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1. Introduction

Proofs in mathematics generally deal with abstract, “higher type” objects.
Therefore an analysis of computational aspects of such proofs must be based
on a theory of computation in higher types. A mathematically satisfactory
such theory has been provided by Scott [24] and Ershov [9]. The basic con-
cept is that of a partial continuous functional. Since each such can be seen as
a limit of its finite approximations, we get for free the notion of a computable
functional: it is given by a recursive enumeration of finite approximations.
The price to pay for this simplicity is that functionals are now partial, in
stark contrast to the view of Gödel [11]. However, the total functionals can
be defined as a subset of partial ones. In fact, as observed by Kreisel, they
form a dense subset w.r.t. the Scott topology. The next step is to build a
theory, with the partial continuous functionals as the intended range of its
(typed) variables. The constants of this “theory of computable functionals”
TCF denote computable functionals. It suffices to restrict the prime formu-
las to those built with inductively defined predicates. For instance, falsity
can be defined by F := Eq(ff, tt), where Eq is the inductively defined Leibniz
equality. The only logical connectives are implication and universal quan-
tification: existence, conjunction and disjunction can be seen as inductively
defined (with parameters). TCF is well suited to reflect on the computa-
tional content of proofs, along the lines of the Brouwer-Heyting-Kolmogorov
interpretation, or more technically a realizability interpretation in the sense
of Kleene and Kreisel. Moreover the computational content of classical (or
“weak”) existence proofs can be analyzed in TCF, in the sense of Gödel’s
[11] Dialectica interpretation and the so-called A-translation of Friedman
[10] and Dragalin [8]. The difference of TCF to well-established theories like
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Martin-Löf’s [16] intuitionistic type theory or the theory of constructions
underlying the Coq proof assistant is that TCF treats partial continuous
functionals as first class citizens. Since they are the mathematically correct
domain of computable functionals, it seems that this is a reasonable step to
take.

Minlog is intended to reason about computable functionals, using minimal
logic. It is an interactive prover with the following features.

(i) Proofs are treated as first class objects: they can be normalized and
then used for reading off an instance if the proven formula is existential,
or changed for program development by proof transformation.

(ii) To keep control over the complexity of extracted programs, we follow
Kreisel’s proposal and aim at a theory with a strong language and
weak existence axioms. It should be conservative over (a fragment of)
arithmetic.

(iii) Minlog is based on minimal rather than classical or intuitionistic logic.
This more general setting makes it possible to implement program
extraction from classical proofs, via a refined A-translation (cf. [3]).

(iv) Constants are intended to denote computable functionals. Since their
(mathematically correct) domains are the Scott-Ershov partial conti-
nuous functionals, this is the intended range of the quantifiers.

(v) Variables carry (simple) types, with free algebras as base types. The
latter need not be finitary (we allow, e.g., countably branching trees),
and can be simultaneously generated. Type and predicate parame-
ters are allowed; they are thought of as being implicitly universally
quantified (“ML polymorphism”).

(vi) To simplify equational reasoning, the system identifies terms with the
same normal form. A rich collection of rewrite rules is provided, which
can be extended by the user. Decidable predicates are implemented
via boolean valued functions, hence the rewrite mechanism applies to
them as well.

We now describe in more details some of these features.

1.1. Simultaneous free algebras. A free algebra is given by constructors,
for instance zero and successor for the natural numbers. We want to treat
other data types as well, like lists and binary trees. When dealing with
inductively defined sets, it will also be useful to explicitely refer to the
generation tree. Such trees are quite often countably branching, and hence
we allow infinitary free algebras from the outset.

The freeness of the constructors is expressed by requiring that their ranges
are disjoint and that they are injective. Moreover, we view the free algebra
as a domain and require that its bottom element is not in the range of
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Figure 1. The domain of natural numbers

the constructors. Hence the constructors are total and non-strict. For the
notion of totality cf. [25, Chapter 8.3].

In our intended semantics we do not require that every semantic object is
the denotation of a closed term, not even for finitary algebras. One reason is
that for normalization by evaluation (cf. [4]) we want to allow term families
in our semantics.

To make a free algebra into a domain and still have the constructors injec-
tive and with disjoint ranges, we model, e.g., the natural numbers as shown
in Figure 1. Notice that for more complex algebras we usually need many
more “infinite” elements; this is a consequence of the closure of domains un-
der suprema. To make dealing with such complex structures less annoying,
we will normally restrict attention to the total elements of a domain, in this
case – as expected – the elements labelled 0, S0, S(S0) etc.

1.2. Partial continuous functionals. As already mentioned, the (math-
ematically correct) domains of computable functionals have been identified
by Scott and Ershov as the partial continuous functionals; cf. [25]. Since
we want to deal with computable functionals in our theory, we consider
it as mandatory to accommodate their domains. This is also true if one
is interested in total functionals only; they have to be treated as particu-
lar partial continuous functionals. We will make use of inductively defined
predicates Tρ with the total functionals of type ρ as their intended meaning.
To make formal arguments with quantifiers relativized to total objects more
managable, we use a special sort of variables intended to range over such
objects only. For example, n0, n1, n2, . . . , m0, . . . range over total natural
numbers, and n^0, n^1, n^2, . . . are general variables. This amounts to an
abbreviation of

∀x̂(Tρ(x̂)→ A) by ∀xA,
∃x̂(Tρ(x̂) ∧A) by ∃xA.
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1.3. Primitive recursion, computable functionals. The elimination
constants corresponding to the constructors are called primitive recursion
operators R. They are described in detail in section 4. In this setup, every
closed term reduces to a numeral.

However, we shall also use constants for rather arbitrary computable func-
tionals, and axiomatize them according to their intended meaning by means
of rewrite rules. An example is the general fixed point operator Y , which
is axiomatized by Y F = F (Y F ). Clearly then it cannot be true any more
that every closed term reduces to a numeral. We may have non-terminating
terms, but this just means that not always it is a good idea to try to nor-
malize a term.

An important consequence of admitting non-terminating terms is that our
notion of proof is not decidable: when checking, e.g., whether two terms are
equal we may run into a non-terminating computation. But we still have
semi-decidability of proofs, i.e., an algorithm to check the correctness of a
proof that can only give correct results, but may not terminate. In practice
this is sufficient.

To avoid this somewhat unpleasant undecidability phenomenon, we may
also view our proofs as abbreviated forms of full proofs, with certain equality
arguments left implicit. If some information sufficient to recover the full
proof (e.g., for each node a bound on the number of rewrite steps needed to
verify it) is stored as part of the proof, then we retain decidability of proofs.

1.4. Decidable predicates, axioms for predicates. As already men-
tioned, decidable predicates are viewed via boolean valued functions, hence
the rewrite mechanism applies to them as well.

Equality is decidable for finitary algebras only; infinitary algebras are
to be treated similarly to arrow types. For infinitary algebras equality is a
predicate constant, with appropriate axioms. In a finitary algebra equality is
a (recursively defined) program constant. Similarly, existence (or totality) is
a decidable predicate for finitary algebras, and given by predicate constants
Tρ for infinitary algebras as well as composed types. The axioms are listed
in 8.2.

1.5. Minimal logic, proof transformation. For generalities about min-
imal logic cf. [26]. A concise description of the theory behind the present
implementation can be found in “Minimal Logic for Computable Functions”
which is available on the Minlog page www.minlog-system.de.

1.6. Comparison with Coq and Isabelle. Coq [7] has evolved from a
calculus of constructions defined by Huet and Coquand. It is a constructive,
but impredicative system based on type theory. More recently it has been
extended by Paulin-Mohring to also include inductively defined predicates.
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Program extraction from proofs has been implemented by Paulin-Mohring,
Filliatre and Letouzey, in the sense that Ocaml programs are extracted from
proofs.

The Isabelle/HOL system of Paulson and Nipkow has its roots in Church’s
theory of simple types and Hilbert’s Epsilon calculus. It is an inherently clas-
sical system; however, since many proofs in fact use constructive arguments,
in is conceivable that program extraction can be done there as well. This
has been explored by Berghofer in his thesis [6].

Compared with the Minlog system, the following points are of interest.

(i) The fact that in Coq a formula is just a map into the type Prop (and
in Isabelle into the type bool) can be used to define such a function
by what is called strong elimination, say by f(tt) := A and f(ff) := B
with fixed formulas A and B. The problem is that then it is impossible
to assign an ordinary type (say in the sense of ML) to a proof. It is
not clear how this problem for program extraction can be avoided (in
a clean way) for both Coq and Isabelle. In Minlog it does not exist
due to the separation of terms and formulas.

(ii) The impredicativity (in the sense of quantification over predicate vari-
ables) built into Coq and Isabelle has as a consequence that extracted
programs need to abstract over type variables, which is not allowed
in program languages of the ML family. Therefore one can only al-
low outer universal quantification over type and predicate variables in
proofs to be used for program extraction; this is done in the Minlog
system from the outset. However, many uses of quantification over
predicate variables (like defining the logical connectives apart from →
and ∀) can be achieved by means of inductively defined predicates.
This feature is available in all three systems.

(iii) The distinction between properties with and without computational
content seems to be crucial for a reasonable program extraction envi-
ronment; this feature is available in all three systems. However, it also
seems to be necessary to distinguish between universal quantifiers with
and without computational content, as in [2]. At present this feature
is available in the Minlog system only.

(iv) Coq has records, whose fields may contain proofs and may depend on
earlier fields. This can be useful, but does not seem to be really es-
sential. If desired, in Minlog one can use products for this purpose;
however, proof objects have to be introduced explicitely via assump-
tions.

(v) Minlog’s automated proof search search tool is based on [18]; it pro-
duces proofs in minimal logic. In addition, Coq has many strong tac-
tics, for instance Omega for quantifier free Presburger arithmetic, Arith
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for proving simple arithmetic properties and Ring for proving conse-
quences of the ring axioms. Similar tactics exist in Isabelle. These
tactics tend to produce rather long proofs, which is due to the fact
that equality arguments are carried out explicitely. This is avoided in
Minlog by relativizing every proof to a set of rewrite rules, and iden-
tifyling terms and formulas with the same normal form w.r.t. these
rules.

(vi) In Isabelle as well as in Minlog the extracted programs are provided
as terms within the language, and a soundness proof can be generated
automatically. For Coq (and similarly for Nuprl) such a feature could
at present only be achieved by means of some form of reflection.

2. Types, with simultaneous free algebras as base types

Generally we consider typed theories only. Types are built from type
variables and type constants by algebra type formation (alg ρ1 . . . ρn) and
arrow type formation ρ → σ. Product types ρ × σ and sum types ρ + σ
can be seen as algebras with parameters. However, Minlog also has a native
product type formation denoted by star.

We have type constants atomic, existential, prop and nulltype. They
will be used to assign types to formulas. E.g., ∀n(n = 0) receives the type
nat → atomic, and ∀n,m∃k(n + m = k) receives the type nat → nat →
existential. The type prop is used for predicate variables, e.g., R of arity
nat,nat -> prop. Types of formulas will be necessary for normalization by
evaluation of proof terms. The type nulltype will be useful when assigning
to a formula the type of a program to be extracted from a proof of this
formula. Types not involving the types atomic, existential, prop and
nulltype are called object types.

Type variable names are alpha, beta . . . ; alpha is provided by default.
To have infinitely many type variables available, we allow appended indices:
alpha1, alpha2, alpha3 . . . will be type variables. The only type constants
are atomic, existential, prop and nulltype.

2.1. Generalities for substitutions, type substitutions. Generally, a
substitution is a list ((x1 t1) . . . (xn tn)) of lists of length two, with distinct
variables xi and such that for each i, xi is different from ti. It is understood
as simultaneous substitution. The default equality is equal?; however, in
the versions ending with -wrt (for “with respect to”) one can provide special
notions of equality. To construct substitutions we have

(make-substitution args vals)

(make-substitution-wrt arg-val-equal? args vals)

(make-subst arg val)
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(make-subst-wrt arg-val-equal? arg val)

empty-subst

Accessing a substitution is done via the usual access operations for associa-
tion list: assoc and assoc-wrt. We also provide

(restrict-substitution-wrt subst test?)

(restrict-substitution-to-args subst args)

(substitution-equal? subst1 subst2)

(substitution-equal-wrt? arg-equal? val-equal? subst1 subst2)

(subst-item-equal-wrt? arg-equal? val-equal? item1 item2)

(consistent-substitutions-wrt?

arg-equal? val-equal? subst1 subst2)

Composition ϑη of two substitutions

ϑ = ((x1 s1) . . . (xm sm)),

η = ((y1 t1) . . . (yn tn))

is defined as follows. In the list ((x1 s1η) . . . (xm smη) (y1 t1) . . . (yn tn))
remove all bindings (xi siη) with siη = xi, and also all bindings (yj tj) with
yj ∈ {x1, . . . , xn}. It is easy to see that composition is associative, with the
empty substitution as unit. We provide

(compose-substitutions-wrt substitution-proc arg-equal?

arg-val-equal? subst1 subst2)

We shall have occasion to use these general substitution procedures for
the following kinds of substitutions

for called domain equality arg-val-equality
type variables tsubst equal? equal?
object variables osubst equal? var-term-equal?
predicate variables psubst equal? pvar-cterm-equal?
assumption variables asubst avar=? avar-proof-equal?

The following substitutions will make sense for a

type tsubst
term tsubst and osubst
formula tsubst and osubst and psubst
proof tsubst and osubst and psubst and asubst

In particular, for type substitutions tsubst we have

(type-substitute type tsubst)
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(type-subst type tvar type1)

(compose-t-substitutions tsubst1 tsubst2)

As display function for type substitutions one can use the general pp-subst
or the special

(display-t-substitution tsubst)

We add here some notions and observations on substitutions ϑ for type,
object, predicate and assumption variables (or topa-substitutions). Our
treatment is based on (unpublished) work of Buchholz, who introduced the
concept we call “admissibility” for substitutions.

Let
rρ := ρ, P (~σ) := { ~x~σ | A } := (~σ), MA := A.

Consider a substitution ϑ whose domain consists of type variables α, object
variables x and predicate variables P . Let

αϑ :=

{
ϑ(α) if α ∈ dom(ϑ),
α otherwise,

xϑ :=

{
ϑ(x) if x ∈ dom(ϑ),
x otherwise,

Pϑ :=

{
ϑ(P ) if P ∈ dom(ϑ),
{ ~x | P~x } otherwise.

Call ϑ admissible for x if xϑ = xϑ, and for P if Pϑ = Pϑ. We define
the result rϑ of carrying out a substitution ϑ in a term r, provided ϑ is
admissible for all x ∈ FV(r) (in short: ϑ is admissible for r). The definition
is by induction on r. xϑ has been defined above, and

cϑ := c,

(λxr)ϑ := λy(rϑyx) with y new, y = xϑ,

(rs)ϑ := (rϑ)(sϑ).

To see that this definition makes sense we have to prove

Lemma. If ϑ is admissible for λxr, then ϑyx is admissible for r.

Proof. Let z ∈ FV(r). We show zϑyx = zϑyx. Case z 6= x.

zϑyx = zϑ = zϑ = zϑyx since ϑ is admissible for r.

Case z = x.

xϑyx = y = xϑ = xϑyx by assumption on y. �

Lemma. Let ϑ be admissible for the term r. Then rϑ = rϑ.
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Proof. Case x. xϑ = ϑ(x) holds since ϑ is assumed to be admissible for x.
Case λxr.

(λxr)ϑ = λy(rϑ
y
x) = y → rϑyx = xϑ→ rϑyx = xϑ→ rϑ = (λxr)ϑ. �

Lemma. Assume that ϑ is admissible for r and η is admissible for rϑ. Then
(a) η ◦ ϑ is admissible for r, and
(b) rϑη = r(η ◦ ϑ).

Proof. (a). Let x ∈ FV(r). We show x(η ◦ ϑ) = x(η ◦ ϑ), i.e., xϑη = xϑη.
Consider xϑ. Since η is admissible for rϑ, it is also admissible for the subterm
xϑ. Hence by the previous lemma xϑη = xϑη.

(b). We only consider the abstraction case. By definition

(λxr)ϑ = λy(rϑyx) with y new, y = xϑ.

(λxr)ϑη = λy(rϑyx)η = λz(rϑyxη
z
y) with z new, z = yη.

(λxr)(η ◦ ϑ) = λu(r(η ◦ ϑ)ux) with u new, u = x(η ◦ ϑ) = xϑη = yη = z.

Hence we may assume u = z. But λu(r(η ◦ ϑ)ux) = λz(r(ηzy ◦ ϑ
y
x)), since

y /∈ FV(r) and

(η ◦ ϑ)uxv = v = (ηzy ◦ ϑyx)v for v 6= x, y,

(η ◦ ϑ)uxx = u = z = (ηzy ◦ ϑyx)x.

By induction hypothesis λz(r(ηzy ◦ ϑ
y
x)) = λz(rϑ

y
xηzy). Hence the claim. �

The result Aϑ and { ~x | A }ϑ of carrying out a substitution ϑ in a formula
A or a comprehension term { ~x | A } is defined similarly, provided ϑ is
admissible for the respective expression, and similar lemmata can be proven.

Now consider a type-object-predicate-assumption substitution ϑ with type
variables α, object variables x, predicate variables P and assumption vari-
ables u in its domain. Again we allow that the type σ of x and the arity
(~σ) of P depend on type variables α ∈ dom(ϑ), but we require ϑ(x) = xϑ

and ϑ(P ) = Pϑ. Moreover we allow that the formula A of u depends on
α, x, P ∈ dom(ϑ), but we require ϑ(u) = uϑ. Let

uϑ :=

{
ϑ(u) if u ∈ dom(ϑ),
u otherwise.

Call a type-object-predicate-assumption substitution admissible for a deriva-
tion M if for all x, P, u ∈ FV(M) we have xϑ = xϑ, Pϑ = Pϑ and uϑ = uϑ.
The result Mϑ of carrying out a substitution ϑ in a derivation M is defined
as follows, provided ϑ is admissible for M . We define Mϑ by induction on
M .

cϑ := c,
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(λxM)ϑ := λy(Mϑyx) with y new, y = xϑ,

(Mr)ϑ := (Mϑ)(rϑ),

(λuM)ϑ := λv(Mϑvu) with v new, v = uϑ,

(MN)ϑ := (Mϑ)(Nϑ).

Again lemmata similar to those above can be proven.
As test for the admissibility of a substitution we provide

(admissible-substitution? topasubst expr)

2.2. Type unification and matching. We need type unification for object
types only, that is, types built from type variables and algebra types by
arrow and star. However, the type constants atomic, existential, prop
and nulltype do not do any harm and can be included.

type-unify checks whether two terms can be unified. It returns #f, if
this is impossible, and a most general unifier otherwise. type-unify-list
does the same for lists of terms. We provide

(type-unify type1 type2)

(type-unify-list types1 types2)

Notice that the algorithm we use (via disagreement pairs) does not yield
idempotent unifiers (as opposed to the Martelli-Montanari algorithm [14] in
modules/type-inf.scm):
(pp-subst (type-unify (py "alpha1=>alpha2=>boole")

(py "alpha2=>alpha1=>alpha1")))
; alpha2 -> boole
; alpha1 -> alpha2

type-match checks whether a given pattern can be transformed by a
substitution into a given instance. It returns #f, if this is impossible, and
the substitution otherwise. type-match-list does the same for lists of
terms. We provide

(type-match pattern instance)

(type-match-list patterns instances)

2.3. Algebras and types. We now consider concrete information systems,
our basis for continuous functionals.

Types will be built from base types by the formation of function types,
ρ → σ. As domains for the base types we choose non-flat and possibly
infinitary free algebras, given by their constructors. The main reason for
taking non-flat base domains is that we want the constructors to be injective
and with disjoint ranges. This generally is not the case for flat domains.
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Definition (Algebras and types). Let ξ, ~α be distinct type variables; the αl
are called type parameters. We inductively define type forms ρ, σ, τ ∈ Ty(~α ),
constructor type forms κ ∈ KTξ(~α ) and algebra forms ι ∈ Alg(~α ); all these
are called strictly positive in ~α. In case ~α is empty we abbreviate Ty(~α )
by Ty and call its elements types rather than type forms; similarly for the
other notions.

αl ∈ Ty(~α ),
ι ∈ Alg(~α )
ι ∈ Ty(~α )

,
ρ ∈ Ty σ ∈ Ty(~α )
ρ→ σ ∈ Ty(~α )

,

κ0, . . . , κk−1 ∈ KTξ(~α )
µξ(κ0, . . . , κk−1) ∈ Alg(~α )

(k ≥ 1),

~ρ ∈ Ty(~α ) ~σ0, . . . , ~σn−1 ∈ Ty
~ρ→ (~σν → ξ)ν<n → ξ ∈ KTξ(~α )

(n ≥ 0).

We use ι for algebra forms and ρ, σ, τ for type forms. ~ρ → σ means ρ0 →
. . . → ρn−1 → σ, associated to the right. For ~ρ → (~σν → ξ)ν<n → ξ ∈
KTξ(~α ) call ~ρ the parameter argument types and the ~σν → ξ recursive
argument types. To avoid empty types, we require that there is a nullary
constructor type, i.e., one without recursive argument types.

Here are some examples of algebras.

U := µξξ (unit),

B := µξ(ξ, ξ) (booleans),

N := µξ(ξ, ξ → ξ) (natural numbers, unary),

P := µξ(ξ, ξ → ξ, ξ → ξ) (positive numbers, binary),

D := µξ(ξ, ξ → ξ → ξ) (binary trees, or derivations),

O := µξ(ξ, ξ → ξ, (N→ ξ)→ ξ) (ordinals),

T0 := N, Tn+1 := µξ(ξ, (Tn → ξ)→ ξ) (trees).

Important examples of algebra forms are

L(α) := µξ(ξ, α→ ξ → ξ) (lists),

α× β := µξ(α→ β → ξ) (product),

α+ β := µξ(α→ ξ, β → ξ) (sum).

Remark (Substitution for type parameters). Let ρ ∈ Ty(~α ); we write ρ(~α )
for ρ to indicate its dependence on the type parametes ~α. We can substitute
types ~σ for ~α, to obtain ρ(~σ). Examples are L(B), the type of lists of
booleans, and N×N, the type of pairs of natural numbers.

Note that often there are many equivalent ways to define a particular
type. For instance, we could take U + U to be the type of booleans, L(U)
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to be the type of natural numbers, and L(B) to be the type of positive
binary numbers.

