The modal μ -calculus Hierarchy on Restricted Classes of Transition Systems

Luca Alberucci¹ Alessandro Facchini²

¹ IAM, University of Berne

² Universities of Lausanne and Bordeaux 1

April 5th 2008

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What is the modal μ -calculus ?

What is the modal μ -calculus ?

The modal μ -calculus...

... is an extension of modal logic allowing least and greatest fixpoint constructors for any (syntactically) monotone formula. containing "all" extensions of modal logic with fixpoint constructors.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What is the modal μ -calculus ?

The modal μ -calculus...

... is an extension of modal logic allowing least and greatest fixpoint constructors for any (syntactically) monotone formula. containing "all" extensions of modal logic with fixpoint constructors.

• PDL:
$$\langle \alpha^* \rangle \psi = \mu x. \psi \lor \langle \alpha \rangle x$$

• CTL:
$$\mathbf{EG}\varphi = \nu x. \varphi \land \Diamond x$$
 and $\mathbf{E}(\varphi \mathcal{U}\psi) = \mu x. \psi \lor (\varphi \land \Diamond x)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The modal $\mu\text{-calculus}$ Hierarchy on Restricted Classes of Transition Systems $\hfill \hfill \hfi$

Some expressible properties

Eventually "p":

Some expressible properties

Eventually "p":

 $\mu x. p \lor \Diamond x$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

The modal $\mu\text{-calculus}$ Hierarchy on Restricted Classes of Transition Systems $\hfill \hfill \hfi$

Some expressible properties

Eventually "p":

 $\mu x. p \lor \Diamond x$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Allways "p":

Some expressible properties

Eventually "p":

 $\mu x. p \lor \Diamond x$

Allways "p":

 $\nu x.p \wedge \Box x$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Some expressible properties

Eventually "p":

 $\mu x. p \lor \Diamond x$

Allways "p":

 $\nu x.p \wedge \Box x$

Allways eventually "p":

Some expressible properties

Eventually "p":

 $\mu x. p \lor \Diamond x$

Allways "p":

 $\nu x.p \wedge \Box x$

Allways eventually "p":

 $\nu x.(\mu y.p \lor \diamondsuit y) \land \Box x$

Some expressible properties

Eventually "p":

 $\mu x. p \lor \Diamond x$

Allways "p":

 $\nu x.p \wedge \Box x$

Allways eventually "p":

 $\nu x.(\mu y.p \lor \diamondsuit y) \land \Box x$

There is a branch such that infinitely often "p":

Some expressible properties

Eventually "p":

 $\mu x. p \lor \Diamond x$

Allways "p":

 $\nu x.p \wedge \Box x$

Allways eventually "p":

 $\nu x.(\mu y.p \lor \diamondsuit y) \land \Box x$

There is a branch such that infinitely often "p":

 $\nu x.\mu y.(p \land \Diamond x) \lor \Diamond y$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Eventually "p" and allways "p":

$$\mathsf{ad}(\mu x. p \lor \diamondsuit x) = \mathsf{ad}(\nu x. p \land \Box x) = 1$$

Eventually "p" and allways "p":

$$\mathsf{ad}(\mu x.p \lor \diamondsuit x) = \mathsf{ad}(\nu x.p \land \Box x) = 1$$

There is a branch such that infinitely often "p":

$$\mathsf{ad}(\nu x.\mu y.(p \land \diamondsuit x) \lor \diamondsuit y) = 2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Eventually "p" and allways "p":

$$\mathsf{ad}(\mu x.p \lor \diamondsuit x) = \mathsf{ad}(\nu x.p \land \Box x) = 1$$

There is a branch such that infinitely often "p":

$$\mathsf{ad}(\nu x.\mu y.(p \land \diamondsuit x) \lor \diamondsuit y) = 2$$

 \Rightarrow the internal fixpoint formula $\mu y.(p \land \Diamond x) \lor \Diamond y$ uses the external fixpoint variable x as parameter.

Eventually "p" and allways "p":

$$\mathsf{ad}(\mu x.p \lor \diamondsuit x) = \mathsf{ad}(\nu x.p \land \Box x) = 1$$

There is a branch such that infinitely often "p":

$$\operatorname{ad}(\nu x.\mu y.(p \land \diamondsuit x) \lor \diamondsuit y) = 2$$

⇒ the internal fixpoint formula $\mu y.(p \land \Diamond x) \lor \Diamond y$ uses the external fixpoint variable x as parameter. Allways eventually "p":

$$\mathsf{ad}(\nu x.(\mu y.p \lor \diamondsuit y) \land \Box x) = 1$$

A formula with ad = 3:

 $\varphi \equiv \mu x.\nu y.\mu z.((d_1 \land \Diamond x) \lor (d_2 \land \Diamond y) \lor (d_3 \land \Diamond z) \lor \dots$ $\dots \lor (c_1 \land \Box x) \lor (c_2 \land \Box y) \land (c_3 \land \Box z))$

 $\Rightarrow \text{ the subformula } \varphi_z \text{ uses the fixpoint variable } y \text{ as parameter and the subformula } \varphi_y \text{ uses the most external fixpoint variable } x \text{ as parameter.}$

A formula with ad = 3:

 $\varphi \equiv \mu x.\nu y.\mu z.((d_1 \land \Diamond x) \lor (d_2 \land \Diamond y) \lor (d_3 \land \Diamond z) \lor \dots$ $\dots \lor (c_1 \land \Box x) \lor (c_2 \land \Box y) \land (c_3 \land \Box z))$

 \Rightarrow the subformula φ_z uses the fixpoint variable y as parameter and the subformula φ_y uses the most external fixpoint variable x as parameter.

