition 7 The *Fischer-Ladner closure* $\mathbb{FL}(D)$ of a μ -formula D is inductively defined by:

- $D \in \mathbb{FL}(D)$,
- $(A \lor B) \in \mathbb{FL}(D)$ or $(A \land B) \in \mathbb{FL}(D)$ \Rightarrow $A, B \in \mathbb{FL}(D)$,
- $\langle a \rangle B \in \mathbb{FL}(D)$ or $[a]B \in \mathbb{FL}(D)$ \Rightarrow $B \in \mathbb{FL}(D)$,
- $(\mu X)A[X] \in \mathbb{FL}(D) \Rightarrow A[\top], A[(\mu X)A[X]] \in \mathbb{FL}(D),$
- $(\nu X)A[X] \in \mathbb{FL}(D) \Rightarrow A[\top], A[(\nu X)A[X]] \in \mathbb{FL}(D).$

Definition 8 The *strong closure* $\mathbb{SC}(D)$ of a μ -formula D is inductively defined by:

- $D \in \mathbb{SC}(D)$,
- $(A \vee B) \in \mathbb{SC}(D)$ or $(A \wedge B) \in \mathbb{SC}(D)$ \Rightarrow $A, B \in \mathbb{SC}(D)$,
- $\langle a \rangle B \in \mathbb{SC}(D)$ or $[a]B \in \mathbb{SC}(D)$ \Rightarrow $B \in \mathbb{SC}(D)$,
- $(\mu X)A[X] \in \mathbb{SC}(D) \Rightarrow A[\top], A[(\mu X)A[X]] \in \mathbb{SC}(D),$
- $(\nu X)A[X] \in \mathbb{SC}(D) \Rightarrow A[\top], A[(\nu^n X)A[X]] \in \mathbb{SC}(D),$
- $(\nu^{n+1}X)A[X] \in \mathbb{SC}(D) \Rightarrow A[(\nu^n X)A[X]] \in \mathbb{SC}(D),$
- $(\nu^1 X)A[X] \in \mathbb{SC}(D) \Rightarrow A[\top] \in \mathbb{SC}(D).$

Lemma 9 For any μ -formula D:

$$A \in \mathbb{SC}(D) \Rightarrow A^- \in \mathbb{FL}(D).$$

Lemma 10 If D is a μ -formula, then the restriction of $<_{lex}$ to the set $\{rk(A): A \in \mathbb{SC}(D)\}$ is a well-ordering.

Saturation

Definition 11 Let D be some μ -formula. A finite subset Γ of $\mathbb{SC}(D)$ is called D-saturated if the following conditions are satisfied:

$$\mathbf{K}_{\omega}(\mu) \nvdash \Gamma$$

$$A \lor B \in \Gamma \ \Rightarrow \ A \in \Gamma \ \text{and} \ B \in \Gamma$$

$$A \land B \in \Gamma \ \Rightarrow \ A \in \Gamma \ \text{or} \ B \in \Gamma$$

$$(\mu X)A[X] \in \Gamma \ \Rightarrow \ A[(\mu X)A[X]] \in \Gamma$$

$$(\nu X)A[X] \in \Gamma \ \Rightarrow \ (\nu^i X)A[X] \in \Gamma \ \text{for some} \ 0 < i < \omega$$

$$(\nu^{n+1}X)A[X] \in \Gamma \ \Rightarrow \ A[(\nu^n X)A[X]] \in \Gamma$$

$$(\nu^1 X)A[X] \in \Gamma \ \Rightarrow \ A[\top] \in \Gamma$$

Lemma 12 Let D be some μ -formula. For every finite subset Γ of $\mathbb{SC}(D)$ which is not provable in $\mathbf{K}_{\omega}(\mu)$ there exists a finite subset Δ of $\mathbb{SC}(D)$ which is D-saturated and contains Γ .