For every constructor type κi(ξ) of an algebra ι = µξ(~κ ) we provide
a (typed) constructor symbol Ci of type κi(ι). In some cases they have
standard names, for instance

ttB, ffB for the two constructors of the type B of booleans,

0N,SN→N for the type N of (unary) natural numbers,

1P, SP→P
0 , SP→P

1 for the type P of (binary) positive numbers,

nilL(ρ), consρ→L(ρ)→L(ρ) for the type L(ρ) of lists,

(inlρσ)ρ→ρ+σ, (inrρσ)σ→ρ+σ for the sum type ρ+ σ.

We denote the constructors of the type D of derivations by 0D (axiom) and
CD→D→D (rule).

One can extend the definition of algebras and types to simultaneously
defined algebras: just replace ξ by a list ~ξ = ξ0, . . . , ξN−1 of type variables
and change the algebra introduction rule to

κ0, . . . , κk−1 ∈ KT~ξ
(~α )

(µ~ξ (κ0, . . . , κk−1))j ∈ Alg(~α )
(k ≥ 1, j < N).

with each κi of the form

~ρ→ (~σν → ξjν )ν<n → ξj .

The definition of a “nullary” constructor type is a little more delicate here.
We require that for every ξj (j < N) there is a κij with final value type
ξj , each of whose recursive argument types has a final value type ξjν with
jν < j. — Examples of simultaneously defined algebras are

(Ev,Od) := µξ,ζ(ξ, ζ → ξ, ξ → ζ) (even and odd numbers),

(Ts(ρ),T(ρ)) := µξ,ζ(ξ, ζ → ξ → ξ, ρ→ ζ, ξ → ζ) (tree lists and trees).

T(ρ) defines finitely branching trees, and Ts(ρ) finite lists of such trees; the
trees carry objects of a type ρ at their leaves. The constructor symbols and
their types are

EmptyTs(ρ), TconsT(ρ)→Ts(ρ)→Ts(ρ),

Leafρ→T(ρ), BranchTs(ρ)→T(ρ).

However, for simplicity we often consider non-simultaneous algebras only.
An algebra is finitary if all its constructor types (i) only have finitary

algebras as parameter argument types, and (ii) have recursive argument
types of the form ξ only (so the ~σν in the general definition are all empty).
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Structure-finitary algebras are defined similarly, but without conditions on
parameter argument types. In the examples above U, B, N, P and D are
all finitary, but O and Tn+1 are not. L(ρ), ρ × σ and ρ + σ are structure-
finitary, and finitary if their parameter types are. An argument position in
a type is called finitary if it is occupied by a finitary algebra.

An algebra is explicit if all its constructor types have parameter argument
types only (i.e., no recursive argument types). In the examples above U, B,
ρ× σ and ρ+ σ are explicit, but N, P, L(ρ), D, O and Tn+1 are not.

We will also need the notion of the level of a type, which is defined by

lev(ι) := 0, lev(ρ→ σ) := max{lev(σ), 1 + lev(ρ)}.

Base types are types of level 0, and a higher type has level at least 1.
To add and remove names for type variables, we use

(add-tvar-name name1 ...)

(remove-tvar-name name1 ...)

We need a constructor, accessors and a test for type variables.

(make-tvar index name) constructor
(tvar-to-index tvar) accessor
(tvar-to-name tvar) accessor
(tvar? x)

To generate new type variables we use

(new-tvar type)

To introduce simultaneous free algebras we use

add-algebras-with-parameters, abbreviated add-param-algs .

An example is
(add-param-algs

(list "labtree" "labtlist") ’alg-typeop 2
’("LabLeaf" "alpha1=>labtree")
’("LabBranch" "labtlist=>alpha2=>labtree")
’("LabEmpty" "labtlist")
’("LabTcons" "labtree=>labtlist=>labtlist" pairscheme-op))

This simultaneously introduces the two free algebras labtree and labtlist,
both finitary, whose constructors are LabLeaf, LabBranch, LabEmpty and
LabTcons (written as an infix pair operator, hence right associative). The
constructors are introduced as “self-evaluating” constants; they play a spe-
cial role in our semantics for normalization by evaluation.
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In case there are no parameters we use add-algs, and in case there is no
need for a simultaneous definition we use add-alg or add-param-alg.

For already introduced algebras we need constructors and accessors

(make-alg name type1 ...)

(alg-form-to-name alg)

(alg-form-to-types alg)

(alg-name-to-simalg-names alg-name)

(alg-name-to-token-types alg-name)

(alg-name-to-typed-constr-names alg-name)

(alg-name-to-tvars alg-name)

(alg-name-to-arity alg-name)

We also provide the tests

(alg-form? x) incomplete test
(alg? x) complete test
(finalg? type) incomplete test
(sfinalg? type) incomplete test
(ground-type? x) incomplete test

We require that there is at least one nullary constructor in every free
algebra; hence, it has a “canonical inhabitant”. For arbitrary types this
need not be the case, but occasionally (e.g., for general logical problems,
like to prove the drinker formula) it is useful. Therefore

(make-inhabited type term1 ...)

marks the optional term as the canonical inhabitant if it is provided, and
otherwise creates a new constant of that type, which is taken to be the
canonical inhabitant. We also have

(type-to-canonical-inhabitant type),

which returns the canonical inhabitant.
To remove names for algebras we use

(remove-alg-name name1 ...)

Examples. Standard examples for finitary free algebras are the type nat
of unary natural numbers, and the algebra of binary trees. The domain Inat
of unary natural numbers is defined (as in [4]) as a solution to a domain
equation.

We always provide the finitary free algebra unit consisting of exactly one
element, and boole of booleans; objects of the latter type are (cf. loc. cit.)
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true, false and families of terms of this type, and in addition the bottom
object of type boole.

Tests:

(arrow-form? type)

(star-form? type)

(object-type? type)

We also need constructors and accessors for arrow types

(make-arrow arg-type val-type) constructor
(arrow-form-to-arg-type arrow-type) accessor
(arrow-form-to-val-type arrow-type) accessor

and star types

(make-star type1 type2) constructor
(star-form-to-left-type star-type) accessor
(star-form-to-right-type star-type) accessor.

For convenience we also have

(mk-arrow type1 ... type)

(arrow-form-to-arg-types type <n>) all (first n) argument types
(arrow-form-to-final-val-type type) type of final value.

To check and to display a type we have

(type? x)

(type-to-string type)

(pp type).

2.4. Coercion. To develop analysis we use a subtype relation generated
from pos < nat < int < rat < real < cpx. We view pos, nat, int, rat,
real, cpx as algebras with the following constructors and destructors.

pos : One, SZero, SOne (positive numbers written in binary)
nat : Zero, Succ
int : IntPos, IntZero, IntNeg

rat : RatConstr (written # infix) and destructors RatN, RatD

real : RealConstr and destructors RealSeq, RealMod

cpx : CpxConstr (written ## infix) and destructors RealPart, ImagPart

We provide

(alg-le? alg1 alg2)
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(type-le? type1 type2)

(algebras-to-embedding type1 type2)

(types-to-embedding type1 type2)

(types-lub type . types)

type-match-modulo-coercion checks whether a given pattern can be trans-
formed modulo coercion by a substitution into a given instance. It returns
#f, if this is impossible, and the substitution otherwise. We provide

(type-match-modulo-coercion pattern instance)

3. Variables

A variable of an object type is interpreted by a continuous functional (ob-
ject) of that type. We use the word “variable” and not “program variable”,
since continuous functionals are not necessarily computable. For readable
in- and output, and also for ease in parsing, we may reserve certain strings
as names for variables of a given type, e.g., n, m for variables of type nat.
Then also n0, n1, n2, . . . , m0, . . . can be used for the same purpose.

In most cases we need to argue about existing (i.e., total) objects only.
For the notion of totality we have to refer to [25, Chapter 8.3]; particularly
relevant here is exercise 8.5.7. To make formal arguments with quantifiers
relativized to total objects more managable, we use a special sort of variables
intended to range over such objects only. For example, n0, n1, n2, . . . , m0, . . .
range over total natural numbers, and n^0, n^1, n^2, . . . are general vari-
ables. We say that the degree of totality for the former is 1, and for the
latter 0.

To add and remove names for variables of a given type (e.g., n, m for
variables of type nat), we use

(add-var-name name1 ... type)

(remove-var-name name1 ... type)

(default-var-name type).

The first variable name added for any given type becomes the default vari-
able name. If the system creates new variables of this type, they will carry
that name. For complex types it sometimes is necessary to talk about vari-
ables of a certain type without using a specific name. In this case one can
use the empty string to create a so called numerated variable (see below).
The parser is able to produce this kind of canonical variables from type
expressions.

We need a constructor, accessors and tests for variables.

(make-var type index t-deg name) constructor
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(var-to-type var) accessor
(var-to-index var) accessor
(var-to-t-deg var) accessor
(var-to-name var) accessor
(var-form? x) incomplete test
(var? x). complete test

It is guaranteed that equal? is a valid test for equality of variables. More-
over, it is guaranteed that parsing a displayed variable reproduces the vari-
able; the converse need not be the case (we may want to convert it into some
canonical form).

For convenience we have the function

(mk-var type <index> <t-deg> <name>).

The type is a required argument; however, the remaining arguments are
optional. The default for the name string is the value returned by

(default-var-name type)

If there is no default name, a numerated variable is created. The default for
the totality is “total”.

Using the empty string as the name, we can create so called numerated
variables. We further require that we can test whether a given variable
belongs to those special ones, and that from every numerated variable we
can compute its index:

(numerated-var? var)

(numerated-var-to-index numerated-var).

It is guaranteed that make-var used with the empty name string is a bijec-
tion of the product of Ty, N, and the degrees of totality to the set of numer-
ated variables, with inverses var-to-type, numerated-var-to-index and
var-to-t-deg.

Although these functions look like an ad hoc extension of the interface
that is convenient for normalization by evaluation, there is also a deeper
background: these functions can be seen as the “computational content”
of the well-known phrase “we assume that there are infinitely many vari-
ables of every type”. Giving a constructive proof for this statement would
require to give infinitely many examples of variables for every type. This
of course can only be done by specifying a function (for every type) that
enumerates these examples. To make the specification finite we require the
examples to be given in a uniform way, i.e., by a function of two arguments.
To make sure that all these examples are in fact different, we would have
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to require make-var to be injective. Instead, we require (classically equiva-
lent) make-var to be a bijection on its image, as again, this can be turned
into a computational statement by requiring that a witness (i.e., an inverse
function) is given.

Finally, as often the exact knowledge of infinitely many variables of every
type is not needed we require that, either by using the above functions or
by some other form of definition, functions

(type-to-new-var type)

(type-to-new-partial-var type)

are defined that return a (total or partial) variable of the requested type, dif-
ferent from all variables that have ever been returned by any of the specified
functions so far.

Occasionally we may want to create a new variable with the same name
(and degree of totality) as a given one. This is useful, for instance for bound
renaming. Therefore we supply

(var-to-new-var var)

(var-to-new-partial-var var)

Implementation. Variables are implemented as lists:

(var type index t-deg name).

4. Constants

Every constant (or more precisely, object constant) has a type and de-
notes a computable (hence continuous) functional of that type. We have the
following three kinds of constants:

(i) constructors, kind constr,
(ii) constants with user defined rules (also called program(mable) constant,

or pconst), kind pconst,
(iii) constants whose rules are fixed, kind fixed-rules.

The latter are built into the system: recursion operators for arbitrary al-
gebras, equality and existence operators for finitary algebras, and existence
elimination. They are typed in parametrized form, with the actual type (or
formula) given by a type (or type and formula) substitution that is also part
of the constant. For instance, equality is typed by α → α → B and a type
substitution α 7→ ρ. This is done for clarity (and brevity, e.g., for large ρ in
the example above), since one should think of the type of a constant in this
way.
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For constructors and for constants with fixed rules, by efficiency reasons
we want to keep the object denoted by the constant (as needed for norma-
lization by evaluation) as part of it. It depends on the type of the constant,
hence must be updated in a given proof whenever the type changes by a
type substitution.

4.1. Rewrite and computation rules for program constants. For ev-
ery program constant (or defined constant) Dρ we assume that some rewrite
rules of the form D ~K 7→ N are given, where FV(N) ⊆ FV( ~K) and D ~K, N
have the same type (not necessarily a ground type). Moreover, for any two
rules D ~K 7→ N and D ~K ′ 7→ N ′ we require that ~K and ~K ′ are of the same
length, called the arity of D. The rules are divided into computation rules
and proper rewrite rules. They must satisfy the requirements listed in [4].
The idea is that a computation rule can be understood as a description of
a computation in a suitable semantical model, provided the syntactic con-
structors correspond to semantic ones in the model, whereas the other rules
describe syntactic transformations.

There a more general approach was used: one may enter into components
of products. Then instead of one arity one needs several “type informations”
~ρ → σ with ~ρ a list of types, 0’s and 1’s indicating the left or right part of
a product type. For example, if D is of type τ → (τ → τ → τ) × (τ → τ),
then the rules Dy0xx 7→ a and Dy1 7→ b are admitted, and D comes with
the type informations (τ, 0, τ, τ → τ)→ τ and (τ, 1)→ (τ → τ). – However,
for simplicity we only deal with a single arity here.

Given a set of rewrite rules, we want to treat some rules - which we call
computation rules - in a different, more efficient way. The idea is that a
computation rule can be understood as a description of a computation in
a suitable semantical model, provided the syntactic constructors correspond
to semantic ones in the model, whereas the other rules describe syntactic
transformations.

In order to define what we mean by computation rules, we need the notion
of a constructor pattern. These are special terms defined inductively as
follows.

(i) Every variable is a constructor pattern.
(ii) If C is a constructor and P1, . . . , Pn are constructor patterns (or pro-

jection markers 0 or 1), such that C~P is of ground type, then C~P is a
constructor pattern.

From the given set of rewrite rules we choose a subset Comp with the fol-
lowing properties.

(i) If D~P 7→ Q ∈ Comp, then P1, . . . , Pn are constructor patterns or
projection markers.
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(ii) The rules are left-linear, i.e., if D~P 7→ Q ∈ Comp, then every variable
in D~P occurs only once in D~P .

(iii) The rules are essentially non-overlapping, i.e., for different rules D ~K 7→
M and D~L 7→ N in Comp the left hand sides D ~K and D~L are either
non-unifiable, or else for the most general unifier ξ of ~K and ~L we have
Mξ = Nξ.

We write D ~M 7→comp Q to indicate that the rule is in Comp. All other rules
will be called (proper) rewrite rules.

In our reduction strategy computation rules will always be applied first,
and since they are essentially non-overlapping, this part of the reduction is
unique. However, since we allowed almost arbitrary rewrite rules, it may
happen that in case no computation rule applies a term may be rewritten
by different rules /∈ Comp. In order to obtain a deterministic procedure we
then select the first applicable rewrite rule (this is a slight simplification of
[4], where special “select”-functions were used for this purpose).

4.2. Recursion over simultaneous free algebras. We now explain what
we mean by recursion over simultaneous free algebras. The inductive struc-
ture of the types ~ι = µ~ξ ~κ corresponds to two sorts of constants. With the
constructors C~ιi : κi[~ι ] we can construct elements of a type ιj , and with the
recursion operators R~ι,~τιj we can construct mappings from ιj to τj by recur-
sion on the structure of ~ι. So in (Rec arrow-types), arrow-types is a list
ι1 → τ1, . . . , ιk → τk. Here ι1, . . . , ιk are the algebras defined simultaneously
and τ1, . . . , τk are the result types.

For convenience in our later treatment of proofs (when we want to nor-
malize a proof by (1) translating it into a term, (2) normalizing this term
and (3) translating the normal term back into a proof), we also allow all-
formulas ∀xι11 A1, . . . ,∀xιkk Ak instead of arrow-types: they are treated as
ι1 → τ(A1), . . . , ιk → τ(Ak) with τ(Aj) the type of Aj .

Recall the definition of types and constructor types in section 2, and the
examples given there. The (structural) higher type recursion operators Rτι
(introduced by Gödel [11]) are used to construct maps from the algebra ι
to τ , by recursion on the structure of ι. For instance, RτN has type N →
τ → (N→ τ → τ)→ τ . The first argument is the recursion argument, the
second one gives the base value, and the third one gives the step function,
mapping the recursion argument and the previous value to the next value.
For example, RN

Nnmλn,p(Sp) defines addition m+ n by recursion an n.
Generally, in order to define the type of the recursion operators w.r.t.

ι = µξ (κ0, . . . , κk−1) and result type τ , we first define for each constructor
type

κ = ~ρ→ (~σν → ξ)ν<n → ξ ∈ KTξ
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the step type

δ := ~ρ→ (~σν → ι)ν<n → (~σν → τ)ν<n → τ.

The recursion operator Rτι then has type

ι→ δ0 → . . .→ δk−1 → τ

where k is the number of constructors. The recursion argument is of type
ι. In the step type δ above, the ~ρ are parameter types, (~σν → ι)ν<n are
the types of the predecessor components in the recursion argument, and
(~σν → τ)ν<n are the types of the previously defined values.

For some common algebras listed in 2.3 we spell out the type of their
recursion operators:

RτB : B→ τ → τ → τ,

RτN : N→ τ → (N→ τ → τ)→ τ,

RτP : P→ τ → (P→ τ → τ)→ (P→ τ → τ)→ τ,

RτO : O→ τ → (O→ τ → τ)→ ((N→ O)→ (N→ τ)→ τ)→ τ,

RτL(ρ) : L(ρ)→ τ → (ρ→ L(ρ)→ τ → τ)→ τ,

Rτρ+σ : ρ+ σ → (ρ→ τ)→ (σ → τ)→ τ,

Rτρ×σ : ρ× σ → (ρ→ σ → τ)→ τ.

One can extend the definition of the (structural) recursion operators to
simultaneously defined algebras ~ι = µ~ξ (κ0, . . . , κk−1) and result types ~τ .
Then for each constructor type

κ = ~ρ→ (~σν → ξjν )ν<n → ξj ∈ KT~ξ

we have the step type

δ := ~ρ→ (~σν → ιjν )ν<n → (~σν → τjν )ν<n → τj .

The jth simultaneous recursion operator R~ι,~τj has type

ιj → δ0 → . . .→ δk−1 → τj

where k is the total number of constructors. The recursion argument is of
type ιj . In the step type δ, the ~ρ are parameter types, (~σν → ιjν )ν<n are
the types of the predecessor components in the recursion argument, and
(~σν → τjν )ν<n are the types of the previously defined values. We will often
omit the upper indices ~ι, ~τ when they are clear from the context. Notice
that in case of a non-simultaneous free algebra we write Rτι for Rι,τ1 . —
An example of a simultaneous recursion on tree lists and trees will be given
below.
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Definition. Terms of Gödel’s T are inductively defined from typed vari-
ables xρ and constants for constructors C~ιi and recursion operators R~ι,~τj by
abstraction λxρM

σ and application Mρ→σNρ.

4.3. Conversion. To define the conversion relation for the structural recur-
sion operators, it will be helpful to use the following notation. Let ~ι = µ~ξ ~κ,

κi = ρ0 → . . .→ ρm−1 → (~σ0 → ξj0)→ . . .→ (~σn−1 → ξjn−1)→ ξj ∈ KT~ξ
,

and consider C~ιi ~N of type ιj . We write ~NP = NP
0 , . . . , N

P
m−1 for the para-

meter arguments Nρ0
0 , . . . , N

ρm−1

m−1 and ~NR = NR
0 , . . . , N

R
n−1 for the recursive

arguments N
~σ0→ιj0
m , . . . , N

~σn−1→ιjn−1

m+n−1 , and nR for the number n of recursive
arguments.

We define a conversion relation 7→ρ between terms of type ρ by

(λxM(x))N 7→M(N),(1)

λx(Mx) 7→M if x /∈ FV(M) (M not an abstraction),(2)

Rj(C~ιi ~N) ~M 7→Mi
~N
(
(Rj0 · ~M) ◦NR

0

)
. . .
(
(Rjn−1 · ~M) ◦NR

n−1

)
.(3)

Here we have written Rj · ~M for λxιj (R
~ι,~τ
j xιj ~M); ◦ denotes ordinary com-

position. The rule (1) is called β-conversion, and (2) η-conversion; their left
hand sides are called β-redexes or η-redexes, respectively. The left hand
side of (3) is called R-redex ; it is a special case of a redex associated with a
constant D defined by “computation rules” (cf. 4.1), and hence also called
a D-redex .

Let us look at some examples of what can be defined in Gödel’s T. We
define the canonical inhabitant ερ of a type ρ ∈ Ty:

ειj := C~ιijε
~ρ(λ~x1

ειj1 ) . . . (λ~xnε
ιjn ), ερ→σ := λxε

σ.

The projections of a pair to its components can be defined easily:

M0 := Rρρ×σMρ×σ(λxρ,yσxρ), M1 := Rσρ×σMρ×σ(λxρ,yσyσ).

The append -function ∗ for lists is defined recursively as follows. We write
x :: l as shorthand for cons(x, l).

nil ∗ l2 := l2, (x :: l1) ∗ l2 := x :: (l1 ∗ l2).

It can be defined as the term

l1 ∗ l2 := RL(α)→L(α)
L(α) l1(λl2 l2)λx, ,p,l2(x :: (pl2))l2.

Here “ ” is a name for a bound variable which is not used.
Using the append function ∗ we can define list reversal Rev by

Rev(nil) := nil, Rev(x :: l) := Rev(l) ∗ (x :: nil).
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The corresponding term is

Rev(l) := RL(α)
L(α)l nilλx, ,p(p ∗ (x :: nil)).

Assume we want to define by simultaneous recursion two functions on N,
say even, odd: N→ B. We want

even(0) := tt, odd(0) := ff,

even(Sn) := odd(n), odd(Sn) := even(n).

This can be achieved by using pair types: we recursively define the single
function evenodd: N→ B×B. The step types are

δ0 = B×B, δ1 = N→ B×B→ B×B,

and we can define evenoddm := RB×B
N m〈tt, ff〉λn,p〈p1, p0〉.

Another example concerns the algebras (Ts(N),T(N)) simultaneously
defined in 2.3 (we write them without the argument N here), whose con-
structors C(Ts,T)

i for i ∈ {0, . . . , 3} are

EmptyTs, TconsT→Ts→Ts, LeafN→T, BranchTs→T.