Syntactical modal μ -calculus hierarchy

The alternation depth implies a "strict" syntactical hierarchy on the class of all μ -formulae.

The modal μ -calculus hierarchy

Bradfield (1996): Stictness of semantical modal μ -calculus hierarchy

The semantical modal $\mu\text{-}\mathsf{calculus}$ hierarchy is strict on the class of all transition systems.

⇒ For each *n* there is a formula φ with $ad(\varphi) = n$ such that for all formulae ψ with $ad(\psi) < n$ we do **not** have

for all transition systems \mathcal{T} : $(\mathcal{T} \models \varphi \quad \Leftrightarrow \quad \mathcal{T} \models \psi).$

We answer the three following questions:

Strictness of the semantical modal $\mu\text{-}calculus$ hierarchy on the class of all. . .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. ... reflexive transition systems?
- 2. ... transitive and symmetric transition systems?
- 3. ... transitive transition systems?

The modal $\mu\text{-calculus}$ Hierarchy on Restricted Classes of Transition Systems $\bigsqcup_{}$ Introduction

Overview

Introduction

- The modal $\mu\text{-calculus}$
- Games for the modal μ -calculus
- The Hierarchy on Reflexive Transition Systems
- The Hierarchy on transitive and symmetric Transition Systems

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Hierarchy on transitive Transition Systems

The modal μ -calculus Hierarchy on Restricted Classes of Transition Systems

The modal μ -calculus

 \mathcal{L}_{μ} -formulae

$$\varphi ::\equiv p \mid \sim p \mid \top \mid \perp \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi) \mid \Diamond \varphi \mid \Box \varphi \dots$$
$$\dots \mid \mu x.\varphi \mid \nu x.\varphi$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

where $p, x \in P$ and x occurs only positively in $\eta x. \varphi$ ($\eta = \nu, \mu$).

└─ The modal µ-calculus

 \mathcal{L}_{μ} -formulae

$$\varphi ::\equiv p \mid \sim p \mid \top \mid \perp \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi) \mid \Diamond \varphi \mid \Box \varphi \dots$$
$$\dots \mid \mu x.\varphi \mid \nu x.\varphi$$

where $p, x \in P$ and x occurs only positively in $\eta x.\varphi$ $(\eta = \nu, \mu)$.

 $\neg\varphi$ is defined by using de Morgan dualities for boolean connectives, the usual modal dualities for \diamondsuit and \Box , and

$$\neg \mu x.\varphi(x) \equiv \nu x.\neg \varphi(x)[x/\neg x] \quad \text{and} \quad \neg \nu x.\varphi(x) \equiv \mu x.\neg \varphi(x)[x/\neg x].$$

- The modal μ -calculus

- $x \in \text{bound}(\varphi)$ then φ_x is subformula of φ of the form $\eta x.\alpha$.
- φ well-named if no two distincts occurrences of fixed point operators in φ bind the same variable, no variable has both free and bound occurrences in φ and if for any subformula ηx.α of φ we have that x appears once in α.

└─ The modal µ-calculus

Syntactical modal μ -calculus hierarchy

Let $\Phi \subseteq \mathcal{L}_{\mu}$. $\nu(\Phi)$ is the smallest class of formulae such that:

- $\Phi, \neg \Phi \subset \nu(\Phi);$
- If ψ(x) ∈ ν(Φ) and x occurs only positively, then νx.ψ ∈ ν(Φ);
- If $\psi, \varphi \in \nu(\Phi)$, then $\psi \land \varphi, \psi \lor \varphi, \Diamond \psi, \Box \psi \in \nu(\Phi)$;
- If $\psi, \varphi \in \nu(\Phi)$ and x is bound in ψ , then $\varphi[x/\psi] \in \nu(\Phi)$

└─ The modal µ-calculus

Syntactical modal μ -calculus hierarchy

Let $\Phi \subseteq \mathcal{L}_{\mu}$. $\nu(\Phi)$ is the smallest class of formulae such that:

•
$$\Phi, \neg \Phi \subset \nu(\Phi);$$

- If ψ(x) ∈ ν(Φ) and x occurs only positively, then νx.ψ ∈ ν(Φ);
- If $\psi, \varphi \in \nu(\Phi)$, then $\psi \land \varphi, \psi \lor \varphi, \Diamond \psi, \Box \psi \in \nu(\Phi)$;

▶ If $\psi, \varphi \in \nu(\Phi)$ and x is bound in ψ , then $\varphi[x/\psi] \in \nu(\Phi)$ similarly for $\mu(\Phi)$

The modal μ -calculus

For all $n \in \mathbb{N}$, we define the class of μ -formulae Σ_n^{μ} and Π_n^{μ} inductively as follows:

$$\begin{split} & \boldsymbol{\Sigma}_{0}^{\mu} := \boldsymbol{\Pi}_{0}^{\mu} := \mathcal{L}_{\mathsf{M}}; \\ & \boldsymbol{\Sigma}_{n+1}^{\mu} = \mu(\boldsymbol{\Pi}_{n}^{\mu}); \\ & \boldsymbol{\Pi}_{n+1}^{\mu} = \nu(\boldsymbol{\Sigma}_{n}^{\mu}). \end{split}$$

$$\Delta_n^\mu := \Sigma_n^\mu \cap \Pi_n^\mu$$

Alternation depth:

$$\mathsf{ad}(\varphi) := \inf\{k : \varphi \in \Delta_{k+1}^{\mu}\}.$$

The modal μ -calculus Hierarchy on Restricted Classes of Transition Systems

(ロ)、(型)、(E)、(E)、 E) の(の)

