Normalization by Evaluation for Martin-Löf Type Theory

Andreas Abel¹ Thierry Coquand² Peter Dybjer²

 $^{1} Ludwig-Maximilians-University\ Munich\\ ^{2} Chalmers\ University\ of\ Technology$

Buchholz-Fest Munich 5 April 2008

My Talk

- Dependent type theory basis for theorem provers (functional programming languages) Agda, Coq, Epigram, ...
- Intensional theory with predicative universes.
- Judgemental $\beta\eta$ -equality.
- Deciding type equality with Normalization-By-Evaluation.
- Semantic proof of decidability of typing.

Dependent Types

• Dependent function space:

$$\frac{r:\Pi x:A.\,B[x]\qquad s:A}{r\,s:B[s]}$$

- Types contain terms, type equality non-trivial.
- Shape of types can depend on terms:

$$Vec A n = \underbrace{A \times \cdots \times A}_{n \text{ factors}}$$

• Type conversion rule:

$$\frac{t:A}{t:B}$$
 $A\cong B$

• Deciding type checking requires injectivity of Π

 $\Pi x: A.B \cong \Pi x: A'.B' \text{ implies } A \cong A' \text{ and } B \cong B'$

Untyped β -Equality

- One solution: $A \cong B$ iff A, B have common β -reduct.
- Confluence of β makes \cong transitive.
- Injectivity of Π trivial.
- But we want also η ! E.g.
 - Theorem prover should not distinguish between $P(\lambda x. f x)$ and Pf,
 - or between two inhabitants of a one-element type.
- The stronger the type equality, the more (sound) programs are accepted by the type checker.

Untyped $\beta\eta$ -Equality

- Try: $A \cong B$ iff A, B have common $\beta \eta$ -reduct.
- $\beta\eta$ -reduction (with surjective pairing) only confluent on strongly normalizing terms
- Proof of s.n. requires model construction
- ... which requires invariance of interpretation under reduction
- ... which requires subject reduction
- ... which requires strengthening
- ... hard to prove for pure type systems (van Benthem 1993)
- Even for untyped β , model construction difficult: Miquel Werner 2002: The not so simple proof-irrelevant model of CC

Typed $\beta\eta$ -Equality

- Introduce equality judgement $\vdash A = B$.
- Relies on term equality $\vdash t = t' : C$.
- Natural for η -laws, like $\vdash t = t' : 1$.
- Now injectivity of Π is hard.
- Goguen 1994: Typed Operational Semantics for UTT.
 - "Syntactical" model.
 - Shows confluence, subject reduction, normalization in one go.
 - Impressive, technically demanding work.
- This work: simpler argument, in the same spirit.
- Slogan: semantics proves properties of syntax. (Altenkirch 1994).

Deciding judgemental equality

Normalization function $nf^{A}(t)$.

• Completeness:

$$\vdash t = t' : A \text{ implies } \mathsf{nf}^A(t) = \mathsf{nf}^A(t') \text{ (syntactically equal)}.$$

• Soundness:

$$\vdash t : A \text{ implies } \vdash t = \mathsf{nf}^A(t) : A.$$

Syntax of Terms and Types

• Lambda-calculus with constants

• $\Pi x: A.B$ is written Fun $A(\lambda x.B)$.

Judgements

• Essential judgements

$$\Gamma \vdash A$$
 A is a well-formed type in Γ $\Gamma \vdash t : A$ t has type A in Γ $\Gamma \vdash A = A'$ A and A' are equal types in Γ $\Gamma \vdash t = t' : A$ t and t' are equal terms of type A in Γ

• Typing of functions:

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : \operatorname{Fun} A(\lambda x . B)} \qquad \frac{\Gamma \vdash r : \operatorname{Fun} A(\lambda x . B)}{\Gamma \vdash r s : B[s/x]}$$

Rules for Judgmental Equality

• Equality axioms:

$$(\beta) \frac{\Gamma, x : A \vdash t : B \qquad \Gamma \vdash s : A}{\Gamma \vdash (\lambda x . t) s = t[s/x] : B[s/x]}$$

$$(\eta) \frac{\Gamma \vdash t : \operatorname{Fun} A(\lambda x . B)}{\Gamma \vdash (\lambda x . t . x) = t : \operatorname{Fun} A(\lambda x . B)} x \notin \operatorname{FV}(t)$$

- Computation axioms for primitive recursion.
- Congruence rules.