Recall that the elements of the algebra T (i.e., T(N)) are just the finitely
branching trees, which carry natural numbers on their leaves.

Let us compute the types of the recursion operators w.r.t. the result types
τ0, τ1, i.e., of R(Ts,T),(τ0,τ1)

Ts and R(Ts,T),(τ0,τ1)
T , or shortly RTs and RT. The

step types are
δ0 := τ0,

δ1 := Ts→ T→ τ0 → τ1 → τ0,

δ2 := N→ τ1,

δ3 := Ts→ τ0 → τ1.

Hence the types of the recursion operators are

RTs : Ts→ δ0 → δ1 → δ2 → δ3 → τ0,

RT : T→ δ0 → δ1 → δ2 → δ3 → τ1.

The internal representation of RT is

(const Rec δ′0 → δ′1 → δ′2 → δ′3 → T→ α0

(α0 7→ τ0, α1 7→ τ1))

with
δ′0 := α0,

δ′1 := Ts→ T→ α0 → α1 → α0,

δ′2 := N→ α1,

δ′3 := Ts→ α0 → α1.

Here the fact that we deal with a simultaneous recursion (over tree and
tlist), and that we define a constant of type T → . . . , can all be inferred
from what is given: the type T → . . . is right there, and for tlist we can
look up the simultaneously defined algebras.
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For the external representation (i.e., display) we use the shorter notation

(Rec T→ τ0 Ts→ τ1).

4.4. Internal representation of constants. Every object constant has
the internal representation

(const object-or-arity name uninst-type tsubst

t-deg token-type repro-data)

The type of the constant is the result of carrying out the type substitution
tsubst in uninst-type; free type variables may again occur in this type.
The type substitution tsubst must be restricted to the type variables in
uninst-type. Examples for object constants are

(const Compose (α→β)→(β→γ)→α→γ (α 7→ ρ, β 7→ σ, γ 7→ τ) ...)

(const Eq α→ α→ B (α 7→ finalg) ...)

(const E α→ B (α 7→ finalg . . . ))

object-or-arity is an object if this object cannot be changed, e.g., by allowing
user defined rules for the constant; otherwise, the associated object needs
to be updated whenever a new rule is added, and we have the arity of those
rules instead. The rules are of crucial importance for the correctness of a
proof, and should not be invisibly buried in the denoted object taken as
part of the constant (hence of any term involving it). Therefore we keep
the rules of a program constant and also its denoted objects (depending on
type substitutions) at a central place, a global variable PROGRAM-CONSTANTS
which assigns to every name of such a constant the constant itself (with
uninstantiated type), the rules presently chosen for it and also its denoted
objects (as association list with type substitutions as keys). When a new rule
has been added, the new objects for the program constant are computed,
and the new list to be associated with the program constant is written in
PROGRAM-CONSTANTS instead. All information on a program constant except
its denoted object and its computation and rewrite rules (i.e., its type, degree
of totality, arity and token type) is stable and hence can be kept as part of
it. The token type can be either const (i.e., constant written as application)
or one of: postfix-op, prefix-op, binding-op, add-op, mul-op, rel-op,
and-op, or-op, imp-op and pair-op.

Repro-data are (only) necessary in proof.scm, for normalization of proofs:
a (general) induction, efq, introduction or elimination axiom is translated
into an appropriate constant, then normalized, and finally from the con-
stant and its repro data the axiom is reproduced. The repro-data are of the
following forms.

(1) For a recursion constant.
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(a) A list of all-formulas. This form only occurs when translating an
axiom for (simultaneous) induction into a recursion constant, in
order to achieve normalization of proofs via term normalization.
We have to consider the free variables in the scheme formulas,
and let the type of the recursion constant depend on them. This
is needed to have the allnc-conversion be represented in term
normalization. The relevant operation is

all-formulas-to-rec-const.

(b) A list of implication formulas I~x^→ A(~x^), where all idpcs are
simultaneously inductively defined. This form only occurs when
translating an elimination axiom into a recursion constant, in
order to achieve normalization of proofs via term normalization.
We again have to consider the free variables in the scheme formu-
las, and let the type of the recursion constant depend on them.
This is needed to have the allnc-conversion be represented in
term normalization. The relevant operation is

imp-formulas-to-rec-const.

(2) For a cases constant. Here a single arrow-type or all-formula suffices.
One uses

all-formula-to-cases-const.

(3) For a guarded general recursion constant: an all-formula. This
form only occurs when translating a general induction axiom into
a guarded general recursion constant, in order to achieve normaliza-
tion of proofs via term normalization. We have to consider the free
variables in the scheme formulas, and let the type of the guarded
general recursion constant depend on them. This is needed to have
the allnc-conversion be represented in term normalization. One uses

all-formula-and-number-to-grecguard-const.

(4) For an efq-constant (of kind ’fixed-rules): a formula. This form
only occurs when translating an efq-aconst into an efq-constant, in
order to achieve normalization of proofs via term normalization. One
uses

formula-to-efq-const.

(5) For a constructor associated with an “Intro” axiom.
(a) A number i of a clause for an inductively defined predicate con-

stant, and the constant idpc. One uses

number-and-idpredconst-to-intro-const.



MINLOG REFERENCE MANUAL 29

(b) An ex-formula for an “Ex-Intro” axiom. One uses

ex-formula-to-ex-intro-const.

(c) An exnc-formula for an “Exnc-Intro” axiom. One uses

exnc-formula-to-exnc-intro-const.

(6) For an Ex-Elim constant (of kind ’fixed-rules): an ex-formula
and a conclusion. One uses

ex-formula-and-concl-to-ex-elim-const.

(7) For an Exnc-Elim constant (of kind ’fixed-rules): an exnc-formula
and a conclusion. One uses

exnc-formula-and-concl-to-exnc-elim-const.

Constructor, accessors and tests for all kinds of constants:

(make-const obj-or-arity name kind uninst-type tsubst

t-deg token-type . repro-data)

(const-to-object-or-arity const)

(const-to-name const)

(const-to-kind const)

(const-to-uninst-type const)

(const-to-tsubst const)

(const-to-t-deg const)

(const-to-token-type const)

(const-to-repro-data const)

(const? x)

(const=? x y)

From these we can define

(const-to-type const)

(const-to-tvars const)

A constructor is a special constant with no rules. We maintain an as-
sociation list CONSTRUCTORS assigning to every name of a constructor an
association list associating with every type substitution (restricted to the
type parameters) the corresponding instance of the constructor. We pro-
vide

(constr-name? string)

(constr-name-to-constr name <tsubst>)
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(constr-name-and-tsubst-to-constr name tsubst),

where in (constr-name-to-constr name <tsubst>), name is a string or
else of the form (Ex-Intro formula). If the optional tsubst is not present,
the empty substitution is used.

For given algebras one can display the associated constructors with their
types by calling

(display-constructors alg-name1 ...).

We also need procedures recovering information from the string denoting
a program constant (via PROGRAM-CONSTANTS):

(pconst-name-to-pconst name)

(pconst-name-to-comprules name)

(pconst-name-to-rewrules name)

(pconst-name-to-inst-objs name)

(pconst-name-and-tsubst-to-object name tsubst)

(pconst-name-to-object name).

One can display the program constants together with their current com-
putation and rewrite rules by calling

(display-program-constants name1 ...).

To add and remove program constants we use

(add-program-constant name type <rest>)

(remove-program-constant symbol);

rest consists of an initial segment of the following list: t-deg (default 0),
token-type (default const) and arity (default maximal number of argu-
ment types).

To add and remove computation and rewrite rules we have

(add-computation-rule lhs rhs)

(add-rewrite-rule lhs rhs)

(remove-computation-rules-for lhs)

(remove-rewrite-rules-for lhs).

To generate our constants with fixed rules we use

(finalg-to-=-const finalg) equality
(finalg-to-e-const finalg) existence
(arrow-types-to-rec-const . arrow-types) recursion
(ex-formula-and-concl-to-ex-elim-const
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ex-formula concl)

Similarly to arrow-types-to-rec-const we also define the procedure
all-formulas-to-rec-const. It will be used in to achieve normalization
of proofs via translating them in terms.

Similarly we have arrow-types-to-cases-const and on the proof level
all-formulas-to-cases-const.

5. Predicate variables and constants

5.1. Predicate variables. A predicate variable of arity ρ1, . . . , ρn is a
placeholder for a formulaA with distinguished (different) variables x1, . . . , xn
of types ρ1, . . . , ρn. Such an entity is called a comprehension term, written
{x1, . . . , xn | A }.

Predicate variable names are provided in the form of an association list,
which assigns to the names their arities. By default we have the predicate
variable bot of arity (arity), called (logical) falsity. It is viewed as a
predicate variable rather than a predicate constant, since (when translating
a classical proof into a constructive one) we want to substitute for bot.

Often we will argue about Harrop formulas only, i.e., formulas without
computational content. For convenience we use a special sort of predicate
variables intended to range over comprehension terms with Harrop formulas
only. For example, P^0, P^1, P^2, . . . range over comprehension terms with
Harrop formulas, and P0, P1, P2, . . . , Q0, . . . are general predicate variables.
We say that Harrop degree for the former is 1, and for the latter 0.

In the context of Gödel’s Dialectica intepretation [11] we also need to deal
with “negative” computational content. Therefore we also need a “degree
of negativity” and denote it by n-deg, and we call the Harrop degree the
“degree of positivity” denoted h-deg. We use P’0, P’1, P’2, . . . , Q’0, . . . for
predicate variables of h-deg 0 and n-deg 1, and P^’0, P^’1, P^’2, . . . for
predicate variables whose h-deg and n-deg are both 1.

We need constructors and accessors for arities

(make-arity type1 ...)

(arity-to-types arity)

To display an arity we have

(arity-to-string arity)

We can test whether a string is a name for a predicate variable, and if so
compute its associated arity:

(pvar-name? string)

(pvar-name-to-arity pvar-name)
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To add and remove names for predicate variables of a given arity (e.g., Q
for predicate variables of arity nat), we use

(add-pvar-name name1 ... arity)

(remove-pvar-name name1 ...)

We need a constructor, accessors and tests for predicate variables.

(make-pvar arity index h-deg n-deg name) constructor
(pvar-to-arity pvar) accessor
(pvar-to-index pvar) accessor
(pvar-to-h-deg pvar) accessor
(pvar-to-n-deg pvar) accessor
(pvar-to-name pvar) accessor
(pvar? x)

(equal-pvars? pvar1 pvar2)

For convenience we have the function

(mk-pvar arity <index> <h-deg> <n-deg> <name>)

The arity is a required argument; the remaining arguments are optional.
The default for index is −1, for h-deg and n-deg is 0 and for name it is
given by (default-pvar-name arity).

It is guaranteed that parsing a displayed predicate variable reproduces
the predicate variable; the converse need not be the case (we may want to
convert it into some canonical form).

5.2. Predicate constants. We also allow predicate constants. The gene-
ral reason for having them is that sometimes we wants predicates to be
axiomatized, which are not placeholders for formulas. Prime formulas built
from predicate constants do not give rise to extracted terms, and cannot be
substituted for.

Notice that a predicate constant does not change its name under a type
substitution; this is in contrast to predicate (and other) variables. Notice
also that the parser can infer from the arguments the types ρ1 . . . ρn to be
substituted for the type variables in the uninstantiated arity of P .

To add and remove names for predicate constants of a given arity, we use

(add-predconst-name name1 ... arity)

(remove-predconst-name name1 ...)

We need a constructor, accessors and tests for predicate constants.

(make-predconst uninst-arity tsubst index name) constructor
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(predconst-to-uninst-arity predconst) accessor
(predconst-to-tsubst predconst) accessor
(predconst-to-index predconst) accessor
(predconst-to-name predconst) accessor
(predconst? x)

Moreover we need

(predconst-name? name)

(predconst-name-to-arity predconst-name).

(predconst-to-string predconst).

5.3. Inductively defined predicate constants. When we want to make
propositions about computable functionals and their domains of partial con-
tinuous functionals, it is perfectly natural to take, as initial propositions,
ones formed inductively. For example, in the algebra N we can inductively
define totality by the clauses

T0, ∀n(Tn→ T (Sn)).

Its least-fixed-point scheme will be taken in the form

∀n(Tn→ A(0)→ ∀n(Tn→ A(n)→ A(Sn))→ A(n)).

The reason for writing it in this way is that it fits better with the logical eli-
mination rules. It expresses that every “competitor” {n | A(n) } satisfying
the same clauses contains T . This is the usual induction schema for natural
numbers, which clearly only holds for “total” numbers. Notice that we have
used a “strengthened” form of the “step formula”, namely ∀n(Tn→ A(n)→
A(Sn)) rather than ∀n(A(n) → A(Sn)). In applications of the least-fixed-
point axiom this simplifies the proof of the “induction step”, since we have
the additional hypothesis T (n) available. Totality for an arbitrary algebra
can be defined similarly.

Generally, an inductively defined predicate I is given by k clauses, which
are of the form

∀~x( ~Ai → (∀~yiν ( ~Biν → I~siν))ν<ni → I~ti) (i < k).

Our formulas will be defined by the operations of implication A → B

and universal quantification ∀xρA from inductively defined predicates µX ~K,
where X is a predicate variable, and the Ki are clauses. Formulas will be
treated more extensively later in section 7. However, in principle predicates
and formulas are introduced simultaneously.

Definition (Predicates and formulas). Let X, ~Y be distinct predicate vari-
ables; the Yl are called predicate parameters. We inductively define formula
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forms A,B,C,D ∈ F(~Y ), predicate forms P,Q, I, J ∈ Preds(~Y ) and clause
forms K ∈ ClX(~Y ); all these are called strictly positive in ~Y . In case ~Y is
empty we abbreviate F(~Y ) by F and call its elements formulas; similarly for
the other notions. (However, for brevity we often say “formula” etc. when
it is clear from the context that parameters may occur.)

Yl~r ∈ F(~Y ),
A ∈ F B ∈ F(~Y )

A→ B ∈ F(~Y )
,

A ∈ F(~Y )

∀xA ∈ F(~Y )
,

C ∈ F(~Y )

{ ~x | C } ∈ Preds(~Y )
,

P ∈ Preds(~Y )

P~r ∈ F(~Y )
,

K0, . . . ,Kk−1 ∈ ClX(~Y )

µX(K0, . . . ,Kk−1) ∈ Preds(~Y )
(k ≥ 1),

~A ∈ F(~Y ) ~B0, . . . , ~Bn−1 ∈ F

∀~x( ~A→ (∀~yν ( ~Bν → X~sν))ν<n → X~t ) ∈ ClX(~Y )
(n ≥ 0).

Here ~A → B means A0 → · · · → An−1 → B, associated to the right.
For a clause ∀~x( ~A → (∀~yν ( ~Bν → X~sν))ν<n → X~t ) ∈ ClX(~Y ) we call ~A

parameter premises and ∀~yν ( ~Bν → X~sν) recursive premises. We require that
in µX(K0, . . . ,Kk−1) the clause K0 is “nullary”, without recursive premises.
The terms ~r are those introduced in section 6, i.e., typed terms built from
constants by abstraction and application, and (importantly) those with a
common reduct are identified.

A predicate of the form { ~x | C } is called a comprehension term. We
identify { ~x | C(~x ) }~r with C(~r ). The letter I will be used for predicates of
the form µX(K0, . . . ,Kk−1); they are called inductively defined predicates.

Remark (Substitution for predicate parameters). Let A ∈ F(~Y ); we write
A(~Y ) for A to indicate its dependence on the predicate parametes ~Y . Sim-
ilarly we write I(~Y ) for I if I ∈ Preds(~Y ). We can substitute predicates ~P

for ~Y , to obtain A(~P ) and I(~P ), respectively.

An inductively defined predicate is finitary if its clauses have recursive
premises of the form X~s only (so the ~yν and ~Bν in the general definition are
all empty).

To introduce inductively defined predicates we use

add-ids.

An example is
(add-ids (list (list "Even" (make-arity (py "nat")) "nat"))

’("Even 0" "InitEven")
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’("allnc n^(Even n^ -> Even(n^ +2))" "GenEven"))

This simultaneously introduces the inductively defined predicate constant
Even, by the clauses given. The presence of an algebra name after the
arity (here nat) indicates that this inductively defined predicate constant is
to have computational content. Then all clauses with this constant in the
conclusion must provide a constructor name (here InitEven, GenEven). We
will also allow special computationally irrelevant (c.i.) inductively defined
predicates.

An inductively defined predicate constant can only be understood from
its clauses and its elimination or least-fixed-point axiom.

Definition (Theory of Computable Functionals TCF). TCF is the system
in minimal logic for → and ∀, whose formulas are those in F above, and
whose axioms are the following. For each inductively defined predicate, there
are “closure” or introduction axioms, together with a “least-fixed-point” or
elimination axiom. In more detail, consider an inductively defined predicate
I := µX(K0, . . .Kk−1). For each of the k clauses we have an introduction
axiom, as follows. Let the i-th clause for I be

Ki(X) := ∀~x( ~A→ (∀~yν ( ~Bν → X~sν))ν<n → X~t ).

Then the corresponding introduction axiom is Ki(I), that is,

(4) ∀~x( ~A→ (∀~yν ( ~Bν → I~sν))ν<n → I~t ).

The elimination axiom is

(5) ∀~x(I~x→ (Ki(I, P ))i<k → P~x ),

where

Ki(I, P ) := ∀~x( ~A→ (∀~yν ( ~Bν → I~sν))ν<n →

(∀~yν ( ~Bν → P~sν))ν<n → P~t ).

We label each introduction axiom Ki(I) by I+
i and the elimination axiom

by I−.

As an important example we now give the inductive definition of Leibniz
equality. However, a word of warning is in order here: we need to distinguish
four separate, but closely related equalities.

(i) Firstly, defined function constants D are introduced by computation
rules, written l = r, but intended as left-to-right rewrites.

(ii) Secondly, we have Leibniz equality Eq inductively defined below.
(iii) Thirdly, pointwise equality between partial continuous functionals will

be defined inductively as well.
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(iv) Fourthly, if l and r have a finitary algebra as their type, l = r can be
read as a boolean term, where = is the decidable equality defined in 6
as a boolean-valued binary function.

Leibniz equality. We define Leibniz equality by

Eq(ρ) := µX(∀xX(xρ, xρ)).

The introduction axiom is
∀xEq(xρ, xρ)

and the elimination axiom

∀x,y(Eq(x, y)→ ∀xPxx→ Pxy),

where Eq(x, y) abbreviates Eq(ρ)(xρ, yρ).

Lemma (Compatibility of Eq). ∀x,y(Eq(x, y)→ A(x)→ A(y)).

Proof. Use the elimination axiom with Pxy := (A(x)→ A(y)). �

Using compatibility of Eq one easily proves symmetry and transitivity.
Define falsity by F := Eq(ff, tt). Then we have

Theorem (Ex-Falso-Quodlibet). For every formula A without predicate pa-
rameters we can derive F→ A.

Proof. We first show that F → Eq(xρ, yρ). To see this, one first obtains
Eq([if ff then x else y], [if ff then x else y]) from the introduction axiom,
since [if ff then x else y] is an allowed term, and then from Eq(ff, tt) one
gets Eq([if tt then x else y], [if ff then x else y]) by compatibility. Hence
Eq(xρ, yρ).

The claim can now be proved by induction on A ∈ F. Case I~s. Let
Ki be the nullary clause, with final conclusion I~t. By induction hypothesis
from F we can derive all parameter premises. Hence I~t. From F we also
obtain Eq(si, ti), by the remark above. Hence I~s by compatibility. The
cases A→ B and ∀xA are obvious. �

A crucial use of the equality predicate Eq is that it allows to lift a boolean
term rB to a formula, using atom(rB) := Eq(rB, tt). This opens up a con-
venient way to deal with equality on finitary algebras. The computation
rules ensure that for instance the boolean term Sr =N Ss or more precisely,
=N(Sr, Ss), is identified with r =N s. We can now turn this boolean term
into the formula Eq(Sr =N Ss, tt), which again is abbreviated by Sr =N Ss,
but this time with the understanding that it is a formula. Then (impor-
tantly) the two formulas Sr =N Ss and r =N s are identified because the
latter is a reduct of the first. Consequently there is no need to prove the
implication Sr =N Ss→ r =N s explicitly.
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Pointwise equality =ρ. For every constructor Ci of an algebra ι we have an
introduction axiom

∀~y,~z(~yP =~ρ ~z
P → (∀~xν (yRm+ν~xν =ι z

R
m+ν~xν))ν<n → Ci~y =ι Ci~z ).

For an arrow type ρ → σ the introduction axiom is explicit, in the sense
that it has no recursive premise:

∀x1,x2(∀y(x1y =σ x2y)→ x1 =ρ→σ x2).

For example, =N is inductively defined by
0 =N 0,

∀n1,n2(n1 =N n2 → Sn1 =N Sn2),

and the elimination axiom is
∀n1,n2(n1 =N n2 → P00→

∀n1,n2(n1 =N n2 → Pn1n2 → P (Sn1,Sn2))→
Pn1n2).

The main purpose of pointwise equality is that it allows to formulate the
extensionality axiom: we express the extensionality of our intended model
by stipulating that pointwise equality is equivalent to Leibniz equality.

Axiom (Extensionality). ∀x1,x2(x1 =ρ x2 ↔ Eq(x1, x2)).

We write E-TCF when the extensionality axioms are present. – One of
the main points of TCF is that it allows the logical connectives existence,
conjunction and disjunction to be inductively defined as predicates. This
was first discovered by Martin-Löf [15].

Existential quantifier.

Ex(Y ) := µX(∀x(Y xρ → X)).

The introduction axiom is

∀x(A→ ∃xA),

where ∃xA abbreviates Ex({xρ | A }), and the elimination axiom is

∃xA→ ∀x(A→ P )→ P.

Conjunction. We define

And(Y,Z) := µX(Y → Z → X).

The introduction axiom is

A→ B → A ∧B
where A ∧B abbreviates And({ | A }, { | B }), and the elimination axiom is

A ∧B → (A→ B → P )→ P.
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Disjunction. We define

Or(Y,Z) := µX(Y → X,Z → X).

The introduction axioms are

A→ A ∨B, B → A ∨B,

where A ∨B abbreviates Or({ | A }, { | B }), and the elimination axiom is

A ∨B → (A→ P )→ (B → P )→ P.