Definition 13 Let D be some μ -formula. Then \mathfrak{S}_D is the Kripke structure which is defined by the following three conditions:

- \bullet $|\mathfrak{S}_D|$:= collection of all *D*-saturated sets
- \bullet For any label a,

$$(\Gamma, \Delta) \in \mathfrak{S}_D(a) \quad :\Leftrightarrow \quad (\Gamma, \Delta) \in |\mathfrak{S}_D|^2 \text{ and } \{B : \langle a \rangle B \in \Gamma\} \subset \Delta.$$

 \bullet For any variable X,

$$\mathfrak{S}_D(X) := \{ \Gamma \in |\mathfrak{S}_D| : X \notin \Gamma \}.$$

Signed truth sets (similar to Streett and Emerson)

Fix a μ -formula D and a $\sigma = \langle \sigma_1, \dots, \sigma_m \rangle$ of suitable length. Then signed truth sets $||A||_D^{\sigma}$ are inductively defined as follows:

$$\|\bot\|_D^{\sigma} := \emptyset \qquad \|\top\|_D^{\sigma} := |\mathfrak{S}_D|$$

$$\|X\|_D^{\sigma} := \mathfrak{S}_D(X) \qquad \|\sim X\|_D^{\sigma} := |\mathfrak{M}| \setminus \mathfrak{S}_D(X)$$

$$\|A \vee B\|_D^{\sigma} := \|A\|_D^{\sigma} \cup \|B\|_D^{\sigma} \qquad \|A \wedge B\|_D^{\sigma} := \|A\|_D^{\sigma} \cap \|B\|_D^{\sigma}$$

$$\|\langle a \rangle B\|_D^{\sigma} := \{\Gamma : (\exists \Delta)(\langle \Gamma, \Delta \rangle \in \mathfrak{S}_D(a) \& \Delta \in \|B\|_D^{\sigma})\}$$

$$\|[a]B\|_D^{\sigma} := \{\Gamma : (\forall \Delta)(\langle \Gamma, \Delta \rangle \in \mathfrak{S}_D(a) \Rightarrow \Delta \in \|B\|_D^{\sigma})\}$$

For fixed point formulas: Given an X-positive formula A[X] we first introduce the monotone operator

$$\Phi_A : \text{Pow}(|\mathfrak{S}_D|) \to \text{Pow}(|\mathfrak{S}_D|), \quad \Phi_A(S) := ||A[S]||_D^{\sigma}.$$

Based on this Φ_A , we now set $(\sigma_m$ associated to this fixed point)

$$\|(\mu X)A[X]\|_{D}^{\sigma} := I_{\Phi_{A}}^{<\sigma_{m}}$$

$$\|(\nu^{1}X)A[X]\|_{D}^{\sigma} := \|A[\top]\|_{D}^{\sigma}$$

$$\|(\nu^{k+1}X)A[X]\|_{D}^{\sigma} := \|A[(\nu^{k}X)A[X]]\|_{D}^{\sigma}$$

$$\|(\nu X)A[X]\|_{D}^{\sigma} := \bigcap_{i<\omega} \|(\nu^{i}X)A[X]\|_{D}^{\sigma}$$

Remark 14 For any μ -formula D there exist suitable σ such that for all A: $||A||_{\mathfrak{S}_D} \subseteq ||A||_D^{\sigma}$.

Lemma 15 (Truth lemma) Let D be some μ -formula. Then for all (suitable) sequences of ordinals σ , all A from $\mathbb{SC}(D)$ and all D-saturated subsets Γ of $\mathbb{SC}(D)$ we have

$$A \in \Gamma \quad \Rightarrow \quad \Gamma \notin ||A||_D^{\boldsymbol{\sigma}}.$$