Small and Large Types

• Small types (sets):

$$\frac{\Gamma \vdash A : U \qquad \Gamma, x : A \vdash B : U}{\Gamma \vdash \operatorname{Fun} A(\lambda x . B) : U}$$

- U includes types defined by recursion like Vec A n.
- (Large) types:

$$\frac{\Gamma \vdash A : \mathsf{U}}{\Gamma \vdash A} \qquad \frac{\Gamma \vdash A \qquad \Gamma, x : A \vdash B}{\Gamma \vdash \mathsf{Fun}\,A(\lambda x . B)}$$

λ -Model

- Consider a (total) combinatorial algebra D
- with constructors N, z, s, Fun, U.
- Evaluation $[t]_a$: Standard.

- Example: $\llbracket \operatorname{Fun} A(\lambda x.B) \rrbracket = \operatorname{Fun} X F$ where $X = \llbracket A \rrbracket$ and $F d = \llbracket B \rrbracket_{[x \mapsto d]}$.
- We enrich D with term variables:
- Up $u \in D$ for each neutral term $u := x \vec{v}$ (generalized variable).

Reification (Printing)

• Reification $\downarrow^X d$ produces a η -long β -normal term.

$$\downarrow^{N}z = z$$

$$\downarrow^{N}(sd) = s(\downarrow^{N}d)$$

$$\downarrow^{N}(Upu) = u$$

$$\downarrow^{Upu'}(Upu) = u$$

$$\downarrow^{Fun \times F}f = \lambda x. \downarrow^{F(\uparrow^{X}x)}(f(\uparrow^{X}x)), \times \text{fresh}$$

• Reflection $\uparrow^X u$ embeds a neutral term u into D, η -expanded.

$$(\uparrow^{\operatorname{Fun} X F} u) d = \uparrow^{F d} (u \downarrow^{X} d)$$

$$\uparrow^{X} u = \operatorname{Up} u$$

• Normalization of closed terms $\vdash t : A$

$$\mathsf{nf}^A(t) = \downarrow^{\llbracket A \rrbracket} \llbracket t \rrbracket.$$

PER Model

- A PER is a symmetric and transitive relation on D.
- Small types: define a PER \mathcal{U} and a PER [X] for $X \in \mathcal{U}$.

$$\frac{d = d' \in [\mathbb{N}]}{\mathbb{N} = \mathbb{N} \in \mathcal{U}} \quad \frac{d = d' \in [\mathbb{N}]}{\mathbb{S} d = \mathbb{S} d' \in [\mathbb{N}]} \quad \frac{u \text{ neutral}}{Up u = Up u \in [\mathbb{N}]}$$

$$\frac{u \text{ neutral}}{Up u = Up u \in \mathcal{U}} \quad \frac{u, u' \text{ neutral}}{Up u' = Up u' \in [Up u]}$$

$$\frac{X = X' \in \mathcal{U} \qquad F d = F' d' \in \mathcal{U} \text{ for all } d = d' \in [X]}{Fun X F = Fun X' F' \in \mathcal{U}}$$

$$\frac{f d = f' d' \in [F d] \text{ for all } d = d' \in [X]}{f = f' \in [Fun X F]}$$

Modelling Large Types

• Large types: Define PER *Type* and extend [_] to *Type*.

$$\mathcal{U} \subseteq \mathcal{T}ype$$

$$\frac{X = X' \in \mathcal{T}ype \qquad F \ d = F' \ d' \in \mathcal{T}ype \ \text{for all} \ d = d' \in [X]}{\text{Fun} \ X \ F = \text{Fun} \ X' \ F' \in \mathcal{T}ype}$$

$$\frac{U = U \in \mathcal{T}ype}{U = \mathcal{U}}$$

- PERs contain only total elements of D.
- These can be printed (converted to terms).