Remark. Alternatively, disjunction A ∨ B could be defined by the formula
∃p((p→ A)∧(¬p→ B)) with p a boolean variable. However, for an analysis
of the computational content of coinductively defined predicates it is better
to define it inductively.

We give some more familiar examples of inductively defined predicates.

The even numbers. The introduction axioms are

Even(0), ∀n(Even(n)→ Even(S(Sn)))

and the elimination axiom is

∀n(Even(n)→ P0→ ∀n(Even(n)→ Pn→ P (S(Sn)))→ Pn).

Transitive closure. Let ≺ be a binary relation. The transitive closure of ≺
is inductively defined as follows. The introduction axioms are

∀x,y(x ≺ y → TC(x, y)),

∀x,y,z(x ≺ y → TC(y, z)→ TC(x, z))

and the elimination axiom is

∀x,y(TC(x, y)→ ∀x,y(x ≺ y → Pxy)→
∀x,y,z(x ≺ y → TC(y, z)→ Pyz → Pxz)→
Pxy).

It is defined by

(add-ids
(list (list "TrCl" (make-arity (py "alpha") (py "alpha"))

"algTrCl"))
’("allnc x^,y^(R x^ y^ -> TrCl x^ y^)" "InitTrCl")
’("allnc x^,y^,z^(R x^ y^ -> TrCl y^ z^ -> TrCl x^ z^)"

"GenTrCl"))
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Accessible part. Let ≺ again be a binary relation. The accessible part of ≺
is inductively defined as follows. The introduction axioms are

∀x(F→ Acc(x)),

∀x(∀y≺xAcc(y)→ Acc(x)),

and the elimination axiom is
∀x(Acc(x)→ ∀x(F→ Px)→

∀x(∀y≺xAcc(y)→ ∀y≺xPy → Px)→
Px).

Its definition in Minlog is
(add-ids
(list (list "Acc" (make-arity (py "alpha=>alpha=>boole")

(py "alpha"))
"algAcc"))

’("allnc r^,x^(F -> Acc r^ x^)" "EfqAcc")
’("allnc r^,x^(all y^(r^ y^ x^ -> Acc r^ y^) -> Acc r^ x^)"
"GenAccSup"))

We now come to the inductively defined totality predicates. The least-
fixed-point axiom for Tι will provide us with the induction axiom. Let us
first look at some examples. We already have stated the clauses defining
totality for the algebra N:

TN0, ∀n(TNn→ TN(Sn)).

The least-fixed-point axiom is

∀n(TNn→ P0→ ∀n(TNn→ Pn→ P (Sn))→ Pn).

As an example of a finitary algebra with parameters consider L(ρ). The
clauses for the predicate TL(ρ) expressing structure-totality are

TL(ρ)(nil), ∀x,l(TL(ρ)l→ TL(ρ)(x :: l)),

with no assumptions on x. The least-fixed-point axiom is

∀l(TL(ρ)l→ P (nil)→ ∀x,l(TL(ρ)l→ Pl→ P (x :: l))→ PlL(ρ)).

Generally, for arbitrary types ρ we inductively define predicates Gρ of
totality and Tρ of structure-totality, by induction on ρ. This definition is
relative to an assignment of predicate variables Gα, Tα of arity (α) to type
variables α.

Definition. In case ι ∈ Alg(~α ) we have ι = µξ(κ0, . . . , κk−1), with κi =
~ρ→ (~σν → ξ)ν<n → ξ. Then Gι := µX(K0, . . . ,Kk−1), with

Ki := ∀~x(G~ρ~x
P → (∀~yν (G~σν~yν → X(xRν ~yν)))ν<n → X(Ci~x )).
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Similarly, Tι := µX(K ′0, . . . ,K
′
k−1), with

K ′i := ∀~x((∀~yν (T~σν~yν → X(xRν ~yν)))ν<nR → X(Ci~x )).

For arrow types the definition is explicit, that is, the clauses have no recursive
premises but parameter premises only.

Gρ→σ := µX∀f (∀x(Gρx→ Gσ(fx))→ Xf),

Tρ→σ := µX∀f (∀x(Tρx→ Tσ(fx))→ Xf).

This concludes the definition.

In the case of an algebra ι the introduction axioms for Tι are

(Tι)+i : ∀~x((∀~yν (T~σν~yν → Tι(xRν ~yν)))ν<n → Tι(Ci~x ))

and the elimination axiom is

T−ι : ∀x(Tιx→ K0(Tι, P )→ · · · → Kk−1(Tι, P )→ Px),

where
Ki(Tι, P ) := ∀~x((∀~yν (T~σν~yν → Tι(xRν ~yν)))ν<n →

(∀~yν (T~σν~yν → P (xRν ~yν)))ν<n → P (Ci~x )).

In the arrow type case, the introduction and elimination axioms are
∀x(Tρx→ Tσ(fx))→ Tρ→σf,

Tρ→σf → ∀x(Tρx→ Tσ(fx)).

(The “official” axiom Tρ→σf → (∀x(Tρx → Tσ(fx)) → P ) → P is clearly
equivalent to one stated). Abbreviating ∀x(Tx → A) by ∀x∈T A allows a
shorter formulation of these axioms:

(∀~yν∈T~σνTι(x
R
ν ~yν))ν<n → Tι(Ci~x ),

∀x∈Tι(K0(Tι, P )→ · · · → Kk−1(Tι, P )→ Px),

∀x∈TρTσ(fx)→ Tρ→σf,

∀f∈Tρ→σ ,x∈TρTσ(fx))

where

Ki(Tι, P ) := ∀~xP ∀~xR∈T~ρ((∀~yν∈T~σνP (xRν ~yν))ν<n → P (Ci~x )).

Hence the elimination axiom T−ι is the induction axiom, and the Ki(Tι, P )
are its step formulas. We write Indx,Pι or Indx,P for T−ι , and omit the indices
x, P when they are clear from the context. Examples are

Indp,P : ∀p∈T (P tt→ P ff → PpB),

Indn,P : ∀n∈T (P0→ ∀n∈T (Pn→ P (Sn))→ PnN),

Indl,P : ∀l∈T (P (nil)→ ∀x∀l∈T (Pl→ P (x :: l))→ PlL(ρ)),
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Indz,P : ∀z∈T (∀x,yP 〈xρ, yσ〉 → Pzρ×σ),

where x :: l is shorthand for cons(x, l) and 〈x, y〉 for ×+xy.
All this can be done similarly for the Gρ. A difference only occurs for

algebras with parameters: for example, list induction then is

∀l∈G(P (nil)→ ∀x,l∈G(Pl→ P (x :: l))→ PlL(ρ)).

Parallel to general recursion, one can also consider general induction,
which allows recurrence to all points “strictly below” the present one. For
applications it is best to make the necessary comparisons w.r.t. a “measure
function” µ. Then it suffices to use an initial segment of the ordinals instead
of a well-founded set. For simplicity we here restrict ourselves to the segment
given by ω, so the ordering we refer to is just the standard <-relation on
the natural numbers. The principle of general induction then is

(6) ∀µ,x∈T (ProgµxPx→ Px)

where ProgµxPx expresses “progressiveness” w.r.t. the measure function µ
and the ordering <:

ProgµxPx := ∀x∈T (∀y∈T ;µy<µxPy → Px).

It is easy to see that in our special case of the <-relation we can prove (6)
from structural induction. However, it will be convenient to use general
induction as a primitive axiom.

6. Terms and objects

6.1. Constructors and accessors. Terms are built from (typed) variables
and constants by abstraction, application, pairing, formation of left and right
components (i.e., projections) and the if-construct.

The if-construct distinguishes cases according to the outer constructor
form; the simplest example (for the type boole) is if-then-else. Here we do
not want to evaluate all arguments right away, but rather evaluate the test
argument first and depending on the result evaluate at most one of the other
arguments. This phenomenon is well known in functional languages; e.g., in
Scheme the if-construct is called a special form as opposed to an operator.
In accordance with this terminology we also call our if-construct a special
form. It will be given a special treatment in nbe-term-to-object.

Usually it will be the case that every closed term of an sfa ground type
reduces via the computation rules to a constructor term, i.e., a closed term
built from constructors only. However, we do not require this.

We have constructors, accessors and tests for variables

(make-term-in-var-form var) constructor
(term-in-var-form-to-var term) accessor,
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(term-in-var-form? term) test,

for constants

(make-term-in-const-form const) constructor
(term-in-const-form-to-const term) accessor
(term-in-const-form? term) test,

for abstractions

(make-term-in-abst-form var term) constructor
(term-in-abst-form-to-var term) accessor
(term-in-abst-form-to-kernel term) accessor
(term-in-abst-form? term) test,

for applications

(make-term-in-app-form term1 term2) constructor
(term-in-app-form-to-op term) accessor
(term-in-app-form-to-arg term) accessor
(term-in-app-form? term) test,

for pairs

(make-term-in-pair-form term1 term2) constructor
(term-in-pair-form-to-left term) accessor
(term-in-pair-form-to-right term) accessor
(term-in-pair-form? term) test,

for the left and right component of a pair

(make-term-in-lcomp-form term) constructor
(make-term-in-rcomp-form term) constructor
(term-in-lcomp-form-to-kernel term) accessor
(term-in-rcomp-form-to-kernel term) accessor
(term-in-lcomp-form? term) test
(term-in-rcomp-form? term) test

and for if-constructs

(make-term-in-if-form test alts . rest) constructor
(term-in-if-form-to-test term) accessor
(term-in-if-form-to-alts term) accessor
(term-in-if-form-to-rest term) accessor
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(term-in-if-form? term) test,

where in make-term-in-if-form, rest is either empty or an all-formula.
It is convenient to have more general application constructors and acces-

sors available, where application takes arbitrary many arguments and works
for ordinary application as well as for component formation.

(mk-term-in-app-form term term1 ...) constructor
(term-in-app-form-to-final-op term) accessor
(term-in-app-form-to-args term) accessor,

Also for abstraction it is convenient to have a more general constructor
taking arbitrary many variables to be abstracted one after the other

(mk-term-in-abst-form var1 ... term).

We also allow vector notation for recursion (cf. Joachimski and Matthes
[13]).

Moreover we need

(term? x)

(term=? term1 term2)

(terms=? terms1 terms2)

(term-to-type term)

(term-to-free term)

(term-to-bound term)

(term-to-t-deg term)

(synt-total? term)

(term-to-string term).

6.2. Normalization. We need an operation which transforms a term into
its normal form w.r.t. the given computation and rewrite rules. Here we
base our treatment on normalization by evaluation introduced in [5], and
extended to arbitrary computation and rewrite rules in [4].

For normalization by evaluation we need semantical objects. For an ar-
bitrary ground type every term family of that type is an object. For an
sfa ground type, in addition the constructors have semantical counterparts.
The freeness of the constructors is expressed by requiring that their ranges
are disjoint and that they are injective. Moreover, we view the free algebra
as a domain and require that its bottom element is not in the range of the
constructors. Hence the constructors are total and non-strict. Then by ap-
plying nbe-reflect followed by nbe-reify we can normalize every term,
where normalization refers to the computation as well as the rewrite rules.
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An object consists of a semantical value and a type.

(nbe-make-object type value) constructor
(nbe-object-to-type object) accessor
(nbe-object-to-value object) accessor
(nbe-object? x) test.

To work with objects, we need

(nbe-object-apply function-obj arg-obj)

Again it is convenient to have a more general application operation available,
which takes arbitrary many arguments and works for ordinary application
as well as for component formation. We also need an operation composing
two unary function objects.

(nbe-object-app function-obj arg-obj1 ...)

(nbe-object-compose function-obj1 function-obj2)

For ground type values we need constructors, accessors and tests. To make
constructors “self-evaluating”, a constructor value has the form

(constr-value name objs delayed-constr),

where delayed-constr is a procedure of zero arguments which evaluates to
this very same constructor. This is necessary to avoid having a cycle (for
nullary constructors, and only for those).

(nbe-make-constr-value name objs) constructor
(nbe-constr-value-to-name value) accessor
(nbe-constr-value-to-args value) accessor
(nbe-constr-value-to-constr value) accessor
(nbe-constr-value? value) test
(nbe-fam-value? value) test.

The essential function which “animates” the program constants according
to the given computation and rewrite rules is

(nbe-pconst-and-tsubst-and-rules-to-object

pconst tsubst comprules rewrules)

Using it we can the define an evaluation function, which assigns to a term
and an environment a semantical object:

(nbe-term-to-object term bindings) evaluation.

Here bindings is an association list assigning objects of the same type to
variables. In case a variable is not assigned anything in bindings, by default
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we assign the constant term family of this variable, which always is an object
of the correct type.

The interpretation of the program constants requires some auxiliary func-
tions (cf. [4]):

(nbe-constructor-pattern? term) test
(nbe-inst? constr-pattern obj) test
(nbe-genargs constr-pattern obj) generalized arguments
(nbe-extract termfam) extracts a term from a family
(nbe-match pattern term)

Then we can define

(nbe-reify object) reification
(nbe-reflect term) reflection

and by means of these

(nbe-normalize-term term) normalization,

abbreviated nt.
The if-form needs a special treatment. In particular, for a full normaliza-

tion of terms (including permutative conversions), we define a preprocessing
step that η expands the alternatives of all if-terms. The result contains
if-terms with ground type alternatives only.

6.3. Substitution. Recall the generalities on substitutions in section 2.1.
Under the conditions stated there on admissibility we define

(term-substitute term tosubst)

(term-subst term arg val)

(compose-substitutions subst1 subst2)

Display functions for substitutions are

(pp-subst topsubst)

(display-substitutions topsubst)

(substitution-to-string subst)

7. Formulas and comprehension terms

A prime formula has the form (predicate P r1 ... rn) with a pre-
dicate variable or constant P and terms r1 . . . rn. Formulas are built from
prime formulas by

(i) (imp formula1 formula2) implication
(ii) (all x formula) all quantification
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(iii) (impnc formula1 formula2) implication without computational con-
tent

(iv) (allnc x formula) all quantification without computational content
(v) (exca (x1 ...xn) formula) classical existential quantification (with

the arithmetical form of falsity F)
(vi) (excl (x1 ...xn) formula) classical existential quantification (with

the logical form of falsity ⊥).
(vii) (tensor formula1 formula2) tensor, for proper unfolding of formu-

las containing exca or excl.
We allow that quantified variables are formed without ^, i.e., range over
total objects only.

Formulas can be unfolded in the sense that the all classical existential
quantifiers are replaced according to their definition. Inversely a formula
can be folded in the sense that classical existential quantifiers are introduced
wherever possible. Notice that, since ∃̃x∃̃yA unfolds into a rather awkward
formula, we have extended the ∃̃-terminology to lists of variables:

∃̃x1,...,xnA := ∀x1,...,xn(A→ ⊥)→ ⊥.
In this context the tensor connective (written ∧̃) allows to abbreviate

∃̃x1,...,xn(A1 ∧̃ . . . ∧̃Am) := ∀x1,...,xn(A1 → · · · → Am → ⊥)→ ⊥.
This way we stay in the→,∀ part of the language. Notice that ∧̃ only makes
sense in this context, i.e., in connection with ∃̃.

Leibniz equality, the existential quantifier, conjunction and disjunction
are provided by means of inductively defined predicates. Temporarily we
still have built-in versions:

(i) (and formula1 formula2) conjunction
(ii) (ex x formula) existential quantification

(iii) (exnc x formula) existential quantification without computational
content.

Temporarily we also allow prime formulas of the form (atom r) with a
term r of type boole. They can be replaced by Leibniz equality of r with
the boolean constant True, written True eqd r.

Comprehension terms have the form (cterm vars formula). Note that
formula may contain further free variables.

Tests:

(atom-form? formula)

(predicate-form? formula)

(prime-form? formula)

(imp-form? formula)
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(and-form? formula)

(tensor-form? formula)

(all-form? formula)

(ex-form? formula)

(allnc-form? formula)

(exnc-form? formula)

(exca-form? formula)

(excl-form? formula)

and also

(quant-prime-form? formula)

(quant-free? formula).

We need constructors and accessors for prime formulas

(make-atomic-formula boolean-term)

(make-predicate-formula predicate term1 ...)

atom-form-to-kernel

predicate-form-to-predicate

predicate-form-to-args.

We also have constructors for special atomic formulas

(make-eq term1 term2) constructor for equalities
(make-= term1 term2) constructor for equalities on finalgs
(make-total term) constructor for totalities
(make-e term) constructor for existence on finalgs
truth

falsity

falsity-log.

We need constructors and accessors for implications

(make-imp premise conclusion) constructor
(imp-form-to-premise imp-formula) accessor
(imp-form-to-conclusion imp-formula) accessor,

conjunctions

(make-and formula1 formula2) constructor
(and-form-to-left and-formula) accessor
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(and-form-to-right and-formula) accessor,

tensors

(make-tensor formula1 formula2) constructor
(tensor-form-to-left tensor-formula) accessor
(tensor-form-to-right tensor-formula) accessor,

universally quantified formulas

(make-all var formula) constructor
(all-form-to-var all-formula) accessor
(all-form-to-kernel all-formula) accessor,

existentially quantified formulas

(make-ex var formula) constructor
(ex-form-to-var ex-formula) accessor
(ex-form-to-kernel ex-formula) accessor,

universally quantified formulas without computational content

(make-allnc var formula) constructor
(allnc-form-to-var allnc-formula) accessor
(allnc-form-to-kernel allnc-formula) accessor,

existentially quantified formulas without computational content

(make-exnc var formula) constructor
(exnc-form-to-var exnc-formula) accessor
(exnc-form-to-kernel exnc-formula) accessor,

existentially quantified formulas in the sense of classical arithmetic

(make-exca var formula) constructor
(exca-form-to-var exca-formula) accessor
(exca-form-to-kernel exca-formula) accessor,

existentially quantified formulas in the sense of classical logic

(make-excl var formula) constructor
(excl-form-to-var excl-formula) accessor
(excl-form-to-kernel excl-formula) accessor.

For convenience we also have as generalized constructors

(mk-imp formula formula1 ...) implication
(mk-neg formula1 ...) negation
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(mk-neg-log formula1 ...) logical negation
(mk-and formula formula1 ...) conjunction
(mk-tensor formula formula1 ...) tensor
(mk-all var1 ... formula) all-formula
(mk-ex var1 ... formula) ex-formula
(mk-allnc var1 ... formula) allnc-formula
(mk-exnc var1 ... formula) exnc-formula

(mk-exca var1 ... formula) classical ex-formula (arithmetical)

(mk-excl var1 ... formula) classical ex-formula (logical)

and as generalized accessors

(imp-form-to-premises-and-final-conclusion formula)

(tensor-form-to-parts formula)

(all-form-to-vars-and-final-kernel formula)

(ex-form-to-vars-and-final-kernel formula)

and similarly for exca-forms and excl-forms. Occasionally it is convenient
to have

(imp-form-to-premises formula <n>) all (first n) premises
(imp-form-to-final-conclusion formula <n>)

where the latter computes the final conclusion (conclusion after removing
the first n premises) of the formula.

It is also useful to have some general procedures working for arbitrary
quantified formulas. We provide

(make-quant-formula quant var1 ... kernel) constructor
(quant-form-to-quant quant-form) accessor
(quant-form-to-vars quant-form) accessor
(quant-form-to-kernel quant-form) accessor
(quant-form? x) test.

and for convenience also

(mk-quant quant var1 ... formula).

To fold and unfold formulas we have

(fold-formula formula)

(unfold-formula formula).
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To test equality of formulas up to normalization and α-equality we use

(classical-formula=? formula1 formula2)

(formula=? formula1 formula2),

where in the first procedure we unfold before comparing.
Morever we need

(formula-to-free formula),

(formula-to-bound formula),

(nbe-formula-to-type formula),

(formula-to-prime-subformulas formula),

Constructors, accessors and a test for comprehension terms are

(make-cterm var1 ... formula) constructor
(cterm-to-vars cterm) accessor
(cterm-to-formula cterm) accessor
(cterm? x) test.

Moreover we need

(cterm-to-free cterm)

(cterm=? x)

(classical-cterm=? x)

(fold-cterm cterm)

(unfold-cterm cterm).

Normalization of formulas is done with

(normalize-formula formula) normalization,

abbreviated nf.
To check equality of formulas we use

(classical-formula=? formula1 formula2)

(formula=? formula1 formula2)

where the former unfolds the classical existential quantifiers and normalizes
all subterms in its formulas.

Display functions for formulas and comprehension terms are

(pp formula)

(formula-to-string formula)

(cterm-to-string cterm).
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We can simultaneously substitute for type, object and predicate variables
in a formula or a comprehension term:

(formula-substitute formula topsubst)

(formula-subst formula arg val)

(cterm-substitute cterm topsubst)

(cterm-subst cterm arg val)

8. Assumption variables and constants

8.1. Assumption variables. Assumption variables are for proofs what
variables are for terms. The main difference, however, is that assumption
variables have formulas as types, and that formulas may contain free vari-
ables. Therefore we must be careful when substituting terms for variables in
assumption variables. Our solution (as in Matthes’ thesis [17]) is to consider
an assumption variable as a pair of a (typefree) identifier and a formula, and
to take equality of assumption variables to mean that both components are
equal. Rather than using symbols as identifiers we prefer to use numbers
(i.e., indices). However, sometimes it is useful to provide an optional string
as name for display purposes.

We need a constructor, accessors and tests for assumption variables.

(make-avar formula index name) constructor
(avar-to-formula avar) accessor
(avar-to-index avar) accessor
(avar-to-name avar) accessor
(avar? x) test
(avar=? avar1 avar2) test.

For convenience we have the function

(mk-avar formula <index> <name>)

The formula is a required argument; however, the remaining arguments are
optional. The default for the name string is u. We also require that a
function

(formula-to-new-avar formula)

is defined that returns an assumption variable of the requested formula dif-
ferent from all assumption variables that have ever been returned by any of
the specified functions so far.

An assumption constant appears in a proof, as an axiom, a theorem or
a global assumption. Its formula is given as an “uninstantiated formula”,
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where only type and predicate variables can occur freely; these are con-
sidered to be bound in the assumption constant. In the proof the bound
type variables are implicitely instantiated by types, and the bound predicate
variables by comprehension terms (the arity of a comprehension term is the
type-instantiated arity of the corresponding predicate variable). Since we
do not have type and predicate quantification in formulas, the assumption
constant contains these parts left implicit in the proof, as tpsubst.

So we have assumption constants of the following kinds:
(i) axioms,
(ii) theorems, and
(iii) global assumptions.