Theorem 16 (Truth theorem) Let D be some μ -formula and A from $\mathbb{SC}(D)$. Then for all D-saturated subsets Γ of $\mathbb{SC}(D)$ we have

$$A \in \Gamma \quad \Rightarrow \quad \Gamma \notin ||A||_{\mathfrak{S}_D}.$$

Corollary 17 (Completeness) For all μ -formulas A we have

$$\mu \models A \Rightarrow \mathbf{K}_{\omega}(\mu) \vdash A.$$

Finitization of $K_{\omega}(\mu)$

Let $\mathbf{K}_{<\omega}(\mu)$ be the variant of $\mathbf{K}_{\omega}(\mu)$ in which the infinitary rule

$$\Gamma$$
, $(\nu^n X)A[X]$... for all $0 < n < \omega$
 Γ , $(\nu X)A[X]$

is replaced by its finite version

$$\dots$$
 Γ , $(\nu^n X)A[X]$ \dots for all $0 < n < \ell(\Gamma, (\nu X)A[X])$ Γ , $(\nu X)A[X]$

Clearly:
$$\mathbf{K}_{\omega}(\mu) \vdash A \Rightarrow \mathbf{K}_{<\omega}(\mu) \vdash A$$
.

Soundness of $\mathbf{K}_{<\omega}(\mu)$ – and hence also of $\mathbf{K}_{\omega}(\mu)$ – by:

- ullet exploiting the *small model property* of the modal μ -calculus or
- adapting a deductive system originally developed by Dax, Hofmann and Lange for the linear time μ -calculus and extended by Studer to the full μ -calclus and shown to be complete.

The simplified systems ${f S}$ and ${f S}_\omega$

Language of S: language of modal logic (without μ , ν) plus propositional constants P_A and Q_A for all X-positive modal formulas A[X]

Language of \mathbf{S}_{ω} : language of modal logic (without μ , ν) plus propositional constants P_A , Q_A , Q_A^1 , Q_A^2 , . . . for all X-positive modal formulas A[X]

Axioms and rules of \mathbf{S}_{ω}

As for $\mathbf{K}_{\omega}(\mu)$, but with the rules for μ and ν replaced by:

$$\frac{\Gamma, A[P_A]}{\Gamma, P_A}$$

$$\frac{\Gamma, A[\top]}{\Gamma, Q_A^1} \qquad \qquad \parallel \qquad \frac{\Gamma, A[Q_A^n]}{\Gamma, Q_A^{n+1}}$$

$$\Gamma, \ Q_A^n \dots$$
 (for all $0 < n < \omega$)

Hence S_{ω} is the non-iterated subsystem of $K_{\omega}(\mu)$.

Axioms and rules of S

Axioms and rules for disjunction, conjunction and the modal operators as before; in addition

$$\frac{\Gamma, A[P_A]}{\Gamma, P_A} \qquad || \qquad \frac{\Gamma, A[Q_A]}{\Gamma, Q_A}$$

Definition 18

- 1. An S-preproof of Γ is a possibly infinite tree whose root is labelled with Γ and which is locally correct with respect to the rules of S.
- 2. Assume we are given a branch $\Gamma_0, \Gamma_1, \ldots$ within an S-preproof. A thread within this branch is a sequence of formulas A_0, A_1, \ldots such that $A_i \in \Gamma_i$ and A_{i+1} corresponds to A_i in the rule which leads from Γ_{i+1} to Γ_i .

Example 19 Consider an S-preproof which contains a rule

 $\frac{\Gamma, B, A[Q_A]}{\Gamma, B, Q_A}$

Then there are, for example, traces

 \ldots, B, B, \ldots and $\ldots, Q_A, A[Q_A], \ldots$

Definition 20 An S-preproof of Γ is an S-proof of Γ if

- every finite branch ends in an axiom of S and
- ullet every infinite infinite branch contains a thread with infinitely many occurrences of a formula Q_A .

We write $S \vdash \Gamma$ if there exists an S-proof of Γ .

Theorem 21 For all Γ we have:

- 1. $S \vdash \Gamma \Rightarrow \mu \models \Gamma$.
- 2. $S_{\omega} \vdash \Gamma \Rightarrow S_{<\omega} \vdash \Gamma \Rightarrow S \vdash \Gamma$.