The modal μ -calculus

Transition Systems

— The modal μ-calculus

Transition Systems

- A transition system \mathcal{T} is a triple $(S, \rightarrow^{\mathcal{T}}, \lambda)$ consisting of
 - a set S of states,
 - ▶ a binary relation $\rightarrow^T \subseteq S \times S$ called *transition relation*,
 - the valuation λ : P → ℘(S) assigning to each propositional variable p a subset λ(p) of S.

The modal μ -calculus

Transition Systems

- A transition system \mathcal{T} is a triple $(S, \rightarrow^{\mathcal{T}}, \lambda)$ consisting of
 - a set S of states,
 - ▶ a binary relation $\rightarrow^{\mathcal{T}} \subseteq S \times S$ called *transition relation*,
 - the valuation λ : P → ℘(S) assigning to each propositional variable p a subset λ(p) of S.

A pointed transition system (\mathcal{T}, s_0) consists of a transition system \mathcal{T} and a distinguished state s_0 .

The modal μ -calculus

Denotation of a formula

 $\|\varphi\|_{\mathcal{T}}$ is defined as usual by induction on the complexity of $\varphi \in \mathcal{L}_{\mu}$. Simultaneously for all transition systems \mathcal{T} we set:

▶ ...

$$\blacktriangleright \|\nu x.\alpha\|_{\mathcal{T}} = \bigcup \{ \mathsf{S}' \subseteq \mathsf{S} \mid \mathsf{S}' \subseteq \|\alpha(x)\|_{\mathcal{T}[x \mapsto \mathsf{S}']} \}$$

$$\blacktriangleright \|\mu x.\alpha\|_{\mathcal{T}} = \bigcap \{\mathsf{S}' \subseteq \mathsf{S} \mid \|\alpha(x)\|_{\mathcal{T}[x \mapsto \mathsf{S}']} \subseteq \mathsf{S}'\}$$

└─ The modal µ-calculus

▶ ...

Denotation of a formula

 $\|\varphi\|_{\mathcal{T}}$ is defined as usual by induction on the complexity of $\varphi \in \mathcal{L}_{\mu}$. Simultaneously for all transition systems \mathcal{T} we set:

$$\|\nu x.\alpha\|_{\mathcal{T}} = \bigcup \{ \mathsf{S}' \subseteq \mathsf{S} \mid \mathsf{S}' \subseteq \|\alpha(x)\|_{\mathcal{T}[x \mapsto \mathsf{S}']} \}$$
$$\|\mu x.\alpha\|_{\mathcal{T}} = \bigcap \{ \mathsf{S}' \subseteq \mathsf{S} \mid \|\alpha(x)\|_{\mathcal{T}[x \mapsto \mathsf{S}']} \subseteq \mathsf{S}' \}$$

 $\|\nu x.\varphi(x)\|_{\mathcal{T}} = \mathsf{GFP}(\|\varphi(x)\|_{\mathcal{T}}) \quad \text{and} \quad \|\mu x.\varphi(x)\|_{\mathcal{T}} = \mathsf{LFP}(\|\varphi(x)\|_{\mathcal{T}})$

└─ The modal µ-calculus

Some equivalences

If x is not in the scope of a modality in φ(x) then for all T ||νx.φ(x)||_T = ||φ(⊤)||_T and ||μx.φ(x)||_T = ||φ(⊥)||_T
For all φ(x, y) and all T ||νx.νy.φ(x, y)||_T = ||νx.φ(x, x)||_T

$$\|\mu x.\mu y.\varphi(x,y)\|_{\mathcal{T}} = \|\mu x.\varphi(x,x)\|_{\mathcal{T}}.$$

• Every formula φ is equivalent to well-named formula $nf(\varphi)$.

The modal μ -calculus Hierarchy on Restricted Classes of Transition Systems

The modal μ -calculus

Classes of Transition Systems

$$\blacktriangleright \|\varphi\| = \{(\mathcal{T}, s) \ ; \ s \in \|\varphi\|_{\mathcal{T}}\}$$

 $\blacktriangleright \|\varphi\|^r = \{(\mathcal{T}, s) \ ; \ s \in \|\varphi\|_{\mathcal{T}} \text{ and } \mathcal{T} \text{ reflexive} \}$

• Similarly form $\|\varphi\|^t, \|\varphi\|^{st}, \|\varphi\|^{rst}$.

The modal μ -calculus

For all $n \in \mathbb{N}$, we define the following classes pointed transisition systems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\begin{split} \boldsymbol{\Sigma}_{n}^{\boldsymbol{\mu},\mathbb{T}} &= \{ \|\boldsymbol{\varphi}\| \; ; \; \boldsymbol{\varphi} \in \boldsymbol{\Sigma}_{n}^{\boldsymbol{\mu}} \} \\ \boldsymbol{\triangleright} \; \boldsymbol{\Pi}_{n}^{\boldsymbol{\mu},\mathbb{T}} &= \{ \|\boldsymbol{\varphi}\| \; ; \; \boldsymbol{\varphi} \in \boldsymbol{\Pi}_{n}^{\boldsymbol{\mu}} \} \\ \boldsymbol{\triangleright} \; \boldsymbol{\Delta}_{n}^{\boldsymbol{\mu},\mathbb{T}} &= \{ \|\boldsymbol{\varphi}\| \; ; \; \boldsymbol{\varphi} \in \boldsymbol{\Delta}_{n}^{\boldsymbol{\mu}} \} \\ \textbf{Similarly for } \mathbb{T}^{r}, \mathbb{T}^{t}, \mathbb{T}^{st} \text{ and } \mathbb{T}^{rst}. \end{split}$$
The modal μ -calculus

How do we decide if $s \in \|\varphi\|_{\mathcal{T}}$?