To normalize a proof we will first translate it into a term, then normalize
the term and finally translate the normal term back into a proof. To make
this work, in case of axioms we pass to the term appropriate formulas: all-
formulas for induction, an existential formula for existence introduction, and
an existential formula together with a conclusion for existence elimination.
During normalization of the term these formulas are passed along. When
the normal form is reached, we have to translate back into a proof. Then
these formulas are used to reconstruct the axiom in question.

Internally, the formula of an assumption constant is split into an unin-
stantiated formula where only type and predicate variables can occur freely,
and a substitution for at most these type and predicate variables. The for-
mula assumed by the constant is the result of carrying out this substitution
in the uninstantiated formula. Note that free variables may again occur in
the assumed formula. For example, assumption constants axiomatizing the
existential quantifier will internally have the form

(aconst Ex-Intro ∀x̂α(P (x̂)→ ∃x̂αP (x̂)) (α 7→ τ, P (α) 7→ { ẑτ | A }))

(aconst Ex-Elim ∃x̂αP (x̂)→ ∀x̂α(P (x̂)→ Q̂)→ Q̂

(α 7→ τ, P (α) 7→ { ẑτ | A }, Q̂ 7→ { | B }))
Interface for general assumption constants. To avoid duplication

of code it is useful to formulate some procedures generally for arbitrary
assumption constants, i.e., for all of the forms listed above.

(make-aconst name kind uninst-formula tpsubst

repro-formula1 ...) constructor
(aconst-to-name aconst) accessor
(aconst-to-kind aconst) accessor
(aconst-to-uninst-formula aconst) accessor
(aconst-to-tpsubst aconst) accessor
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(aconst-to-repro-formulas aconst) accessor
(aconst? x) test.

To construct the formula associated with an aconst, it is useful to separate
the instantiated formula from the variables to be generalized. The latter
can be obtained as free variables in inst-formula. We therefore provide

(aconst-to-inst-formula aconst)

(aconst-to-formula aconst)

We also provide

(aconst? aconst)

(aconst=? aconst1 aconst2)

(aconst-without-rules? aconst)

(aconst-to-string aconst)

8.2. Axiom constants. We use the natural numbers as a prototypical fini-
tary algebra; recall Figure 1. Assume that n, p are variables of type N, B.
Let ≈ denote the equality relation in the model. Recall the domain of
type B, consisting of tt, ff and the bottom element ⊥. The boolean valued
functions equality =nat : N → N → B and existence (definedness, totality)
enat : N→ B need to be continuous. So we have

=(0, 0) ≈ tt

=(0, Sn̂) ≈ =(Sn̂, 0) ≈ ff e(0) ≈ tt

=(Sn̂1, Sn̂2) ≈ =(n̂1, n̂2) e(Sn̂) ≈ e(n̂)

=(⊥nat, n̂) ≈ =(n̂,⊥nat) ≈ ⊥ e(⊥N) ≈ ⊥
=(∞nat, n̂) ≈ =(n̂,∞nat) ≈ ⊥ e(∞N) ≈ ⊥

Write T , F for atom(tt), atom(ff), r = s for atom(=(r, s)) and E(r) for
atom(e(r)). We require the following axioms. Notice that all these axioms
become provable if we replace ≈ by the Leibniz equality (for Eq-Ext we need
E-TCF).

T Truth-Axiom

x̂ ≈ x̂ Eq-Refl

x̂1 ≈ x̂2 → x̂2 ≈ x̂1 Eq-Symm

x̂1 ≈ x̂2 → x̂2 ≈ x̂3 → x̂1 ≈ x̂3 Eq-Trans

∀x̂(f̂1x̂ ≈ f̂2x̂)→ f̂1 ≈ f̂2 Eq-Ext

x̂1 ≈ x̂2 → P (x̂1)→ P (x̂2) Eq-Compat
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Tρ→σ(f̂)↔ ∀x̂(Tρ(x̂)→ Tσ(f̂ x̂)) Total

Tρ(c) Constr-Total

T (c~̂x )→ T (x̂i) Constr-Total-Args

and for every finitary algebra, e.g., nat

n̂1 ≈ n̂2 → E(n̂1)→ n̂1 = n̂2 Eq-to-=-1-nat

n̂1 ≈ n̂2 → E(n̂2)→ n̂1 = n̂2 Eq-to-=-2-nat

n̂1 = n̂2 → n̂1 ≈ n̂2 =-to-Eq-nat

n̂1 = n̂2 → E(n̂1) =-to-E-1-nat

n̂1 = n̂2 → E(n̂2) =-to-E-2-nat

T (n̂)→ E(n̂) Total-to-E-nat

E(n̂)→ T (n̂) E-to-Total-nat

Here c is a constructor. Notice that in T (c~̂x ) → T (x̂i), the type of (c~̂x )
need not be a finitary algebra, and hence x̂i may have a function type.

Remark. (E(n̂1)→ n̂1 = n̂2)→ (E(n̂2)→ n̂1 = n̂2)→ n̂1 ≈ n̂2 is not valid
in our intended model (see Figure 1), since we have two distinct undefined
objects ⊥nat and ∞nat.

We abbreviate

∀x̂(Tρ(x̂)→ A) by ∀xA,
∃x̂(Tρ(x̂) ∧A) by ∃xA.

Formally, these abbreviations appear as axioms

∀xP (x)→ ∀x̂(T (x̂)→ P (x̂)) All-AllPartial

∀x̂(T (x̂)→ P (x̂))→ ∀xP (x) AllPartial-All

∃xP (x)→ ∃x̂(T (x̂) ∧ P (x̂)) Ex-ExPartial

∃x̂(T (x̂) ∧ P (x̂))→ ∃xP (x) ExPartial-Ex

and for every finitary algebra, e.g., nat

∀nP (n)→ ∀n̂(E(n̂)→ P (n̂)) All-AllPartial-nat

∃n̂(E(n̂) ∧ P (n̂))→ ∃nP (n) ExPartial-Ex-nat

Notice that AllPartial-All-nat i.e., ∀n̂(E(n̂)→ P (n̂))→ ∀nP (n) is prov-
able (since E(n) 7→ T ). Similarly, Ex-ExPartial-nat, i.e., ∃nP (n) →
∃n̂(E(n̂) ∧ P (n̂)) is provable.

Finally we have axioms for the existential quantifier

∀x̂α(P (x̂)→ ∃x̂αP (x̂)) Ex-Intro
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∃x̂αP (x̂)→ ∀x̂α(P (x̂)→ Q̂)→ Q̂ Ex-Elim

The assumption constants corresponding to these axioms are

truth-aconst for Truth-Axiom

eq-refl-aconst for Eq-Refl
eq-symm-aconst for Eq-Symm
eq-trans-aconst for Eq-Trans

ext-aconst for Eq-Ext
eq-compat-aconst for Eq-Compat
total-aconst for Total

(finalg-to-eq-to-=-1-aconst finalg) for Eq-to-=-1
(finalg-to-eq-to-=-2-aconst finalg) for Eq-to-=-2
(finalg-to-=-to-eq-aconst finalg) for =-to-Eq
(finalg-to-=-to-e-1-aconst finalg) for =-to-E-1
(finalg-to-=-to-e-2-aconst finalg) for =-to-E-2
(finalg-to-total-to-e-aconst finalg) for Total-to-E
(finalg-to-e-to-total-aconst finalg) for E-to-Total

all-allpartial-aconst for All-AllPartial
allpartial-all-aconst for AllPartial-All
ex-expartial-aconst for Ex-ExPartial
expartial-ex-aconst for ExPartial-Ex

(finalg-to-all-allpartial-aconst finalg) for All-AllPartial
(finalg-to-expartial-ex-aconst finalg) for ExPartial-Ex

We now spell out what precisely we mean by induction over simultaneous
free algebras ~µ = µ~ξ ~κ, with goal formulas ∀

x
µj
j
Pj(xj). For the constructor

type
κi = ~ρ→ (~σ1 → ξj1)→ · · · → (~σn → ξjn)→ ξj ∈ KT~ξ

we have the step formula

Di := ∀
y
ρ1
1 ,...,yρmm ,y

~σ1→µj1
m+1 ,...,y

~σn→µjn
m+n

(∀~x~σ1 Pj1(ym+1~x)→ · · · →

∀~x~σn Pjn(ym+n~x)→

Pj(C
~µ
i (~y ))).
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Here ~y = yρ11 , . . . , y
ρm
m , y

~σ1→µj1
m+1 , . . . , y

~σn→µjn
m+n are the components of the ob-

ject C~µ
i (~y ) of type µj under consideration, and

∀~x~σ1 Pj1(ym+1~x), . . . ,∀~x~σn Pjn(ym+n~x)

are the hypotheses available when proving the induction step. The induction
axiom Indµj then proves the formula

Indµj : D1 → · · · → Dk → ∀xµjj Pj(xj).

We will often write Indj for Indµj .
An example is

E1 → E2 → E3 → E4 → ∀xT1 P1(x1)

with

E1 := P1(Leaf),

E2 := ∀xTs(P2(x)→ P1(Branch(x))),

E3 := P2(Empty),

E4 := ∀xT1 ,xTs
2

(P1(x1)→ P2(x2)→ P2(Tcons(x1, x2))).

Here the fact that we deal with a simultaneous induction (over tree and
tlist), and that we prove a formula of the form ∀xT . . . , can all be inferred
from what is given: the ∀xT . . . is right there, and for tlist we can look up
the simultaneously defined algebras. – The internal representation is

(aconst Ind E1 → E2 → E3 → E4 → ∀xT1 P1(x1)

(P1 7→ {xT
1 | A1 }, P2 7→ {xTs

2 | A2 }))

A simplified version (without the recursive calls) of the induction axiom
is the following cases axiom.

(aconst Cases E1 → E2 → ∀xT1 P1(x1) (P1 7→ {xT
1 | A1 }))

with

E1 := P1(Leaf),

E2 := ∀Ts
x P1(Branch(x)).

However, rather than using this as an assumption constant we will – parallel
to the if-construct for terms – use a cases-construct for proofs. This does
not change our notion of proof; it is done to have the if-construct in the
extracted programs.
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The assumption constants corresponding to these axioms are generated
by

(all-formulas-to-ind-aconst all-formula1 ...) for Ind
(all-formula-to-cases-aconst all-formula) for Cases

For the introduction and elimination axioms Ex-Intro and Ex-Elim for
the existential quantifier we provide

(ex-formula-to-ex-intro-aconst ex-formula)

(ex-formula-and-concl-to-ex-elim-aconst ex-formula concl)

and similarly for exnc instead of ex.
To deal with inductively defined predicate constants, we need additional

axioms with names “Intro” and “Elim”, which can be generated by

(number-and-idpredconst-to-intro-aconst i idpc)

(imp-formulas-to-elim-aconst imp-formula1 ...);

here an imp-formula is expected to have the form I(~x)→ A.

8.3. Theorems. A theorem is a special assumption constant. Theorems
are normally created after successfully completing an interactive proof. One
may also create a theorem from an explicitely given (closed) proof. The
command is

(add-theorem string . opt-proof) or save

From a theorem name we can access its aconst, its (original) proof and also
its instantiated proof by

(theorem-name-to-aconst string)

(theorem-name-to-proof string)

(theorem-name-to-inst-proof string)

We also provide

(remove-theorem string1 ...)

(display-theorems string1 ...)

(pp theorem-name)

Initially we provide the following theorems

atom(p)→ p = tt Atom-True

(atom(p)→ F)→ p = ff Atom-False

F→ atom(p) Efq-Atom

((atom(p)→ F)→ F)→ atom(p) Stab-Atom
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and for every finitary algebra, e.g., nat

n = n =-Refl-nat

n̂1 = n̂2 → n̂2 = n̂1 =-Symm-nat

n̂1 = n̂2 → n̂2 = n̂3 → n̂1 = n̂3 =-Trans-nat

Proof of Atom-True. By Ind. In case tt use Eq-Compat with tt ≈ =(tt, tt) to
infer atom(=(tt, tt)) (i.e., tt = tt) from atom(tt). In case ff use Eq-Compat
with ff ≈ =(ff, tt) to infer atom(=(ff, tt)) (i.e., ff = tt) from atom(ff). �

Proof of Atom-False. Use Ind, and Truth-Axiom in both cases. – Notice
that the more general (atom(p̂)→ F)→ p̂ = ff does not hold with ⊥ for p̂,
since =(⊥, ff) ≈ ⊥. �

Proof of Efq-Atom. Again by Ind. In case tt use Truth-Axiom, and the case
ff is obvious. �

Proof of Stab-Atom. By Ind. In case tt use Truth-Axiom, and the case ff is
obvious. �

Remark. Notice that from Efq-Atom one easily obtains F → A for every
formula A all whose strictly positions occurrences of prime formulas are of
the form atom(r), by induction on A. For all other formulas we shall make
use of the global assumption Efq : F→ P (cf. section 8.4). Similarly, notice
that from Stab-Atom one again obtains ((A → F) → F) → A for every
formula A all whose strictly positions occurrences of prime formulas are of
the form atom(r), by induction on A. For all other formulas we shall make
use of the global assumption Stab : ((P → F)→ F)→ P (cf. section 8.4).

Proof of =-Refl-nat. Use Ind, and Truth-Axiom in both cases. – Notice
that n̂ = n̂ does not hold, since =(⊥,⊥) ≈ ⊥. �

Here are some other examples of theorems; we give the internal repre-
sentation as assumption constants, which show how the assumed formula is
split into an uninstantiated formula and a substitution, in this case a type
substitution α 7→ ρ, an object substitution fα→N 7→ gρ→N and a predicate
variable substitution P (α) 7→ { ẑρ | A }.
(aconst Cvind-with-measure-11

∀α→N
f (∀xα(∀y(f(y)<f(x)→ P (y))→ P (x))→ ∀xP (x))

(α 7→ ρ, fα→N 7→ gρ→N, P (α) 7→ { ẑρ | A })).
(aconst Minpr-with-measure-l11

∀fα→N(∃̃xαP (x)→ ∃̃x(P (x) ∧̃ ∀y(f(y)<f(x)→ P (y)→ ⊥)))

(α 7→ ρ, fα→N 7→ gρ→N, P (α) 7→ { ẑρ | A })).
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Here ∃̃ is the classical existential quantifier defined by ∃̃xA := ∀x(A→ ⊥)→
⊥ with the logical form of falsity ⊥ (as opposed to the arithmetical form
F). l indicates “logic” (we have used the logical form of falsity), the first
1 that we have one predicate variable P , and the second that we quantify
over just one variable x. Both theorems can easily be generalized to more
such parameters.

When dealing with classical logic it will be useful to have

(P → P1)→ ((P → ⊥)→ P1)→ P1 Cases-Log

The proof uses the global assumption Stab-Log (see below) for P1; hence
we cannot extract a term from it.

The assumption constants corresponding to these theorems are generated
by

(theorem-name-to-aconst name)

8.4. Global assumptions. A global assumption is a special assumption
constant. It provides a proposition whose proof does not concern us pre-
sently. Global assumptions are added, removed and displayed by

(add-global-assumption name formula) (abbreviated aga)
(remove-global-assumption string1 ...)

(display-global-assumptions string1 ...)

We initially supply global assumptions for ex-falso-quodlibet and stability,
both in logical and arithmetical form (for our two forms of falsity).

⊥ → P Efq-Log

((P → ⊥)→ ⊥)→ P Stab-Log

F→ P Efq

((P → F)→ F)→ P Stab

The assumption constants corresponding to these global assumptions are
generated by

(global-assumption-name-to-aconst name)

9. Proofs

Proofs are built from assumption variables and assumption constants (i.e.,
axioms, theorems and global assumption) by the usual rules of natural de-
duction, i.e., introduction and elimination rules for implication, conjunction
and universal quantification. From a proof we can read off its context , which
is an ordered list of object and assumption variables.
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9.1. Constructors and accessors. We have constructors, accessors and
tests for assumption variables

(make-proof-in-avar-form avar) constructor
(proof-in-avar-form-to-avar proof) accessor,
(proof-in-avar-form? proof) test,

for assumption constants

(make-proof-in-aconst-form aconst) constructor
(proof-in-aconst-form-to-aconst proof) accessor
(proof-in-aconst-form? proof) test,

for implication introduction

(make-proof-in-imp-intro-form avar proof) constructor
(proof-in-imp-intro-form-to-avar proof) accessor
(proof-in-imp-intro-form-to-kernel proof) accessor
(proof-in-imp-intro-form? proof) test,

for implication elimination

(make-proof-in-imp-elim-form proof1 proof2) constructor
(proof-in-imp-elim-form-to-op proof) accessor
(proof-in-imp-elim-form-to-arg proof) accessor
(proof-in-imp-elim-form? proof) test,

for and introduction

(make-proof-in-and-intro-form proof1 proof2) constructor
(proof-in-and-intro-form-to-left proof) accessor
(proof-in-and-intro-form-to-right proof) accessor
(proof-in-and-intro-form? proof) test,

for and elimination

(make-proof-in-and-elim-left-form proof) constructor
(make-proof-in-and-elim-right-form proof) constructor
(proof-in-and-elim-left-form-to-kernel proof) accessor
(proof-in-and-elim-right-form-to-kernel proof) accessor
(proof-in-and-elim-left-form? proof) test
(proof-in-and-elim-right-form? proof) test,
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for all introduction

(make-proof-in-all-intro-form var proof) constructor
(proof-in-all-intro-form-to-var proof) accessor
(proof-in-all-intro-form-to-kernel proof) accessor
(proof-in-all-intro-form? proof) test,

for all elimination

(make-proof-in-all-elim-form proof term) constructor
(proof-in-all-elim-form-to-op proof) accessor
(proof-in-all-elim-form-to-arg proof) accessor
(proof-in-all-elim-form? proof) test

and for cases-constructs

(make-proof-in-cases-form test alt1 ...) constructor
(proof-in-cases-form-to-test proof) accessor
(proof-in-cases-form-to-alts proof) accessor
(proof-in-cases-form-to-rest proof) accessor
(proof-in-cases-form? proof) test.

It is convenient to have more general introduction and elimination operators
that take arbitrary many arguments. The former works for implication-
introduction and all-introduction, and the latter for implication-elimination,
and-elimination and all-elimination.

(mk-proof-in-intro-form x1 ... proof)

(mk-proof-in-elim-form proof arg1 ...)

(proof-in-intro-form-to-kernel-and-vars proof)

(proof-in-elim-form-to-final-op proof)

(proof-in-elim-form-to-args proof).

(mk-proof-in-intro-form x1 ... proof) is formed from proof by first
abstracting x1, then x2 and so on. Here x1, x2 . . . can be assumption or
object variables. We also provide

(mk-proof-in-and-intro-form proof proof1 ...)

In our setup there are axioms rather than rules for the existential quan-
tifier. However, sometimes it is useful to construct proofs as if an existence
introduction rule would be present; internally then an existence introduction
axiom is used.

(make-proof-in-ex-intro-form term ex-formula proof-of-inst)



62 HELMUT SCHWICHTENBERG

(mk-proof-in-ex-intro-form .

terms-and-ex-formula-and-proof-of-inst)

Moreover we need

(proof? x)

(proof=? proof1 proof2)

(proofs=? proofs1 proofs2)

(proof-to-formula proof)

(proof-to-context proof)

(proof-to-free proof)

(proof-to-free-avars proof)

(proof-to-bound-avars proof)

(proof-to-free-and-bound-avars proof)

(proof-to-aconsts-without-rules proof).

(proof-to-aconsts proof).

To work with contexts we need

(context-to-vars context)

(context-to-avars context)

(context=? context1 context2).

9.2. Decorating proofs. In this section we are interested in “fine-tuning”
the computational content of proofs, by inserting decorations. Here is an
example (due to Constable) of why this is of interest. Suppose that in a
proof M of a formula C we have made use of a case distinction based on
an auxiliary lemma stating a disjunction, say L : A ∨ B. Then the extract
et(M) will contain the extract et(L) of the proof of the auxiliary lemma,
which may be large. Now suppose further that in the proof M of C, the
only computationally relevant use of the lemma was which one of the two
alternatives holds true, A or B. We can express this fact by using a weakened
form of the lemma instead: L′ : A∨uB. Since the extract et(L′) is a boolean,
the extract of the modified proof has been “purified” in the sense that the
(possibly large) extract et(L) has disappeared.

We consider the question of “optimal” decorations of proofs: suppose we
are given an undecorated proof, and a decoration of its end formula. The
task then is to find a decoration of the whole proof (including a further
decoration of its end formula) in such a way that any other decoration
“extends” this one. Here “extends” just means that some connectives have
been changed into their more informative versions, disregarding polarities.
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We show that such an optimal decoration exists, and give an algorithm to
construct it.

We denote the sequent of a proof M by Seq(M); it consists of its context
and end formula.

The proof pattern P(M) of a proof M is the result of marking in c.r.
formulas of M (i.e., those not above a c.i. formula) all occurrences of impli-
cations and universal quantifiers as non-computational, except the “unin-
stantiated” formulas of axioms and theorems. For instance, the induction
axiom for N consists of the uninstantiated formula ∀cn(P0 →c ∀cn(Pn →c

P (Sn))→c PnN) with a unary predicate variable P and a predicate substi-
tution P 7→ {x | A(x) }. Notice that a proof pattern in most cases is not a
correct proof, because at axioms formulas may not fit.

We say that a formula D extends C if D is obtained from C by changing
some (possibly zero) of its occurrences of non-computational implications
and universal quantifiers into their computational variants →c and ∀c.

A proof N extends M if (i) N and M are the same up to variants of
implications and universal quantifiers in their formulas, and (ii) every c.r.
formula of M is extended by the corresponding one in N . Every proof M
whose proof pattern P(M) is U is called a decoration of U .

Notice that if a proof N extends another one M , then FV(et(N)) is
essentially (that is, up to extensions of assumption formulas) a superset of
FV(et(M)). This can be proven by induction on N .

We assume that every axiom has the property that for every extension of
its formula we can find a further extension which is an instance of an axiom,
and which is the least one under all further extensions that are instances
of axioms. This property clearly holds for axioms whose uninstantiated
formula only has the decorated→c and ∀c, for instance induction. However,
in ∀cn(A(0) →c ∀cn(A(n) →c A(Sn)) →c A(nN)) the given extension of the
four A’s might be different. One needs to pick their “least upper bound” as
further extension. To make this assumption true for the other (introduction
and elimination) axioms we simply add all their extensions as axioms, if
necessary.