Checking Semantic Equality

Lemma

Let $X = X' \in Type$.

$$If d = d' \in [X] then \downarrow^X d =_{\alpha} \downarrow^{X'} d'.$$

Proof.

Simultaneously by induction on $X = X' \in Type$.

Completeness of NbE

Theorem (Validity of judgements in PER model)

Let
$$\rho(x) = \rho'(x) \in \llbracket \Gamma(x) \rrbracket_{\rho} \text{ for all } x.$$

- If $\Gamma \vdash t : A \text{ then } \llbracket t \rrbracket_{\rho} = \llbracket t \rrbracket_{\rho'} \in \llbracket \llbracket A \rrbracket_{\rho} \end{bmatrix}$.
- $\bullet \ \mathit{If} \ \Gamma \ \vdash t = t' : A \ \mathit{then} \ \llbracket t \rrbracket_{\rho} = \llbracket t' \rrbracket_{\rho'} \in \llbracket \llbracket A \rrbracket_{\rho} \rrbracket.$

Corollary (Completeness of nf)

If
$$\vdash t = t' : A \ then \ nf^{A}(t) =_{\alpha} nf^{A}(t')$$
.

Soundness remains: If $\vdash t : A$ then $\vdash t = \mathsf{nf}^A(t) : A$.

Kripke Logical Relation

Relate well-typed terms modulo equality to inhabitants of PERs.

Lemma (Into and out of the logical relation)

Let
$$\Gamma \vdash C \otimes X$$
.

- If $\Gamma \vdash r = u : C \text{ then } \Gamma \vdash r : C \mathbb{R} \uparrow^X u \in [X]$.

Definition

$$\Gamma \vdash r : C \otimes d \in [X] :\iff \Gamma \vdash r = \downarrow^X d : C$$

$$\Gamma \vdash r : C \otimes f \in [\operatorname{Fun} X F] :\iff \Gamma \vdash C = \operatorname{Fun} A(\lambda x.B) \text{ for some } A, B \text{ and for all } \Gamma' \leq \Gamma \text{ and } \Gamma' \vdash s : A \otimes d \in [X],$$

$$\Gamma' \vdash rs : B[s/x] \otimes f d \in [F d].$$

for X base type,

Soundness of NbE

- Prove the fundamental theorem.
- Corollary: $\vdash t : A \text{ implies } \vdash t : A \otimes \llbracket t \rrbracket \in \llbracket \llbracket A \rrbracket \rrbracket$.
- Escaping the log.rel.: $\vdash t = \downarrow^{\llbracket A \rrbracket} \llbracket t \rrbracket : A$.
- Hence, nf is also sound.
- Decidability of judgemental equality entails injectivity of Π .

Conclusion

- Semantic metatheory of Martin-Löf Type Theory.
- Inference rules directly justified by PER model.
- No need to prove strengthening, subject reduction, confluence, normalization.
- Future work:
 - Extend to Σ -types, singleton-types, proof-irrelevance.
 - Adopt to syntax of categories-with-families (de Bruijn indices and explicit substitutions).

Related Work

- Martin-Löf 1975: NbE for Type Theory (weak conversion)
- Martin-Löf 2004: Talk on NbE (philosophical justification)
- Danvy et al: Type-directed partial evaluation
- Altenkirch Hofmann Streicher 1996: NbE for λ -free System F
- Berger Eberl Schwichtenberg 2003: Term rewriting for NbE
- Aehlig Joachimski 2004: Untyped NbE, operationally
- Filinski Rohde 2004: Untyped NbE, denotationally
- Danielsson 2006: strongly typed NbE for LF
- Altenkirch Chapman 2007: Tait in one big step