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Games for the modal μ -calculus

Games for the modal μ -calculus

(ロ)、(型)、(E)、(E)、 E) の(の)

-Games for the modal μ -calculus

Evaluation game for classical propositional logic

 $\mathcal{E}((q \lor r) \land p, (\mathcal{T}, s_1)):$

(日)、(四)、(E)、(E)、(E)

 \Box Games for the modal μ -calculus

position	player	next position
$\langle p_i, s \rangle$	-	-
$\overline{\langle \psi \lor \phi, \mathbf{s} \rangle}$	V chooses between $\langle \psi, s angle$ and $\langle \phi, s angle$	V choice
$\langle \psi \wedge \phi, s \rangle$	F chooses between $\langle \psi, s angle$ and $\langle \phi, s angle$	F choice

-Games for the modal μ -calculus

Evaluation game for modal logic

 $\mathcal{E}(\Diamond\Box\bot,(\mathcal{T},s_1))$:

Games for the modal μ -calculus

position	player	next position
$\langle p_i, s \rangle$	-	-
$\overline{\langle \psi \lor \phi, \mathbf{s} \rangle}$	V chooses between $\langle \psi, s angle$ and $\langle \phi, s angle$	V choice
$\langle \psi \wedge \phi, \mathbf{s} \rangle$	F chooses between $\langle \psi, s angle$ and $\langle \phi, s angle$	F choice
$\langle \diamondsuit \psi, \pmb{s} angle$	V chooses a point s' s.t. $s \rightarrow s'$	$\langle \psi, {m s}' angle$
$\langle \Box \psi, \mathbf{s} \rangle$	F chooses a point s' s.t. $s \rightarrow s'$	$\langle \psi, {m s}' angle$

Games for the modal μ -calculus

Evaluation game for the modal μ -calculus

position	player	next position
$\langle p_i, s \rangle$	-	-
$\overline{\langle \psi \lor \phi, \mathbf{s} \rangle}$	V chooses between $\langle \psi, s angle$ and $\langle \phi, s angle$	V choice
$\langle \psi \wedge \phi, \mathbf{s} \rangle$	F chooses between $\langle \psi, s angle$ and $\langle \phi, s angle$	F choice
$\langle \diamondsuit \psi, s \rangle$	V chooses a point s' s.t. $s \rightarrow s'$	$\langle \psi, \mathbf{s}' angle$
$\langle \Box \psi, \mathbf{s} \rangle$	F chooses a point s' s.t. $s \rightarrow s'$	$\langle \psi, {m s}' angle$
$\langle \mu x.\psi, s \rangle$	-	$\langle \psi, {m s} angle$
$\langle \nu x.\psi, s angle$	-	$\langle \psi, {m s} angle$
$\langle x, s \rangle$	-	$\langle \psi_{x}, s angle$

-Games for the modal μ -calculus

"There is an infinite branch" $\mathcal{E}(\nu x. \Diamond x, (\mathcal{T}, s_1))$:

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

-Games for the modal μ -calculus

"There is branch with infinitely often "p" $\mathcal{E}(\nu x.\mu y.(p \land \Diamond x) \lor \Diamond y, (\mathcal{T}, s_1))$:

-Games for the modal μ -calculus

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

-Games for the modal μ -calculus

Game-theoretical version of the "fundamental theorem"

Theorem [Streett Emerson 89]

$s \in ||\varphi||_{\mathcal{T}}$ iff **V** has a winning strategy in $\mathcal{E}(\varphi, (\mathcal{T}, s))$.

Games for the modal μ -calculus

Game Formulae

For all $n \ge 1$ we define the Σ_n^{μ} Game formula $W_{\Sigma_n^{\mu}}$ and the Π_n^{μ} Game formula $W_{\Pi_n^{\mu}}$ such that (*n* even):

$$W_{\Sigma_n^{\mu}} :\equiv \mu x_{n+1} \cdot \nu x_n \dots \nu / \mu x_2 \Big(\bigvee_{i=2}^{n+1} (d_i \wedge \Diamond x_i) \vee \bigvee_{i=2}^{n+1} (c_i \wedge \Box x_i)\Big)$$

$$W_{\Pi_n^{\mu}} :\equiv \nu x_{n+2} \cdot \mu x_{n+1} \cdot \ldots \cdot \mu / \nu x_3 \left(\bigvee_{i=3}^{n+2} (d_i \wedge \Diamond x_i) \lor \bigvee_{i=3}^{n+2} (c_i \wedge \Box x_i) \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Games for the modal μ -calculus