One can define a decoration algorithm [20], assigning to every proof pat-
tern U and every extension of its sequent an “optimal” decoration M∞ of
U , which further extends the given extension of its sequent.

Theorem. Under the assumption above, for every proof pattern U and every
extension of its sequent Seq(U) we can find a decoration M∞ of U such that
(a) Seq(M∞) extends the given extension of Seq(U), and
(b) M∞ is optimal in the sense that any other decoration M of U whose

sequent Seq(M) extends the given extension of Seq(U) has the property
that M also extends M∞.
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The main function for decorating is

decorate proof . opt-decfla-and-name-and-altname

The default case for opt-decfla is the formula of the proof. If opt-decfla
is present, it must be a decoration variant of the formula of the proof. If the
optional argument name-and-altname is present, then in every recursive
call it is checked whether (1) the present proof is an application of the
assumption constant op with name to some args, (2) op applied to args
proves an extension of decfla, and (3) altop applied to args and some of
decavars is between op applied to args and decfla w.r.t. extension. If so,
a proof based on altop is returned, else one carries on.

An important auxiliary function is proof-to-ppat. used to transform a
proof into its proof pattern. It turns every →, ∀ formula in the given proof
into an →nc, ∀nc formula, including the parts of an assumption constant
which come from its uninstatiated formula. It does not touch the c.i. parts
of the proof, i.e., those which are above a c.i. formula. Recall that the proof
pattern ppat is in general not a proof.

9.3. Normalization. Normalization of proofs will be done by reduction
to normalization of terms. (1) Construct a term from the proof. To do
this properly, create for every free avar in the given proof a new variable
whose type comes from the formula of the avar; store this information. Note
that in this construction one also has to create new variables for the bound
avars. Similary to avars we have to treat assumption constants which are not
axioms, i.e., theorems or global assumptions. (2) Normalize the resulting
term. (3) Reconstruct a normal proof from this term, the end formula
and the stored information. – The critical variables are carried along for
efficiency reasons.

To assign recursion constants to induction constants, we need to associate
type variables with predicate variables, in such a way that we can later refer
to this assignment. Therefore we carry along a procedure pvar-to-tvar
which remembers the assignment done so far (cf. make-rename).

Due to our distinction between general variables x^0, x^1, x^2, . . . and
variables x0, x1, x2, . . . intended to range over total objects only, η-conversion
of proofs cannot be done via reduction to η-conversion of terms. To see this,
consider the proof

∀x̂Px̂ x
Px
∀xPx

∀x̂Px̂→ ∀xPx
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The proof term is λuλx(ux). If we η-normalize this to λuu, the proven for-
mula would be all ∀x̂Px̂→ ∀x̂Px̂. Therefore we split nbe-normalize-proof
into nbe-normalize-proof-without-eta and proof-to-eta-nf.

Moreover, for a full normalization of proofs (including permutative con-
versions) we need a preprocessing step that η-expands each ex-elim axiom
such that the conclusion is atomic or existential.

We need the following functions.

(proof-and-genavar-var-alist-to-pterm pvar-to-tvar proof)

(npterm-and-var-genavar-alist-and-formula-to-proof

npterm var-genavar-alist crit formula)

(elim-npterm-and-var-genavar-alist-to-proof

npterm var-genavar-alist crit).

Then we can define nbe-normalize-proof, abbreviated np.

9.4. Substitution. In a proof we can substitute
(i) types for type variables (by a type variable substitution tsubst),
(ii) terms for variables (by a substitution subst),
(iii) comprehension terms for predicate variables (by a predicate variable

substitution psubst), and
(iv) proofs for assumption variables (by a assumption variable substitution

asubst).
All these substitutions can be packed together, as an argument topasubst
for proof-substitute. It is assumed that topasubst is admissible, in the
sense of section 2.1.

(proof-substitute proof topasubst)

If we want to substitute for a single variable only (which can be a type-, an
object-, a predicate- or an assumption-variable), then we can use

(proof-subst proof arg val)

The procedure expand-theorems expects a proof and a test whether a
string denotes a theorem to be replaced by its proof. The result is the
(normally quite long) proof obtained by replacing the theorems by their
saved proofs.

(expand-theorems proof name-test?)

9.5. Display. There are many ways to display a proof. We normally use
display-proof for a linear representation, showing the formulas and the
rules used. When we in addition want to check the correctness of the
proof, we can use check-and-display-proof, abbreviated cdp. We also
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provide a readable type-free lambda expression via proof-to-expr, and
can add useful information with one of proof-to-expr-with-formulas,
proof-to-expr-with-aconsts.

To display proofs we use the following functions. In case the optional
proof argument is not present, the current proof of an interactive proof
development is taken instead.

(display-proof . opt-proof) abbreviated dp

(check-and-display-proof . opt-proof) abbreviated cdp

(proof-to-expr . opt-proof)

(proof-to-expr-with-formulas . opt-proof)

(proof-to-expr-with-aconsts . opt-proof)

(display-pterm . opt-proof) abbreviated dpt

(display-proof-expr . opt-proof) abbreviated dpe

We also provide versions which normalize the proof first:

(display-normalized-proof . opt-proof) abbreviated dnp

(display-normalized-pterm . opt-proof) abbreviated dnpt

(display-normalized-proof-expr . opt-proof) abbreviated dnpe

9.6. Classical logic. (proof-of-stab-at formula) generates a proof of
((A → F) → F) → A. For F, T one takes the obvious proof, and for other
atomic formulas the proof using cases on booleans. For all other prime or
existential formulas one takes an instance of the global assumption Stab:
((P → F) → F) → P . Here the argument formula must be unfolded. For
the logical form of falsity we take (proof-of-stab-log-at formula), and
similary for ex-falso-quodlibet we provide

(proof-of-efq-at formula)

(proof-of-efq-log-at formula)

Using these functions we can then define (reduce-efq-and-stab proof),
which reduces all instances of stability and ex-falso-quodlibet axioms in a
proof to instances of these global assumptions with prime or existential
formulas, or (if possible) replaces them by their proofs.

With rm-exc we can transform a proof involving classical existential quan-
tifiers in another one without, i.e., in minimal logic. The Exc-Intro and
Exc-Elim theorems are replaced by their proofs, using expand-theorems.

10. Interactive theorem proving with partial proofs

A partial proof is a proof with holes, i.e., special assumption variables
(called goal variables) v, v1, v2 . . . whose formulas must be closed. We
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assume that every goal variable v has a single occurrence in the proof. We
then select a (not necessarily maximal) subproof vx1...xn with distinct
object or assumption variables x1...xn. Such a subproof is called a goal .
When interactively developing a partial proof, a goal vx1...xn is replaced
by another partial proof, whose context is a subset of x1...xn (i.e., the
context of the goal with v removed).

To gain some flexibility when working on our goals, we do not at each
step of an interactive proof development traverse the partial proof searching
for the remaining goals, but rather keep a list of all open goals together with
their numbers as we go along. We maintain a global variable PPROOF-STATE
containing a list of three elements: (1) num-goals, an alist of entries (number
goal drop-info hypname-info), (2) proof and (3) maxgoal, the maximal
goal number used.

At each stage of an interactive proof development we have access to the
current proof and the current goal by executing

(current-proof)

(current-goal)

For interactively building proofs we need

(goal-to-goalvar goal)

(goal-to-context goal)

(goal-to-formula goal)

(goal=? proof goal)

(goal-subst proof goal proof1)

(pproof-state-to-num-goals)

(pproof-state-to-proof)

(pproof-state-to-formula)

(display-current-goal)

(display-current-goal-with-normalized-formulas)

(display-current-pproof-state)

We list some commands for interactively building proofs.

10.1. set-goal. An interactive proof starts with (set-goal formula), i.e.,
with setting a goal. Here formula should be closed; if it is not, universal
quantifiers are inserted automatically.

10.2. normalize-goal. (normalize-goal . ng-info) (short: ng) takes
optional arguments ng-info. If there are none, the goal formula and all
hypotheses are normalized. Otherwise exactly those among the hypotheses



68 HELMUT SCHWICHTENBERG

and the goal formula are normalized whose numbers (or names, or just #t
for the goal formula) are listed as additional arguments.

10.3. assume. With (assume x1 ...) we can move universally quantified
variables and hypotheses into the context. The variables must be given
names (known to the parser as valid variable names for the given type), and
the hypotheses should be identified by numbers or strings.

10.4. use. In (use x . elab-path-and-terms), x is one of the following.
(i) A number or string identifying a hypothesis form the context.
(ii) A formula with free variables from the context, generating a new goal.
(iii) The name of a theorem or global assumption.
(iv) A closed proof.

It is checked whether some final part of this used formula has the form of (or
“matches”) the goal, where if (i) x determines a hypothesis or is the formula
for a new goal, then all its free topvars are rigid, and if (ii) x determines a
closed proof, then all its (implicitely generalized) tpvars are flexible, except
the predicate variable ⊥ (written bot) from falsity-log. elab-path-and-
terms is a list consisting of symbols left or right, giving directions in case
the used formula contains conjunctions, and of terms/cterms to be substi-
tuted for the variables that cannot be instantiated by matching. Matching is
done for type and object variables first (via match), and in case this fails with
huet-match next. There is a similar (use2 x . elab-path-and-terms),
which only applies huet-match.

10.5. use-with. This is a more verbose form of use, where the terms are
not inferred via unification, but have to be given explicitely. Also, for the
instantiated premises one can indicate how they are to come about. So in
(use-with x . x-list), x is one of the following.

(i) A number or string identifying a hypothesis form the context.
(ii) The name of a theorem or global assumption. If it is a global assump-

tion whose final conclusion is a nullary predicate variable distinct from
bot (e.g. Efq-Log or Stab-Log), this predicate variable is substituted
by the goal formula.

(iii) A closed proof.
(iv) A formula with free variables from the context, generating a new goal.

Moreover x-list is a list consisting of
(i) a number or string identifying a hypothesis form the context,
(ii) the name of a theorem or global assumption,
(iii) a closed proof,
(iv) the string “?” (value of DEFAULT-GOAL-NAME), generating a new goal,
(v) a symbol left or right,
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(vi) a term, whose free variables are added to the context,
(vii) a type, which is substituted for the first type variable,
(viii) a comprehension term, which is substituted for the first predicate vari-

able.
Notice that new free variables not in the ordered context can be intro-

duced in use-with. They will be present in the newly generated goals. The
reason is that proofs should be allowed to contain free variables. This is
necessary to allow logic in ground types where no constant is available (e.g
to prove ∀xPx→ ∀x¬Px→ ⊥).

Notice also that there are situations where use-with can be applied but use
can not. For an example, consider the goal P (S(k+ l)) with the hypothesis
∀lP (k + l) in the context. Then use cannot find the term Sl by matching;
however, applying use-with to the hyposthesis and the term Sl succeeds
(since k + Sl and S(k + l) have the same normal form).

10.6. inst-with. inst-with does for forward chaining the same as use-with
for backward chaining. It replaces the present goal by a new one, with one
additional hypothesis obtained by instantiating a previous one. Notice that
this effect could also be obtained by cut. In (inst-with x . x-list), x
is

(i) a number or string identifying a hypothesis form the context,
(ii) the name of a theorem or global assumption,

(iii) a closed proof,
(iv) a formula with free variables from the context, generating a new goal.
and x-list is a list consisting of

(i) a number or string identifying a hypothesis form the context,
(ii) the name of a theorem or global assumption,

(iii) a closed proof,
(iv) the string “?” (value of DEFAULT-GOAL-NAME), generating a new goal,
(v) a symbol left or right,

(vi) a term, whose free variables are added to the context,
(vii) a type, which is substituted for the first type variable,
(viii) a comprehension term, which is substituted for the first predicate vari-

able.

10.7. inst-with-to. inst-with-to expects a string as its last argument,
which is used (via name-hyp) to name the newly introduced instantiated
hypothesis.

10.8. cut. The command (cut A) replaces the goal B by the two new goals
A and A→ B, with A→ B to be proved first.
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10.9. assert. The command (assert A) replaces the goal B by the two
new goals A and A→ B, with A to be proved first.

10.10. strip. To move (all or n) universally quantified variables and hy-
potheses of the current goal into the context, we use the command (strip)
or (strip n).

10.11. drop. In (drop . x-list), x-list is a list of numbers or strings iden-
tifying hypotheses from the context. A new goal is created, which differs
from the previous one only in display aspects: the listed hypotheses are
hidden (but still present). If x-list is empty, all hypotheses are hidden.

10.12. name-hyp. The command name-hyp expects an index i and a string.
Then a new goal is created, which differs from the previous one only in
display aspects: the string is used to label the ith hypothesis.

10.13. split, msplit. The command (split) expects as goal a conjunction
A ∧ B or an AndConst-atom, and splits it into two new goals A and B.
We allow multiple split (msplit) over a conjunctive formula (all conjuncts
connected through & which are at the same level are split at once).

10.14. get. To be able to work on a goal different from that on top of the
goal stack, we have have to move it up using (get n).

10.15. undo. With (undo . n), the last n steps of an interactive proof can
be made undone. (undo) has the same effect as (undo 1).

10.16. ind. (ind) expects a goal ∀xιA(x) with x total and ι an algebra, or a
goal ∀x̂ι(STotal x̂→ A(x̂)) with x̂ partial. Let c1, . . . , cn be the constructors
of the algebra. In the first case, n new goals ∀~xi(A(x1i) → · · · → A(xki) →
A(ci~xi) are generated. In the second case, for every non-parameter variable
x̂ji the new goal has an additional assumption STotal x̂ji.

(ind t) expects a goal A(t). It computes the algebra ι as type of the
term t. Then again the n new goals above are generated. If t is partial,
another new goal STotal t is generated.

10.17. simind. (simind all-formula1 ...) expects a goal ∀xιA(x) with
x total and ι an algebra, or ∀x̂ι(STotal x̂→ A(x̂)) with x̂ partial. We have
to provide as arguments the other all-formulas to be proved simultaneously
with the goal.

10.18. gind. (gind h) expects a goal ∀~xA(~x ) with ~x total. It generates a
new goal Progh{ ~x | A(~x ) } where h is a term of type ~ρ→ N, xi has type ρi
and Progh{ ~x | A(~x ) } := ∀~x(∀~y(h~y < h~x→ A(~y ))→ A(~x )).

(gind h t1 ...tn) expects a goal A(~t ) and generates the same goal as
for (gind h) with the formula ∀~xA(x).
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10.19. intro. (intro i . terms) expects as goal an inductively defined
predicate. The i-th introduction axiom for this predicate is applied, via use
(hence terms may have to be provided). (intro-with i . x-list) does
the same, via use-with.

10.20. elim. Recall that I~r provides (i) a type substitution, (ii) a predicate
instantiation, and (iii) the list ~r of argument terms. In (elim idhyp) idhyp
is, with an inductively defined predicate I,

(i) a number or string identifying a hypothesis I~r form the context
(ii) the name of a global assumption or theorem I~r;

(iii) a closed proof of a formula I~r;
(iv) a formula I~r with free variables from the context, generating a new

goal.
Then the (strengthened) elimination axiom is used with ~r for ~x and idhyp
for I~r to prove the goal A(~r ), leaving the instantiated (with { ~x | A(~x ) })
clauses as new goals.

(elim) expects a goal I~r → A(~r ). Then the (strengthened) clauses are
generated as new goals, via use-with.

In case of simultaneously inductively defined predicate constants we can
provide other imp-formulas to be proved simultaneously with the given one.
Then the (strengthened) simplified clauses are generated as new goals.

10.21. inversion, simplified-inversion. (inversion x . imp-formulas)
assumes that x is one of the following.

(i) A number or string identifying a hypothesis I~r form the context.
(ii) The name of a theorem or global assumption stating I~r.

(iii) A closed proof of I~r.
(iv) A formula I~r with free vars from the context, generating a new goal.
imp-formulas have the form J~s → B. Here I, J are inductively defined
predicates, with clauses K1, . . . ,Kn. Now one uses the elim-aconst for I~x→
~x = ~r → A with A the goal formula and the additional implications J~y →
~y = ~s→ B, with “?” for the clauses, ~r for ~x and proofs for ~r = ~r, to obtain
the goal. Then many of the generated goals for the clauses will contain
false premises, coming from substituted equations ~x = ~r, and are proved
automatically.

imp-formulas not provided are taken as J~x→ J~x. Generated clauses for
such J are proved automatically from the intro axioms (the rec-prems are
not needed).

For simultaneous inductively defined predicates (simplified-inversion
x . imp-formulas) does not add imp-formulas J~x→ J~x to form the elim-
aconst. Then the (new) imp-formulas-to-uninst-elim-formulas-etc
generates simplified clauses. In some special cases this suffices.
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10.22. ex-intro. In (ex-intro term), the user provides a term to be used
for the present (existential) goal. (exnc-intro x) works similarly for the
exnc-quantifier.

10.23. ex-elim. In (ex-elim x), x is
(i) a number or string identifying an existential hypothesis from the con-

text,
(ii) the name of an existential global assumption or theorem,
(iii) a closed proof on an existential formula,
(iv) an existential formula with free variables from the context, generating

a new goal.
Let ∃yA be the existential formula identified by x. The user is then asked
to provide a proof for the present goal, assuming that a y satisfying A is
available. (exnc-elim x) works similarly for the exnc-quantifier.

10.24. by-assume-with. Suppose we are proving a goal G from an exis-
tential hypothesis ExHyp : ∃yA. Then the natural way to use this hypothesis
is to say “by ExHyp assume we have a y satisfying A”. Correspondingly
we provide (by-assume-with x y u). Here x – as in ex-elim – identi-
fies an existential hypothesis, and we assume (i.e., add to the context) the
variable y and – with label u – the kernel A. (by-assume-with x y u)
is implemented by the sequence (ex-elim x), (assume y u), (drop x).
by-exnc-assume-with works similarly for the exnc-quantifier.

10.25. cases. (cases) expects a goal ∀xιA(x) with x total and ι an alge-
bra, or a goal ∀x̂ι(STotal x̂ → A(x̂)) with x̂ partial. Let c1, . . . , cn be the
constructors of the algebra. In the first case, n new goals ∀~xiA(ci~xi) are
generated. In the second case, for every non-parameter variable x̂ji the new
goal has an additional assumption STotal x̂ji.

(cases t) expects a goalA(t). If t is a total boolean term, the goalA(t) is
replaced by the two new goals atom(t)→ A(tt) and (atom(t)→ F)→ A(ff),
and if t is not total also STotal t. If t is a total non-boolean term, cases
is called with the all-formula ∀x(x = t→ A(x)), and if t is a non-total non-
boolean term, cases is called with the all-formula ∀x̂(STotal x̂→ x̂ = t→
A(x)).

(cases ’auto) expects an atomic goal and checks whether its boolean
kernel contains an if-term whose test is neither an if-term nor contains bound
variables. With the first such test (cases test) is called.

10.26. casedist. (casedist t) replaces the goal A containing a boolean
term t by two new goals atom(t) → A(tt) and (atom(t) → F) → A(ff), and
if t is not total also STotal t.
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10.27. simp. In (simp opt-dir x . elab-path-and-terms), the optional
argument opt-dir is either the string “<-” or missing. x is

(i) a number or string identifying a hypothesis form the context,
(ii) the name of a theorem or global assumption,
(iii) a closed proof,
(iv) a formula with free variables from the context, generating a new goal.

The optional elab-path-and-terms is a list consisting of symbols left or
right, giving directions in case the used formula contains conjunctions, and
of terms. The universal quantifiers of the used formula are instantiated
with appropriate terms to match a part of the goal. The terms provided are
substituted for those variables that cannot be inferred. For the instantiated
premises new goals are created. This generates a used formula, which is to
be an atom, a negated atom or t ≈ s. If it as a (negated) atom, it is checked
whether the kernel or its normal form is present in the goal. If so, it is
replaced by T (or F). If it is an equality t = s or t ≈ s with t or its normal
form present in the goal, t is replaced by s. In case “<-” exchange t and s.

10.28. simp-with. This is a more verbose form of simp, where the terms
are not inferred via matching, but have to be given explicitely. Also, for
the instantiated premises one can indicate how they are to come about. So
in (simp-with opt-dir x . x-list), opt-dir and x are as in simp, and
x-list is a list consisting of

(i) a number or string identifying a hypothesis form the context,
(ii) the name of a theorem or global assumption,

(iii) a closed proof,
(iv) the string “?” (value of DEFAULT-GOAL-NAME), generating a new goal,
(v) a symbol left or right,

(vi) a term, whose free variables are added to the context,
(vii) a type, which is substituted for the first type variable,
(viii) a comprehension term, which is substituted for the first predicate vari-

able.

10.29. simphyp-with. simphyp-with does for forward chaining the same
as simp-with for backward chaining. It replaces the present goal by a
new one, with one additional hypothesis obtained by simplifying a previous
one. Notice that this effect could also be obtained by cut or assert. In
(simphyp-with opt-dir hyp . x-list), hyp is one of the following.

(i) A number or string identifying a hypothesis form the context.
(ii) The name of a theorem or global assumption, but not one whose final

conclusion is a predicate variable.
(iii) A closed proof.
(iv) A formula with free variables from the context, generating a new goal.
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x-list is a list consisting of
(i) a number or string identifying a hypothesis form the context,
(ii) the name of a theorem or global assumption,
(iii) a closed proof,
(iv) the string “?” (value of DEFAULT-GOAL-NAME), generating a new goal,
(v) a symbol left or right,
(vi) a term, whose free variables are added to the context,

(vii) a type, which is substituted for the first type variable,
(viii) a comprehension term, which is substituted for the first predicate vari-

able.
This generates a used formula, which is to be an atom, a negated atom or
t ≈ s. If it as a (negated) atom, it is checked whether the kernel or its
normal form is present in the goal. If so, it is replaced by T (or F). If it is
an equality t = s or t ≈ s with t or its normal form present in the goal, t is
replaced by s. In case “<-” exchange t and s.

10.30. simphyp-with-to. simp-with-to expects a string as its last argu-
ment, which is used (via name-hyp) to name the newly introduced simplified
hypothesis.

10.31. min-pr. In (min-pr x measure), x is
(i) a number or string identifying a classical existential hypothesis from

the context,
(ii) the name of a classical existential global assumption or theorem,
(iii) a closed proof on a classical existential formula,
(iv) a classical existential formula with free variables from the context,

generating a new goal.
The result is a new implicational goal, whose premise provides the (classical)
existence of instances with least measure.