Game Formulae

For all $n \ge 1$ we define the Σ_n^{μ} Game formula $W_{\Sigma_n^{\mu}}$ and the Π_n^{μ} Game formula $W_{\Pi_n^{\mu}}$ such that (*n* even):

$$W_{\Sigma_n^{\mu}} :\equiv \mu x_{n+1} \cdot \nu x_n \dots \nu / \mu x_2 \Big(\bigvee_{i=2}^{n+1} (d_i \wedge \Diamond x_i) \vee \bigvee_{i=2}^{n+1} (c_i \wedge \Box x_i)\Big)$$

$$W_{\Pi_n^{\mu}} :\equiv \nu x_{n+2} \cdot \mu x_{n+1} \cdot \ldots \cdot \mu / \nu x_3 \left(\bigvee_{i=3}^{n+2} (d_i \wedge \Diamond x_i) \lor \bigvee_{i=3}^{n+2} (c_i \wedge \Box x_i) \right)$$

(日) (日) (日) (日) (日) (日) (日) (日)

 $W_{\Sigma_n^{\mu}} \in \Sigma_n^{\mu} \text{ and } W_{\Pi_n^{\mu}} \in \Pi_n^{\mu}.$

-Games for the modal μ -calculus

Theorem [Emerson, Jutla (91), Walukiewicz (00)]

Let φ be a Π_n^{μ} -formula and (\mathcal{T}, s) be a pointed transition system. Player **V** has a winning strategy for $\mathcal{E}(\varphi, (\mathcal{T}, s))$ if and only if $\mathcal{T}(\mathcal{E}(\varphi, (\mathcal{T}, s))) \in ||W_{\Pi_n^{\mu}}||$; similarly for Σ_n^{μ} -formulae.

-Games for the modal μ -calculus

Theorem [Emerson, Jutla (91), Walukiewicz (00)]

Let φ be a Π_n^{μ} -formula and (\mathcal{T}, s) be a pointed transition system. Player **V** has a winning strategy for $\mathcal{E}(\varphi, (\mathcal{T}, s))$ if and only if $\mathcal{T}(\mathcal{E}(\varphi, (\mathcal{T}, s))) \in ||W_{\Pi_n^{\mu}}||$; similarly for Σ_n^{μ} -formulae.

Corollary

$$(\mathcal{T}, s) \in \|\varphi\| \quad \Leftrightarrow \quad \mathcal{T}(\mathcal{E}(\varphi, (\mathcal{T}, s))) \in \|W_{\Pi_n^{\mu}}\|;$$

similarly for $\sum_{n=1}^{\mu}$ -formulae.

- The Hierarchy on Reflexive Transition Systems

The Hierarchy on Reflexive Transition Systems

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

- The Hierarchy on Reflexive Transition Systems

Construct $\mathcal{E}^{r}(\varphi, (\mathcal{T}, s))$ by making the "moves" relation E reflexive and adapting Ω to Ω^{r} :

$$\Omega^{r}(\langle \psi, s \rangle) = \Omega(\langle \psi, s \rangle) \quad \psi \equiv \eta x. lpha$$
 $\Omega^{r}(\langle \psi, s \rangle) = \begin{cases} 0 & \text{if } \langle \psi, s \rangle \in V_{1} \\ 1 & \text{if } \langle \psi, s \rangle \in V_{0}. \end{cases} \quad \psi \not\equiv \eta x. lpha$

Lemma

Player **V** has a winning strategy for $\mathcal{E}^{r}(\varphi, (\mathcal{T}, s))$ iff Player **V** has a winning strategy for $\mathcal{E}(\varphi, (\mathcal{T}, s))$.

(日) (日) (日) (日) (日) (日) (日) (日)

- The Hierarchy on Reflexive Transition Systems

Reflexive Game formula

For all $n \ge 0$ we define the Σ_n^{μ} Walukiewicz formula $W_{\Sigma_n^{\mu}}$ and the Π_n^{μ} Walukiewicz formula $W_{\Pi_n^{\mu}}$ such that (*n* even):

$$W_{\Sigma_n^{\mu}}^{r} := \mu x_{n+1} \cdot \nu x_n \dots \nu / \mu x_0 \big(\bigvee_{i=0}^{n+1} (d_i \wedge \Diamond x_i) \vee \bigvee_{i=0}^{n+1} (c_i \wedge \Box x_i) \big)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- The Hierarchy on Reflexive Transition Systems

Reflexive Game formula

For all $n \ge 0$ we define the Σ_n^{μ} Walukiewicz formula $W_{\Sigma_n^{\mu}}$ and the Π_n^{μ} Walukiewicz formula $W_{\Pi_n^{\mu}}$ such that (n even):

$$W_{\Sigma_n^{\mu}}^{r} :\equiv \mu x_{n+1} \cdot \nu x_n \dots \nu / \mu x_0 \big(\bigvee_{i=0}^{n+1} (d_i \wedge \Diamond x_i) \vee \bigvee_{i=0}^{n+1} (c_i \wedge \Box x_i) \big)$$

 $W^r_{\Sigma^{\mu}_n} \in \Sigma^{\mu}_{n+2} \text{ and } W^r_{\Pi^{\mu}_n} \in \Pi^{\mu}_{n+2}.$

The Hierarchy on Reflexive Transition Systems

Proposition

Let (\mathcal{T}, s) be an arbitrary pointed transition system. For all $\varphi \in \Pi_n^{\mu}$ we have that:

 $\mathcal{T}(\mathcal{E}^{r}(\varphi,(\mathcal{T},s))) \in \|W^{r}_{\Pi^{\mu}_{n}}\| ext{ if and only if } (\mathcal{T},s) \in \|\varphi\|.$

(日) (日) (日) (日) (日) (日) (日) (日)

and analogously for $W_{\Sigma_n^{\mu}}^r$.

- The Hierarchy on Reflexive Transition Systems

Theorem

For all natural numbers $n \in \mathbb{N}$ we have that

$$\Sigma_n^{\mathbb{T}^r} \subsetneq \Sigma_{n+1}^{\mathbb{T}^r}$$
 and $\Pi_n^{\mathbb{T}^r} \subsetneq \Pi_{n+1}^{\mathbb{T}^r}$.

L The Hierarchy on Reflexive Transition Systems

Theorem

For all natural numbers $n \in \mathbb{N}$ we have that

$$\Sigma_n^{\mathbb{T}'} \subsetneq \Sigma_{n+1}^{\mathbb{T}'} \quad \text{and} \quad \Pi_n^{\mathbb{T}'} \subsetneq \Pi_{n+1}^{\mathbb{T}'}.$$

Proof

Else for all k

$$\Sigma_n^{\mathbb{T}'} = \Sigma_{n+k}^{\mathbb{T}'} = \Pi_n^{\mathbb{T}'} = \Pi_{n+k}^{\mathbb{T}'}$$

and $\|W_{\Sigma_n^{\mu}}^r\|^r \in \Pi_n^{\mathbb{T}^r}$ or $\|\neg W_{\Sigma_n^{\mu}}^r\|^r \in \Sigma_n^{\mathbb{T}^r}$.

- The Hierarchy on Reflexive Transition Systems

Theorem

For all natural numbers $n \in \mathbb{N}$ we have that

$$\Sigma_n^{\mathbb{T}^r} \subsetneq \Sigma_{n+1}^{\mathbb{T}^r}$$
 and $\Pi_n^{\mathbb{T}^r} \subsetneq \Pi_{n+1}^{\mathbb{T}^r}$.

Proof

Else for all k

$$\Sigma_n^{\mathbb{T}^r} = \Sigma_{n+k}^{\mathbb{T}^r} = \Pi_n^{\mathbb{T}^r} = \Pi_{n+k}^{\mathbb{T}^r}$$

and $\|W_{\Sigma_n^{\mu}}^r\|^r \in \Pi_n^{\mathbb{T}^r}$ or $\|\neg W_{\Sigma_n^{\mu}}^r\|^r \in \Sigma_n^{\mathbb{T}^r}$. Construct (\mathcal{T}^F, s^F) such that $\mathcal{T}(\mathcal{E}^r(\neg W_{\Sigma_n^{\mu}}^r, (\mathcal{T}^F, s^F))) = (\mathcal{T}^F, s^F)$.

- The Hierarchy on Reflexive Transition Systems

Theorem

For all natural numbers $n \in \mathbb{N}$ we have that

$$\Sigma_n^{\mathbb{T}^r} \subsetneq \Sigma_{n+1}^{\mathbb{T}^r}$$
 and $\Pi_n^{\mathbb{T}^r} \subsetneq \Pi_{n+1}^{\mathbb{T}^r}$.

Proof

Else for all k

$$\Sigma_n^{\mathbb{T}^r} = \Sigma_{n+k}^{\mathbb{T}^r} = \Pi_n^{\mathbb{T}^r} = \Pi_{n+k}^{\mathbb{T}^r}$$

and $\|W_{\Sigma_n^{\mu}}^r\|^r \in \Pi_n^{\mathbb{T}^r}$ or $\|\neg W_{\Sigma_n^{\mu}}^r\|^r \in \Sigma_n^{\mathbb{T}^r}$. Construct (\mathcal{T}^F, s^F) such that $\mathcal{T}(\mathcal{E}^r(\neg W_{\Sigma_n^{\mu}}^r, (\mathcal{T}^F, s^F))) = (\mathcal{T}^F, s^F)$. We have

$$(\mathcal{T}^{\mathcal{F}}, s^{\mathcal{F}}) \in \| \neg W^{r}_{\Sigma^{\mu}_{n}} \| \quad \text{iff} \quad \mathcal{T}(\mathcal{E}^{r}(\neg W^{r}_{\Sigma^{\mu}_{n}}, (\mathcal{T}^{\mathcal{F}}, s^{\mathcal{F}}))) \in \| W^{r}_{\Sigma^{\mu}_{n}} \|$$

L The Hierarchy on transitive and symmetric Transition Systems

The Hierarchy on transitive and symmetric Transition Systems

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

L The Hierarchy on transitive and symmetric Transition Systems

Lemma

Let \mathcal{T} be a transitive transition system and let $s' \in \operatorname{scc}(s)$. For all μ -formulae φ we have that

$$s \in \| \bigtriangleup \varphi \|_{\mathcal{T}}$$
 iff $s' \in \| \bigtriangleup \varphi \|_{\mathcal{T}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

where $\Delta \in \{\Box, \diamondsuit\}$.