We also provide exc-formula-to-min-pr-proof. It computes first a
gind-aconst (an axiom or a theorem) and from this a proof of the minimum
principle.

10.32. by-assume-minimal-with. For convenience in classical arguments
there is (by-assume-minimal-with exc-hyp . rest) where rest may be
called varnames-and-measure-and-minhyp-and-hyps. It is meant for the fol-
lowing situation. Suppose we are proving a goal G from a classical existential
hypothesis ∃̃~x ~A. Then by the minimum principle we can assume that we
have ~x which are minimal w.r.t. a measure h such that ~A are satisfied.

We also provide make-gind-aconst. It takes a positive integer n and re-
turns an assumption constant for general induction w.r.t. a measure function
of type α1 → . . .→ αn → N.
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Finally we provide make-min-pr-aconst. It takes positive integers m,n
and returns an assumption constant for the minimum principle w.r.t. a mea-
sure function of type α1 → . . .→ αn → N.

10.33. exc-intro. In (exc-intro terms), the user provides terms to be
used for the present (classical existential) goal. Moreover we also provide
make-exc-intro-aconst and exc-formula-to-exc-intro-aconst

10.34. exc-elim. In (exc-elim x), x is
(i) a number or string identifying a classical existential hypothesis from

the context,
(ii) the name of a classical existential global assumption or theorem,
(iii) a closed proof on a classical existential formula,
(iv) a classical existential formula with free variables from the context,

generating a new goal.

Let ∃̃~y ~A be the classical existential formula identified by x. The user is
then asked to provide a proof for the present goal, assuming that terms ~y
satisfying ~A are available. Moreover we also provide make-exc-elim-aconst
and exc-formula-to-exc-elim-aconst.

10.35. pair-elim. In (pair-elim), a goal ∀pP (p) is replaced by the new
goal ∀x1,x2P (〈x1, x2〉).

10.36. admit. (admit) temporarily accepts the present goal, by turning it
into a global assumption.

11. Unification and proof search

We describe a proof search method suitable for minimal logic with higher
order functionals. It is based on Huet’s [12] unification algorithm for the
simply typed lambda calculus.

Huet’s unification algorithm does not terminate in general; this must be
the case, since it is well known that higher order unification is undecidable.
However, non-termination can be avoided if we restrict ourselves to a certain
fragment of higher order (simply typed) minimal logic. This fragment is
determined by requiring that every higher order variable Y can only occur
in a context Y ~x, where ~x are distinct bound variables in the scope of the
operator binding Y , and of opposite polarity. Note that for first order logic
this restriction does not mean anything, since there are no higher order
variables. However, when designing a proof search algorithm for first order
logic only, one is naturally led into this fragment of higher order logic, where
the algorithm works as well.
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In this section we only present the algorithms and state their proper-
ties. Proofs can be found in the accompanying document “A Theory of
Computable Functionals”, also in the Minlog distribution.

11.1. Huet’s unification algorithm. We work in the simply typed λ-
calculus, with the usual conventions. For instance, whenever we write a
term we assume that it is correctly typed. Substitutions are denoted by
ϕ,ψ, ρ. The result of applying a substitution ϕ to a term r or a formula A
is written as rϕ or Aϕ, with the understanding that after the substitution
all terms are brought into long normal form.
Q always denotes a ∀∃∀-prefix, say ∀~x∃~y∀~z, with distinct variables. We

call ~x the signature variables, ~y the flexible variables and ~z the forbidden
variables of Q, and write Q∃ for the existential part ∃~y of Q. A variable is
called rigid if it is either a signature variable or else a forbidden variable.

A Q-term is a term with all its free variables in Q, and similarly a Q-
formula is a formula with all its free variables in Q. A Q-substitution is a
substitution of Q-terms.

A unification problem U consists of a ∀∃∀-prefix Q and a conjunction C
of equations between Q-terms of the same type, i.e.,

∧∧n
i=1 ri = si. We may

assume that each such equation is of the form λ~xr = λ~xs with the same ~x
(which may be empty) and r, s of ground type.

A solution to such a unification problem U is a Q-substitution ϕ such
that for every i, riϕ = siϕ holds (i.e., riϕ and siϕ have the same normal
form). We sometimes write C as ~r = ~s, and (for obvious reasons) call it a
list of unification pairs.

We now define the unification algorithm. It takes a unification problem
U = QC and produces a not necessarily well-founded tree (called matching
tree by Huet [12]) with nodes labelled by unification problems and vertices
labelled by substitutions.

Definition (Unification algorithm). We distinguish cases according to the
form of the unification problem, and either give the transition done by the
algorithm, or else state that it fails.

Case identity, i.e., Q(r = r ∧ C). Then

Q(r = r ∧ C) =⇒ε QC.

Case ξ, i.e., Q(λ~xr = λ~xs ∧ C). We may assume here that the bound
variables ~x are the same on both sides.

Q(λ~x r = λ~x s ∧ C) =⇒ε Q∀~x(r = s ∧ C).

Case rigid-rigid, i.e., Q(f~r = g~s ∧ C) with both f and g rigid, that is
either a signature variable or else a forbidden variable. If f is different from
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g then fail. If f equals g,

Q(f~r = f~s ∧ C) =⇒ε Q(~r = ~s ∧ C).

Case flex-rigid, i.e., Q(u~r = f~s ∧ C) with f rigid. Then the algorithm
branches into one imitation branch and m projection branches, where r =
r1, . . . , rm. Imitation replaces the flexible head u, using the substitution ρ =
[u := λ~x(f(h1~x) . . . (hn~x))] with new variables ~h and ~x. This is only allowed
if f is a signature (and not a forbidden) variable. For ri we have a projection
if and only if the final value type of ri is the (ground) type of f~s. Then the
i-th projections pulls ri in front, by ρ = [u := λ~x(xi(h1~x) . . . (hni~x))]. In
each of these branches we have

Q(u~r = f~s ∧ C) =⇒ρ Q
′(u~r = f~s ∧ C)ρ,

where Q′ is obtained from Q by removing ∃u and adding ∃~h.
Case flex-flex, i.e., Q(u~r = v~s ∧ C). If there is a first flex-rigid or rigid-

flex equation in C, pull this equation (possibly swapped) to the front and
apply case flex-rigid. Otherwise, i.e., if all equations are between terms
with flexible heads, pick a new variable z of ground type and let ρ be the
substitution mapping each of these flexible heads u to λ~xz.

Q(u~r = v~s ∧ C) =⇒ρ Q∅.

This concludes the definition of the unification algorithm.

Clearly ρ is defined on flexible variables of Q only, and its value terms
have no free occurrences of forbidden variables from Q. One can prove
correctness and completeness of this algorithm.

Theorem (Huet). Let a unification problem U consisting of a ∀∃∀-prefix Q
and a list ~r = ~s of unification pairs be given. Then either
(a) the unification algorithm can make a transition, and

(i) (correctness) for every transition U =⇒ρ U ′ and U ′-solution ϕ′ the
substitution (ρ ◦ ϕ′)�Q∃ is a U-solution, and

(ii) (completeness) for every U-solution ϕ there is a transition U =⇒ρ

U ′ and U ′-solution ϕ′ such that ϕ = (ρ ◦ ϕ′)�Q∃, and moreover
µ(ϕ′) ≤ µ(ϕ) with < in case flex-rigid, or else

(b) the unification algorithm fails, and there is no U-solution, or else
(c) the unification algorithm succeeds, and ~r = ~s is empty.
Here µ(ϕ) denotes the number of applications in the value terms of ϕ.

Corollary. Given a unification problem U = QC, and a success node in the
matching tree, labelled with a prefix Q′ (i.e., a unification problem U ′ with no
unification pairs). Then by composing the substitution labels on the branch
leading to this node we obtain a pair (Q′, ρ) with a “transition” substitution
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ρ and such that for any Q′-substitution ϕ′, (ρ ◦ ϕ′)�Q∃ is an U-solution.
Moreover, every U-solution can be obtained in this way, for an appropriate
success node. Since the empty substitution is a Q′-substitution, ρ�Q∃ is a
U-solution, which is most general in the sense stated.

11.2. The pattern unification algorithm. We restrict the notion of a
Q-term as follows. Q-terms are inductively defined by the following clauses.

• If u is a universally quantified variable in Q or a constant, and ~r are
Q-terms, then u~r is a Q-term.
• For any flexible variable y and distinct forbidden variables ~z from
Q, y~z is a Q-term.
• If r is a Q∀z-term, then λzr is a Q-term.

Explicitely, r is a Q-term iff all its free variables are in Q, and for every
subterm y~r of r with y free in r and flexible in Q, the ~r are distinct variables
either λ-bound in r (such that y~r is in the scope of this λ) or else forbidden
in Q.
Q-goals and Q-clauses are simultaneously defined by

• If ~r are Q-terms, then P~r is a Q-goal as well as a Q-clause.
• If D is a Q-clause and G is a Q-goal, then D → G is a Q-goal.
• If G is a Q-goal and D is a Q-clause, then G→ D is a Q-clause.
• If G is a Q∀x-goal, then ∀xG is a Q-goal.
• If D[y := Y ~z ] is a ∀~x∃~y,Y ∀~z -clause, then ∀yD is a ∀~x∃~y∀~z -clause.

Explicitely, a formula A is a Q-goal iff all its free variables are in Q, and for
every subterm y~r of A with y either existentially bound in A (with y~r in the
scope) or else free in A and flexible in Q, the ~r are distinct variables either
λ- or universally bound in A (such that y~r is in the scope) or else free in A
and forbidden in Q.

A Q-substitution is a substitution of Q-terms.
A pattern unification problem U consists of a ∀∃∀-prefix Q and a conjunc-

tion C of equations between Q-terms of the same type, i.e.,
∧∧n

i=1(ri = si).
We may assume that each such equation is of the form λ~xr = λ~xs with the
same ~x (which may be empty) and r, s of ground type.

A solution to such a unification problem U is a Q-substitution ϕ such
that for every i, riϕ = siϕ holds (i.e., riϕ and siϕ have the same normal
form). We sometimes write C as ~r = ~s, and (for obvious reasons) call it a
list of unification pairs.

We now define the pattern unification algorithm. It takes a unification
problem U = QC and returns a substitution ρ and another unification prob-
lem U ′ = Q′C ′. Note that ρ will be neither a Q-substitution nor a Q′-
substitution, but will have the property that
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(a) ρ is defined on flexible variables of Q only, and its value terms have no
free occurrences of forbidden variables from Q,

(b) if G is a Q-goal, then Gρ is a Q′-goal, and
(c) whenever ϕ′ is a U ′-solution, then (ρ ◦ ϕ′)�Q∃ is a U-solution.

Definition (Pattern unification algorithm). We distinguish cases according
to the form of the unification problem, and either give the transition done
by the algorithm, or else state that it fails.

Case identity, i.e., Q(r = r ∧ C). Then

Q(r = r ∧ C) =⇒ε QC.

Case ξ, i.e., Q(λ~xr = λ~xs ∧ C). We may assume here that the bound
variables ~x are the same on both sides.

Q(λ~xr = λ~xs ∧ C) =⇒ε Q(∀~x(r = s) ∧ C).

Case rigid-rigid, i.e., Q(f~r = f~s ∧ C) with f either a signature variable
or else a forbidden variable.

Q(f~r = f~s ∧ C) =⇒ε Q(~r = ~s ∧ C).

Case flex-flex with equal heads, i.e., Q(u~y = u~z ∧ C).

Q(u~y = u~z ∧ C) =⇒ρ Q
′(Cρ)

with ρ = [u := λ~y(u′ ~w)], Q′ is Q with ∃u replaced by ∃u′ , and ~w an enu-
meration of those yi which are identical to zi (i.e., the variable at the same
position in ~z ). Notice that λ~y(u′ ~w) = λ~z(u′ ~w).

Case flex-flex with different heads, i.e., Q(u~y = v~z ∧ C).

Q(u~y = v~z ∧ C) =⇒ρ Q
′Cρ,

where ρ and Q′ are defined as follows. Let ~w be an enumeration of the
variables both in ~y and in ~z. Then ρ = [u, v := λ~y(u′ ~w ), λ~z(u′ ~w )], and Q′

is Q with ∃u,∃v removed and ∃u′ inserted.
Case flex-rigid, i.e., Q(u~y = t ∧ C) with t rigid, i.e., not of the form v~z

with flexible v.
Subcase occurrence check: t contains (a critical subterm with head) u.

Then fail.
Subcase pruning: t contains a subterm v ~w1z ~w2 with ∃v in Q, and z free

in t but not in ~y.

Q(u~y = t ∧ C) =⇒ρ Q
′(u~y = tρ ∧ Cρ)

where ρ = [v := λ~w1
λzλ~w2

(v′ ~w1 ~w2)], Q′ is Q with ∃v replaced by ∃v′ .
Subcase pruning impossible: λ~yt (after all pruning steps are done still)

has a free occurrence of a forbidden variable z. Then fail.
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Subcase explicit definition: otherwise.

Q(u~y = t ∧ C) =⇒ρ Q
′Cρ

where ρ = [u := λ~yt], and Q′ is obtained from Q by removing ∃u. This
concludes the definition of the pattern unification algorithm.

One can prove that this algorithm indeed has the three properties stated
above. The first one (ρ is defined on flexible variables of Q only, and its value
terms have no free occurrences of forbidden variables from Q) is obvious from
the definition. We now state the second one; the third one will be stated
next.

Lemma (Q′-goals). If Q =⇒ρ Q
′ and G is a Q-goal, then Gρ is a Q′-goal.

Let Q −→ρ Q
′ mean that for some C,C ′ we have QC =⇒ρ Q

′C ′. Write
Q −→∗ρ Q′ if there are ρ1, . . . , ρn and Q1, . . . , Qn−1 such that

Q −→ρ1 Q1 −→ρ2 . . . −→ρn−1 Qn−1 −→ρn Q
′,

and ρ = ρ1 ◦ · · · ◦ ρn.

Corollary. If Q −→∗ρ Q′ and G is a Q-goal, then Gρ is a Q′-goal.

Lemma. Let a unification problem U consisting of a ∀∃∀-prefix Q and a list
~r = ~s of unification pairs be given. Then either

(a) the unification algorithm makes a transition U =⇒ρ U ′, and

Φ′ : U ′-solutions→ U-solutions

ϕ′ 7→ (ρ ◦ ϕ′)�Q∃

is well-defined and we have Φ: U-solutions → U ′-solutions such that Φ′

is inverse to Φ, i.e. Φ′(Φϕ) = ϕ, or else
(b) the unification algorithm fails, and there is no U-solution.

It is not hard to see that the unification algorithm terminates, by defining
a measure that decreases with each transition.

Corollary. Given a unification problem U = QC, the unification algorithm
either fails, and there is no U-solution, or else returns a pair (Q′, ρ) with
a “transition” substitution ρ and a prefix Q′ (i.e., a unification problem U ′
with no unification pairs) such that for any Q′-substitution ϕ′, (ρ◦ϕ′)�Q∃ is
an U-solution, and every U-solution can be obtained in this way. Since the
empty substitution is a Q′-substitution, ρ�Q∃ is a U-solution, which is most
general in the sense stated.
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11.3. Proof search. A Q-sequent has the form P ⇒ G, where P is a list
of Q-clauses and G is a Q-goal.

We write M [P] to indicate that all assumption variables in the derivation
M are assumptions of clauses in P.

Write `n S for a set S of sequents if there are derivations MGi
i [Pi] in long

normal form for all (Pi ⇒ Gi) ∈ S such that
∑

dp(Mi) ≤ n. Let `<n S
mean ∃m<n `m S.

We prove correctness and completeness of the proof search procedure:
correctness is the if-part of the two lemmata to follow, and completeness
the only-if-part.

Lemma. Let Q be a ∀∃∀-prefix, {P ⇒ ∀~x( ~D → A)} ∪ S Q-sequents with
~x, ~D not both empty. Then we have for every substitution ϕ:

ϕ is a Q-substitution such that `n
(
{P ⇒ ∀~x( ~D → A)} ∪ S

)
ϕ

if and only if

ϕ is a Q∀~x-substitution such that `<n
(
{P ∪ ~D ⇒ A} ∪ S

)
ϕ.

Proof. “If”. Let ϕ be a Q∀~x-substitution and `<n
(
{P ∪ ~D ⇒ A} ∪ S

)
ϕ.

So we have
NAϕ[ ~Dϕ ∪ Pϕ].

Since ϕ is a Q∀~x-substitution, no variable in ~x can be free in Pϕ, or free in
yϕ for some y ∈ dom(ϕ). Hence

M (∀~x( ~D→A))ϕ[Pϕ] := λ~xλ~u~DϕN

is a correct derivation.
“Only if”. Let ϕ be a Q-substitution and `n

(
{P ⇒ ∀~x( ~D → A)} ∪ S

)
ϕ.

This means we have a derivation (in long normal form)

M (∀~x( ~D→A))ϕ[Pϕ] = λ~xλ~u~Dϕ(NAϕ[ ~Dϕ ∪ Pϕ]).

Now dp(N) < dp(M), hence `<n
(
{P ∪ ~D ⇒ A} ∪ S

)
ϕ, and ϕ clearly is a

Q∀~x-substitution. �

Lemma. Let Q be a ∀∃∀-prefix, {P ⇒ P~r} ∪ S Q-sequents and ϕ a substi-
tution. Then

ϕ is a Q-substitution such that `n
(
{P ⇒ P~r} ∪ S

)
ϕ

if and only if there is a clause ∀~x(~G → P~s ) in P such that the following
holds. Let ~z be the final universal variables in Q, ~X be new (“raised”) vari-
ables such that Xi~z has the same type as xi, let Q∗ be Q with the existential
variables extended by ~X, and let ∗ indicate the substitution [x1, . . . , xn :=
X1~z, . . . , Xn~z ]. Then there is a result (Q′, ρ) of either Huet’s or the pattern
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unification algorithm applied to Q∗(~r = ~s∗) and a Q′-substitution ϕ′ such
that `<n

(
{P ⇒ ~G∗} ∪ S

)
ρϕ′, and ϕ = (ρ ◦ ϕ′)�Q∃.

Proof. “If”. Let (Q′, ρ) be such a result, and assume that ϕ′ is a Q′-
substitution such that Ni `

(
P ⇒ ~G∗

)
ρϕ′. Let ϕ := (ρ ◦ ϕ′)�Q∃. From

unif(Q∗, ~r = ~s∗) = (Q′, ρ) we know ~rρ = ~s∗ρ, hence ~rϕ = ~s∗ρϕ′. Then

u(∀~x. ~G→P~s)ϕ(( ~Xρϕ′)~z ) ~N ~G∗ρϕ′

derives P~s∗ρϕ′ (i.e., P~rϕ) from Pϕ.
“Only if”. Assume ϕ is a Q-substitution such that ` (P ⇒ P~r)ϕ, say by

u∀~x(
~G→P~s)ϕ~t ~N ( ~Gϕ)[~x:=~t], with ∀~x(~G→ P~s) a clause in P, and with additional

assumptions from Pϕ in ~N . Then ~rϕ = (~sϕ)[~x := ~t]. Since we can assume
that the variables ~x are new and in particular not range variables of ϕ, with

ϑ := ϕ ∪ [~x := ~t]

we have ~rϕ = ~sϑ. Let ~z be the final universal variables in Q, ~X be new
(“raised”) variables such that Xi~z has the same type as xi, let Q∗ be Q with
the existential variables extended by ~X, and for terms and formulas let ∗
indicate the substitution [x1, . . . , xn := X1~z, . . . , Xn~z ]. Moreover, let

ϑ∗ := ϕ ∪ [X1, . . . , Xn := λ~zt1, . . . , λ~ztn].

Then ~rϑ∗ = ~rϕ = ~sϑ = ~s∗ϑ∗, i.e., ϑ∗ is a solution to the unification problem
given by Q∗ and ~r = ~s. Hence by the corollary unif(Q∗, ~r = ~s∗) = (Q′, ρ) and
there is aQ′-substitution ϕ′ such that ϑ∗ = (ρ◦ϕ′)�Q∗∃, hence ϕ = (ρ◦ϕ′)�Q∃.
Also, (~Gϕ)[~x := ~t ] = ~Gϑ = ~G∗ϑ∗ = ~G∗ρϕ′. �

A state is a pair (Q,S) with Q a prefix and S a finite set of Q-sequents.
By the two lemmas just proved we have state transitions

(Q, {P ⇒ ∀~x( ~D → A)} ∪ S) 7→ε (Q∀~x, {P ∪ ~D ⇒ A} ∪ S)

(Q, {P ⇒ P~r} ∪ S) 7→ρ (Q′, ({P ⇒ ~G∗} ∪ S)ρ),

where in the latter case there is a clause ∀~x(~G → P~s ) in P such that the
following holds. Let ~z be the final universal variables in Q, ~X be new
(“raised”) variables such that Xi~z has the same type as xi, let Q∗ be Q with
the existential variables extended by ~X, and let ∗ indicate the substitution
[x1, . . . , xn := X1~z, . . . , Xn~z ], and unif(Q∗, ~r = ~s∗) = (Q′, ρ).

Notice that by the lemma on Q′-goals above, if P ⇒ P~r is a Q-sequent
(which means that

∧∧
P → P~r is a Q-goal), then (P ⇒ ~G∗)ρ is a Q′-sequent.

Theorem. Let Q be a prefix, and S be a set of Q-sequents. For every
substitution ϕ we have: ϕ is a Q-substitution satisfying ` Sϕ iff there is a



MINLOG REFERENCE MANUAL 83

prefix Q′, a substitution ρ and a Q′-substitution ϕ′ such that

(Q,S) 7→ρ∗ (Q′, ∅),
ϕ = (ρ ◦ ϕ′)�Q∃.

Examples. (a) The sequent ∀y(∀zRyz → Q),∀y1,y2Ry1y2 ⇒ Q leads first
to ∀y1,y2Ry1y2 ⇒ Ryz under ∃y∀z, then to y1 = y ∧ y2 = z under
∃y∀z∃y1,y2 , and finally to Y1z = y ∧ Y2z = z under ∃y,Y1,Y2∀z, which has
the solution Y1 = λzy, Y2 = λzz.