L The Hierarchy on transitive and symmetric Transition Systems

Theorem

Let $\ensuremath{\mathcal{T}}$ be a transitive and symmetric transition system. We have that

$$\|\nu x.\varphi(x)\|_{\mathcal{T}} = \|\varphi(\varphi(\top))\|_{\mathcal{T}}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

L The Hierarchy on transitive and symmetric Transition Systems

The syntactical translation $(.)^t : \mathcal{L}_\mu \to \mathcal{L}_M$ is defined as:

$$(\mu x.\varphi)^{t} = (\varphi(\varphi(\bot)))^{t}$$
$$(\nu x.\varphi)^{t} = (\varphi(\varphi(\top)))^{t}$$

Corollary

On transitve and symmetric (and reflexive) transition systems we have that

$$\|\varphi\|_{\mathcal{T}} = \|\varphi^t\|_{\mathcal{T}}.$$

(日) (日) (日) (日) (日) (日) (日) (日)

- The Hierarchy on transitive Transition Systems

The Hierarchy on transitive Transition Systems

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

The Hierarchy on transitive Transition Systems

Lemma

Let \mathcal{T} be a transitive transition system and let s, s' be two states such that $s \to^{\mathcal{T}} s'$. For all μ -formulae φ we have that

$$s \in \|\Box \varphi\|_{\mathcal{T}} \implies s' \in \|\Box \varphi\|_{\mathcal{T}}$$
 and
 $s' \in \|\Diamond \varphi\|_{\mathcal{T}} \implies s \in \|\Diamond \varphi\|_{\mathcal{T}}.$

Theorem

Let \mathcal{T} be a transitive transition system and let $\nu x.\varphi(x)$ be a formula such that x is in the scope of a \Box modality. We have that

$$\|\nu x.\varphi(x)\|_{\mathcal{T}} = \|\varphi(\varphi(\top))\|_{\mathcal{T}}.$$

L The Hierarchy on transitive Transition Systems

$$au: \mathcal{L}_{\mu}
ightarrow \mathcal{L}_{\mu}$$
 is defined as:

•
$$au(\mu x. \varphi) = au(\varphi(\varphi(\perp)))$$
, x is in the scope of a \diamond in φ

•
$$au(\mu x. \varphi) = \mu x. \tau(\varphi)$$
, x is not in the scope of a \diamond in φ

►
$$\tau(\nu x. \varphi) = \tau(\varphi(\varphi(\top)))$$
, x is in the scope of a \Box in φ

•
$$\tau(\nu x.\varphi) = \nu x.\tau(\varphi)$$
, x is not in the scope of a \Box in φ

The Hierarchy on transitive Transition Systems

Corollary

On transitve transition systems we have that

$$\|\varphi\|_{\mathcal{T}} = \|\tau(\varphi)\|_{\mathcal{T}}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- The Hierarchy on transitive Transition Systems

Notation and Definitions

Let φ(x₁,..., x_n) be a formula by φ^{x_i} we denote the fomrmula obtained by cutting all branches except x_i.

 $(\nu x.\mu y.\mu z.(\Box x \land \Diamond y) \lor (\Diamond z \land p))^x \equiv \nu x.\Box x \lor p$

The Hierarchy on transitive Transition Systems

Notation and Definitions

Let φ(x₁,..., x_n) be a formula by φ^{x_i} we denote the fomrmula obtained by cutting all branches except x_i.

$$(\nu x.\mu y.\mu z.(\Box x \land \Diamond y) \lor (\Diamond z \land p))^x \equiv \nu x.\Box x \lor p$$

For all set of variables X the formula φ^{free(X)} is the formula obtained from φ by eliminating all quantifiers binding a variable x ∈ X but leaving the previously bound variable x as a free occurrence.

 $(\nu x.\mu y.\mu z.(\Box x \land \Diamond y) \lor (\Diamond z \land p))^{\mathsf{free}(x,y,z)} \equiv (\Box x \land \Diamond y) \lor (\Diamond z \land p)$

- The Hierarchy on transitive Transition Systems

For each sequence of $\langle x_1, \ldots, x_k \rangle$ with $x_j \in \text{bound}(\varphi)$, we define the formula $\varphi^{\langle x_1, \ldots, x_k \rangle}$ as follows:

$$\varphi^{\langle x_1\rangle} :\equiv \varphi^{x_1}$$

and

$$\varphi^{\langle x_1,\ldots,x_k,x_{k+1}\rangle} :\equiv \varphi^{\langle x_1,\ldots,x_k\rangle}[x_k/\varphi^{x_{k+1}}_{x_k}].$$

- The Hierarchy on transitive Transition Systems

Let φ be a μ-formula and X, Y ⊂ bound(φ). Path^{X→Y}(φ) is the smallest set such that for all x ∈ X

$$\{\langle x,y
angle \, ; \, y \in \mathsf{free}(\varphi_x) \text{ and } y \in Y\} \subseteq \mathsf{Path}^{X o Y}(\varphi)$$

and such that if $\langle x_1, \ldots, x_m, y \rangle \in Path(\varphi)$, if $x' \in X$, if $x' \notin \{x_1, \ldots, x_m\}$ and if $x_1 \in free(\varphi_{x'})$ then

$$\langle x', x_1, \ldots, x_n, y \rangle \in \mathsf{Path}^{X \to Y}(\varphi).$$
The Hierarchy on transitive Transition Systems

Let φ be a μ-formula and X, Y ⊂ bound(φ). Path^{X→Y}(φ) is the smallest set such that for all x ∈ X

$$\{\langle x,y
angle \, ; \, y \in \mathsf{free}(\varphi_x) \text{ and } y \in Y\} \subseteq \mathsf{Path}^{X o Y}(\varphi)$$

and such that if $\langle x_1, \ldots, x_m, y \rangle \in \mathsf{Path}(\varphi)$, if $x' \in X$, if $x' \notin \{x_1, \ldots, x_m\}$ and if $x_1 \in \mathsf{free}(\varphi_{x'})$ then

$$\langle x', x_1, \ldots, x_n, y \rangle \in \mathsf{Path}^{X \to Y}(\varphi).$$

For all $x \in X$ we define

$$\mathsf{Path}^{x \to Y}(\varphi) = \{ \langle x_1, \dots, x_k, y \rangle \in \mathsf{Path}^{X \to Y}(\varphi) \ ; \ x_1 \equiv x \}.$$

The Hierarchy on transitive Transition Systems

Let φ be a μ-formula and X, Y ⊂ bound(φ). Path^{X→Y}(φ) is the smallest set such that for all x ∈ X

$$\{\langle x,y
angle \, ; \, y \in \mathsf{free}(\varphi_x) \text{ and } y \in Y\} \subseteq \mathsf{Path}^{X o Y}(\varphi)$$

and such that if $\langle x_1, \ldots, x_m, y \rangle \in \text{Path}(\varphi)$, if $x' \in X$, if $x' \notin \{x_1, \ldots, x_m\}$ and if $x_1 \in \text{free}(\varphi_{x'})$ then

$$\langle x', x_1, \ldots, x_n, y \rangle \in \mathsf{Path}^{X \to Y}(\varphi).$$

For all $x \in X$ we define

$$\mathsf{Path}^{x \to Y}(\varphi) = \{ \langle x_1, \dots, x_k, y \rangle \in \mathsf{Path}^{X \to Y}(\varphi) \; ; \; x_1 \equiv x \}.$$

• The formula $\varphi^{\mathbf{x}_i \to \mathbf{Y}}$ is defined such that

$$\varphi^{\mathbf{x}_i \to \mathbf{Y}} \equiv \bigvee_{\mathbf{s} \in \mathsf{Path}^{\mathbf{x}_i \to \mathbf{Y}}} \varphi^{\mathbf{s}}_{\mathbf{x}_i}.$$

- The Hierarchy on transitive Transition Systems

The unfolding of X in ψ as subformula of φ , $unf_{\varphi}^{X}(\psi)$, is the formula defined recursively such that

$$\mathsf{unf}_arphi^{\{x_1\}}(\psi)\equiv\psi[x/arphi_x]$$

and such that if $X = \{x_1, \ldots, x_n\}$ then

$$\mathsf{unf}_{\varphi}^{X}(\psi) \equiv \psi[x_1/\mathsf{unf}_{\varphi}^{X^{-1}}(\varphi_{x_1}), \ldots, x_n/\mathsf{unf}_{\varphi}^{X^{-n}}(\varphi_{x_n})]$$

(日) (日) (日) (日) (日) (日) (日) (日)

where $X^{-i} = \{x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n\}.$

L The Hierarchy on transitive Transition Systems

The Translation

$$\begin{split} \varphi \in \Sigma_2^{\mu} \text{ with } \{x_1, \dots, x_n\} &= X \text{ all } \mu \text{-variables and} \\ \{y_1, \dots, y_m\} &= Y \text{ all } \nu \text{-variables. We define } \rho(\varphi) \in \Delta_2^{\mu} \text{ as} \\ \varphi^{\text{free}(X)}[x_1/\varphi^{x_1 \to Y} \lor \text{unf}_{\varphi^{-Y}}^X(\varphi_{x_1}^{-Y}), \dots, x_n/\varphi^{x_n \to Y} \lor \text{unf}_{\varphi^{-Y}}^X(\varphi_{x_n}^{-Y})]. \end{split}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

The Hierarchy on transitive Transition Systems

Lemma

Let \mathcal{T} be a transitive transition system, and let $\varphi \in \Sigma_2^{\mu}$ such that all ν -variables (resp. μ -variables) x are in the scope of only \Diamond (resp. \Box). Then we have

$$\|\varphi\|_{\mathcal{T}} = \|\rho(\varphi)\|_{\mathcal{T}}$$

(日) (日) (日) (日) (日) (日) (日) (日)

The Hierarchy on transitive Transition Systems

Lemma

Let \mathcal{T} be a transitive transition system, and let $\varphi \in \Sigma_2^{\mu}$ such that all ν -variables (resp. μ -variables) x are in the scope of only \Diamond (resp. \Box). Then we have

$$\|\varphi\|_{\mathcal{T}} = \|\rho(\varphi)\|_{\mathcal{T}}$$

Proof

Show the existence of a normal form for winning plays for player **V** of $\mathcal{E}(\varphi, (\mathcal{T}, s))$ and show that these plays are winning for **V** in $\mathcal{E}(\rho(\varphi), (\mathcal{T}, s))$; and vice versa.

L The Hierarchy on transitive Transition Systems

$$R : \mathcal{L}_{\mu} \to \Delta_{2}^{\mu} \text{ is defined as}$$

$$\blacktriangleright \dots$$

$$\models R(\mu x.\varphi) = \rho(nf(\mu x.(R(\varphi))))$$

$$\models R(\nu x.\varphi) = \neg(R(\mu x.\neg\varphi[x/\neg x]))$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

- The Hierarchy on transitive Transition Systems

Theorem

For all $arphi \in \mathcal{L}_{\mu}$ and all transitive transition systems $\mathcal T$ we have that

$$\|\varphi\|_{\mathcal{T}} = \|R(\tau(\varphi))\|_{\mathcal{T}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Thank you!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Thank you! Questions or Remarks?

(ロ)、(型)、(E)、(E)、 E) の(の)