(b) ∀y(∀zRyz → Q),∀y1Ry1y1 ⇒ Q leads first to ∀y1Ry1y1 ⇒ Ryz under
∃y∀z, then to y1 = y ∧ y1 = z under ∃y∀z∃y1 , and finally to Y1z =
y ∧ Y1z = z under ∃y,Y1∀z, which has no solution.

(c) Here is a more complex example (derived from proofs of the Orevkov-
formulas), for which we only give the derivation tree.

∀y(∀z(Ryz→⊥))→⊥
∀z(R0z→⊥)→⊥

∀y(∀z1(Ryz1→⊥)→⊥)
∀z1(Rzz1→⊥)→⊥

∀z(S0z→⊥)
S0z1→⊥

(∗) R0z Rzz1
S0z1

⊥
Rzz1→⊥

∀z1(Rzz1→⊥)
⊥

R0z→⊥
∀z(R0z→⊥)

⊥
where (∗) is a derivation from Hyp1 : ∀z,z1(R0z → Rzz1 → S0z1).

11.4. Extension by ∧ and ∃. The extension by conjunction is rather easy;
it is even superfluous in principle, since conjunctions can always be avoided
at the expense of having lists of formulas instead of single formulas.

However, having conjunctions available is clearly useful at times, so let’s
add it. This requires the notion of an elaboration path for a formula (cf. [18]).
The reason is that the property of a formula to have a unique atom as its
head is lost when conjunctions are present. An elaboration path is meant to
give the directions (left or right) to go when we encounter a conjunction as
a strictly positive subformula. For example, the elaboration paths of ∀xA∧
(B ∧C → D ∧ ∀yE) are (left), (right, left) and (right, right). Clearly,
a formula is equivalent to the conjunction (over all elaboration paths) of
all formulas obtained from it by following an elaboration path (i.e., always
throwing away the other part of the conjunction). In our example,

∀xA ∧ (B ∧ C → D ∧ ∀yE)↔ ∀xA ∧ (B ∧ C → D) ∧ (B ∧ C → ∀yE).

In this way we regain the property of a formula to have a unique head, and
our previous search procedure continues to work.
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For the existential quantifier ∃ the problem is of a different nature. We
chose to introduce ∃ by means of axiom schemata. Then the problem is
which of such schemes to use in proof search, given a goal G and a set P of
clauses. We might proceed as follows.

List all prime, positive and negative existential subformulas of P ⇒ G,
and remove any formula from those lists which is of the form of another one1.
For every positive existential formula – say ∃xB – add (the generalization
of) the existence introduction scheme

∃+x,B : ∀x(B → ∃xB)

to P. Moreover, for every negative existential formula – say ∃xA – and every
(prime or existential) formula C in any of those two lists, except the formula
∃xA itself, add (the generalization of) the existence elimination scheme

∃−x,A,B : ∃xA→ ∀x(A→ B)→ B

to P. Then start the search algorithm as described in section 11.3. The
normal form theorem for the natural deduction system of minimal logic
with ∃ then guarantees completeness.

However, experience has shown that this complete search procedure tends
to be trapped in too large a search space. Therefore in our actual implemen-
tation we decided to only take instances of the existence elimination scheme
with existential conclusions.

Moreover, it seems appropriate that – before the search is started – one
eliminates in a preprocessing step as many existential quantifiers as possible.

11.5. Implementation. Following Miller [18], Berger and [22], we have
implemented a proof search algorithm for minimal logic. To enforce termi-
nation, every assumption can only be used a fixed number of times.

We work with lists of sequents instead of single sequents; they all are
Q-sequents for the same prefix Q. One then searches for a Q-substitution
ϕ and proofs of the ϕ-substituted sequents. intro-search takes the first
sequent and extends Q by all universally quantified variables x1 . . . . It
then calls select, which selects (using or) a fitting clause. If one is found,
a new prefix Q′ (raising the new flexible variables) is formed, and the n
(≥ 0) new goals with their clauses (and also all remaining sequents) are
substituted with star ◦ ρ, where star is the “raising” substitution and ρ is
the most general unificator. For this constellation intro-search is called
again. In case of success, one obtains a Q′-substitution ϕ′ and proofs of the
star ◦ ρ ◦ ϕ′ -substituted new sequents. Let ϕ := (ρ ◦ ϕ′)�Q∃, and take the

1To do this, for patterns the dual of the theory of “most general unifiers”, i.e., a theory
of “most special generalizations”, needs to be developed.
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first n proofs of these to build a proof of the ϕ-substituted (first) sequent
originally considered by intro-search.

(search m (name1 m1) ...) expects for m a default value for multi-
plicity (i.e., how often assumptions are to be used), for name1 . . .

(i) numbers of hypotheses from the present context or
(ii) names for theorems or global assumptions,

and for m1 . . . multiplicities (positive integers for global assumptions or
theorems). A search is started for a proof of the goal formula from the
given hypotheses with the given multiplicities and in addition from the other
hypotheses (but not any other global assumptions or theorems) with m
or mult-default. To exclude a hypothesis from being tried, list it with
multiplicity 0.

11.6. Notes. I have benefitted from a presentation of Miller’s [18] given by
Ulrich Berger, in a logic seminar in München in 1991. The type of restriction
to higher order terms described in the text has been introduced in [18]; it
has been called patterns by Nipkow [19]. Miller also noted its relevance for
extensions of logic programming, and showed that the unification problem
for patterns is solvable and admits most general unifiers. The present treat-
ment was motivated by the desire to use Miller’s approach as a basis for an
implementation of a simple proof search engine for (first and higher order)
minimal logic.

Compared with Miller [18], we make use of several simplifications, opti-
mizations and extensions, in particular the following.

(i) Instead of arbitrarily mixed prefixes we only use those of the form
∀∃∀. Nipkow in [19] already had presented a version of Miller’s pattern
unification algorithm for such prefixes, and Miller in [18, section 9.2]
notes that in such a situation any two unifiers can be transformed
into each other by a variable renaming substitution. Here we restrict
ourselves to ∀∃∀-prefixes throughout, i.e., in the proof search algorithm
as well.

(ii) The order of events in the pattern unification algorithm is changed
slightly, by postponing the raising step until it is really needed. This
avoids unnecessary creation of new higher type variables. – Already
Miller noted in [18, p.515] that such optimizations are possible.

(iii) The extensions concern the (strong) existential quantifier, which has
been left out in Miller’s treatment, and also conjunction(cf. 11.4). The
latter can be avoided in principle, but of course is a useful thing to
have.
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12. Extracted terms

We assign to every formula A an object τ(A) (a type or the symbol
nulltype). τ(A) is intended to be the type of the program to be extracted
from a proof of A. This is done by

(formula-to-et-type formula)

In formula-to-et-type we assign type variables to the predicate variables.
For to be able to later refer to this assignment, we use a global variable
PVAR-TO-TVAR-ALIST, which memorizes the assigment done so far. Later
reference is necessary, because such type variables will appear in extracted
programs of theorems involving predicate variables, and in a given develop-
ment there may be many auxiliary lemmata containing the same predicate
variable. A fixed pvar-to-tvar refers to and updates PVAR-TO-TVAR-ALIST.

When we want to execute the program, we have to replace the constant
cL corresponding to a lemma L by the extracted program of its proof, and
the constant cGA corresponding to a global assumption GA by an assumed
extracted term to be provided by the user. This can be achieved by adding
computation rules for cL and cGA. We can be rather flexible here and en-
able/block rewriting by using animate/deanimate as desired. Notice that
the type of the extracted term provided for a cGA must be the extracted type
of the assumed formula. When predicate variables are present, one must use
the type variables assigned to them in PVAR-TO-TVAR-ALIST.

(animate thm-or-ga-name . opt-eterm)

(deanimate thm-or-ga-name)

We can define, for a given derivation M of a formula A with τ(A) 6=
nulltype, its extracted term (or extracted program) et(M) of type τ(A).
We also need extracted terms for the axioms. For induction we take recur-
sion, for the proof-by-cases axiom we take the cases-construct for terms; for
the other axioms the extracted terms are rather clear. Term extraction is
implemented by

(proof-to-extracted-term proof)

The following table gives the symbols of Minlog’s output and the corre-
sponding notation in the λ-calculus.
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Explanation Symbol Minlog’s output
λ-abstraction λxM ([x]M)
pair 〈M,N〉 (M@N)
left element of a pair (M 0) left M
right element of a pair (M 1) right M
arrow for types → =>
product for types × @@
recursion operator R Rec

It is also possible to give an internal proof of soundness. This can be done
by

(proof-to-soundness-proof proof)

13. Computational content of classical proofs

13.1. Refined A-translation. In this section the connectives →, ∀ denote
the computational versions →c, ∀c, unless stated otherwise.

We will concentrate on the question of classical versus constructive proofs.
It is known, by the so-called “A-translation” of Friedman [10] and Dragalin
[8], that any proof of a specification of the form ∀x∃̃yB with B quantifier-
free and a weak (or “classical”) existential quantifier ∃̃y, can be transformed
into a proof of ∀x∃yB, now with the constructive existential quantifier ∃y.
However, when it comes to extraction of a program from a proof obtained
in this way, one easily ends up with a mess. Therefore, some refinements of
the standard transformation are necessary. We shall study a refined method
of extracting reasonable and sometimes unexpected programs from classical
proofs. It applies to proofs of formulas of the form ∀x∃̃yB where B need not
be quantifier-free, but only has to belong to the larger class of goal formulas.
Furthermore we allow unproven lemmata D to appear in the proof of ∀x∃̃yB,
where D is a definite formula.

We now describe in more detail what this section is about. It is well known
that from a derivation of a classical existential formula ∃̃yA := ∀y(A→ ⊥)→
⊥ one generally cannot read off an instance. A simple example has been
given by Kreisel: let R be a primitive recursive relation such that ∃̃zRxz is
undecidable. Clearly – even logically –

` ∀x∃̃y∀z(Rxz → Rxy)

but there is no computable f satisfying

∀x∀z(Rxz → R(x, f(x))),

for then ∃̃zRxz would be decidable: it would be true if and only if R(x, f(x))
holds.
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However, it is well known that in case ∃̃yG with G quantifier-free one can
read off an instance. Here is a simple idea of how to prove this: replace ⊥
anywhere in the proof by ∃yG. Then the end formula ∀y(G → ⊥) → ⊥ is
turned into ∀y(G→ ∃yG)→ ∃yG, and since the premise is trivially provable,
we have the claim.

Unfortunately, this simple argument is not quite correct. First, G may
contain ⊥, and hence is changed under the substitution of ∃yG for ⊥. Sec-
ond, we may have used axioms or lemmata involving ⊥ (e.g., ⊥ → P ), which
need not be derivable after the substitution. But in spite of this, the simple
idea can be turned into something useful.

Assume that the lemmata ~D and the goal formula G are such that we can
derive

~D → Di[⊥ := ∃yG],(7)

G[⊥ := ∃yG]→ ∃yG.(8)

Assume also that the substitution [⊥ := ∃yG] turns any axiom into an
instance of the same axiom-schema, or else into a derivable formula. Then
from our given derivation (in minimal logic) of ~D → ∀y(G → ⊥) → ⊥ we
obtain

~D[⊥ := ∃yG]→ ∀y(G[⊥ := ∃yG]→ ∃yG)→ ∃yG.
Now (7) allows the substitution in ~D to be dropped, and by (8) the second
premise is derivable. Hence we obtain as desired

~D → ∃yG.

We shall identify classes of formulas – to be called definite and goal formulas
– such that slight generalizations of (7) and (8) hold.

This section is based on [3] and particularly [23, 7.3], where the theory
is developed in more detail and further references are given. Recall that we
restrict to formulas in the language {⊥,→,∀}.

A formula is relevant if it ends with (logical) falsity. Definite and goal
formulas are defined by a simultaneous recursion.

(atr-relevant? formula)

(atr-definite? formula)

(atr-goal? formula)

We need to construct proofs from F→ ⊥ of

DF → D,

G→ (GF → ⊥)→ ⊥,
((RF → F)→ ⊥)→ R for R relevant and definite,
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I → IF for I irrelevant and goal.

This is done by

(atr-arb-definite-proof formula)

(atr-arb-goal-proof formula)

(atr-rel-definite-proof formula)

(atr-irrel-goal-proof formula)

The next task is to generalize G → (GF → ⊥) → ⊥ and construct a proof
of (GF

1 → ...→ GF
n → ⊥)→ G1 → ...→ Gn → ⊥, via

(atr-goals-F-to-bot-proof . goals)

Given a proof of ~A → ~D → ∀~y(~G → ⊥) → ⊥ with ~A arbitrary, ~D definite
and ~G goal formulas, we transform it into a proof of (F→ ⊥)→ ~A→ ~DF →
∀~y(~GF → ⊥)→ ⊥. This is done via

(atr-min-excl-proof-to-bot-reduced-proof min-excl-proof)

Substituting the formula ∃~y ~GF for ⊥ in the proof given above of (F →
⊥) → ~A → ~DF → ∀~y(~GF → ⊥) → ⊥, both the ex-falso-quodlibet premise
and the “wrong formula” ∀~y(~GF → ⊥) become provable and we obtain a
proof of ~A′ → ~DF → ∃~y ~GF, where ~A′ is defined to be ~A[⊥ := ∃~y ~GF]. The
corresponding function is

(atr-min-excl-proof-to-ex-proof min-excl-proof)

One can test with min-excl-proof? whether a given proof indeed is a
proof in minimal logic of a classical (i.e., weak) existence formula. Moreover,
atr-expand-theorems expands all non-definite theorems. This only makes
sense before substituting for ⊥.

See section 12 for an interpretation of the symbols of the extracted terms
in Minlog’s output.

13.2. Gödel’s Dialectica interpretation. In his original functional inter-
pretation [11], Gödel assigned to every formula A a new one ∃~x∀~yAD(~x, ~y )
with AD(~x, ~y ) quantifier-free. Here ~x, ~y are lists of variables of finite types;
the use of higher types is necessary even when the original formula A is
first-order. He did this in such a way that whenever a proof of A say in
Peano arithmetic was given, one could produce closed terms ~r such that the
quantifier-free formula AD(~r, ~y ) is provable in his quantifier-free system T.

In [11] Gödel referred to a Hilbert-style proof calculus. However, since
the realizers will be formed in a λ-calculus formulation of system T, Gödel’s
interpretation becomes more perspicuous when it is done for a natural de-
duction calculus. The present implementation is based on such a setup.
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Then the need for contractions comes up in the (only) logical rule with two
premises: modus ponens (or implication elimination →−). This makes it
possible to give a relatively simple proof of the Soundness Theorem.

We assign to every formula A objects τ+(A), τ−(A) (a type or the “null-
type” symbol ◦). τ+(A) is intended to be the type of a (Dialectica-) realizer
to be extracted from a proof of A, and τ−(A) the type of a challenge for the
claim that this term realizes A.

τ+(P~s ) := ◦, τ−(P~s ) := ◦,
τ+(∀xρA) := ρ→ τ+(A), τ−(∀xρA) := ρ× τ−(A),

τ+(∃xρA) := ρ× τ+(A), τ−(∃xρA) := τ−(A),

τ+(A ∧B) := τ+(A)× τ+(B), τ−(A ∧B) := τ−(A)× τ−(B),

and for implication

τ+(A→ B) := (τ+(A)→ τ+(B))× (τ+(A)→ τ−(B)→ τ−(A)),

τ−(A→ B) := τ+(A)× τ−(B).

Recall that (ρ → ◦) := ◦, (◦ → σ) := σ, (◦ → ◦) := ◦, and (ρ × ◦) := ρ,
(◦ × σ) := σ, (◦ × ◦) := ◦.

In case τ+(A) (τ−(A)) is 6= ◦ we say that A has positive (negative) compu-
tational content . For formulas without positive or without negative content
one can give an easy characterization, involving the well-known notion of
positive or negative occurrences of quantifiers in a formula.

τ+(A) = ◦ ↔ A has no positive ∃ and no negative ∀,
τ−(A) = ◦ ↔ A has no positive ∀ and no negative ∃,
τ+(A) = τ−(A) = ◦ ↔ A is quantifier-free.

Both the positive and the negative type of a formula can be computed by

(formula-to-etdp-type formula)

(formula-to-etdn-type formula)

For every formula A and terms r of type τ+(A) and s of type τ−(A) we
define a new quantifier-free formula |A|rs by induction on A.

|P~s |rs := P~s,

|∀xA(x)|rs := |A(s0)|r(s0)
s1 ,

|∃xA(x)|rs := |A(r0)|r1s ,

|A ∧B|rs := |A|r0s0 ∧ |B|r1s1,

|A→ B|rs := |A|s0r1(s0)(s1) → |B|
r0(s0)
s1 .

The formula ∃x∀y|A|xy is called the Gödel translation of A and is often de-
noted by AD. Its quantifier-free kernel |A|xy is called Gödel kernel of A; it
is denoted by AD.
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For readability we sometimes write terms of a pair type in pair form:

|∀zA|fz,y := |A|fzy ,
|∃zA|z,xy := |A|xy ,

|A ∧B|x,zy,u := |A|xy ∧ |B|zu,

|A→ B|f,gx,u := |A|xgxu → |B|fxu .

formula-to-d-formula calculates the Gödel (or Dialectica) translation of
a formula.

To answer the question when the Gödel translation of a formula A is equiv-
alent to the formula itself, we need the (constructively doubtful) Markov
principle (MP), for higher type variables and quantifier-free formulas A0, B0.

(∀xρA0 → B0)→ ∃xρ(A0 → B0) (xρ /∈ FV(B0)).

We also need the (less problematic) axiom of choice (AC)

∀xρ∃yσA(x, y)→ ∃fρ→σ∀xρA(x, f(x)).

and the independence of premise axiom (IP)

(A→ ∃xρB)→ ∃xρ(A→ B) (xρ /∈ FV(A), τ+(A) = ◦).

Notice that (AC) expresses that we can only have continuous dependencies.

Theorem (Characterization).

AC + IP + MP ` (A↔ ∃x∀y |A|xy).

Let Heyting arithmetic HAω in all finite types be the fragment of TCF
where (i) the only base types are N and B, and (ii) the only inductively
defined predicates are totality, Leibniz equality Eq, the (proper) existential
quantifier and conjunction. We can prove soundness of the Dialectica inter-
pretation for HAω + AC + IP + MP, for our natural deduction formulation
of the underlying logic.

Theorem (Soundness). Let M be a derivation

HAω + AC + IP + MP ` A

from assumptions ui : Ci (i = 1, . . . , n). Let xi of type τ+(Ci) be variables
for realizers of the assumptions, and y be a variable of type τ−(A) for a
challenge of the goal. Then we can find terms et+(M) =: t of type τ+(A)
with y /∈ FV(t) and et−i (M) =: ri of type τ−(Ci), and a derivation in HAω

of |A|ty from assumptions ūi : |Ci|xiri .

proof-to-extracted-d-terms returns the extracted realiser and a list
of extracted challenges labelled with their associated assumption variables.
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14. Reading formulas in external form

A formula can be produced from an external representation, for example
a string, using the pt function. It has one argument, a string denoting a
formula, that is converted to the internal representation of the formula. For
the following syntactical entities parsing functions are provided:

(py string) for parsing types
(pv string) for parsing variables
(pt string) for parsing terms
(pf string) for parsing formulas

The conversion occurs in two steps: lexical analysis and parsing.

14.1. Lexical analysis. In this stage the string is brocken into short se-
quences, called tokens.

A token can be one of the following:
(i) An alphabetic symbol: A sequence of letters a–z and A–Z. Upper and

lower case letters are considered different.
(ii) A number: A sequence of digits 0–9

(iii) A punctuation mark: One of the characters: ( ) [ ] . , ;
(iv) A special symbol: A sequence of characters, that are neither letters,

digits, punctuation marks nor white space.
For example: abc, ABC and A are alphabetic symbols, 123, 0123 and 7

are numbers, ( is a punctuation mark, and <=, +, and ##:-^ are special
symbols.

Tokens are always character sequences of maximal length belonging to one
of the above categories. Therefore fx is a single alphabetic symbol not two
and likewise <+ is a single special symbol. The sequence alpha<=(-x+z),
however, consists of the 8 tokens alpha, <=, (, -, x, +, z, and ). Note that
the special symbols <= and - are separated by a punctuation mark, and the
alphabetic symbols x and z are separated by the special symbol +.

If two alphabetic symbols, two special symbols, or two numbers follow
each other they need to be separated by white space (spaces, newlines, tabs,
formfeeds, etc.). Except for a few situations mentioned below, whitespace
has no significance other than separating tokens. It can be inserted and
removed between any two tokens without affecting the significance of the
string.

Every token has a token type, and a value. The token type is one of the
following: number, var-index, var-name, const, pvar-name, predconst, type-
symbol, pscheme-symbol, postfix-op, prefix-op, binding-op, add-op, mul-op,
rel-op, and-op, or-op, imp-op, pair-op, if-op, postfix-jct, prefix-jct, and-jct,
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or-jct, tensor-jct, imp-jct, quantor, dot, hat, underscore, comma, semicolon,
arrow, lpar, rpar, lbracket, rbracket.

The possible values for a token depend on the token type and are explained
below.

New tokens can be added using the function

(add-token string token-type value).

The inverse is the function

(remove-token string).

A list of all currently defined tokens sorted by token types can be obtained
by the function

(display-tokens).

14.2. Parsing. The second stage, parsing , extracts structure form the se-
quence of tokens.

Types. Type-symbols are types; the value of a type-symbol must be a type.
If σ and τ are types, then σ;τ is a type (pair type) and σ=>τ is a type (func-
tion type). Parentheses can be used to indicate proper nesting. For exam-
ple boole is a predefined type-symbol and hence, (boole;boole)=>boole
is again a type. The parentheses in this case are not strictly necessary, since
; binds stronger than =>. Both operators associate to the right.

Variables. Var-names are variables; the value of a var-name token must
be a pair consisting of the type and the name of the variable (the same
name string again! This is not nice and may be later, we find a way to give
the parser access to the string that is already implicit in the token). For
example to add a new boolean variable called “flag”, you have to invoke the
function (add-token "flag" ’var-name (cons ’boole "flag")). This
will enable the parser to recognize “flag3”, “flag^”, or “flag^14” as well.

Further, types, as defined above, can be used to construct variables.
A variable given by a name or a type can be further modified. If it is

followed by a ^, a partial variable is constructed. Instead of the ^ a _ can
be used to specify a total variable.

Total variables are the default and therefore, the _ can be omitted.
As another modifier, a number can immediately follow, with no white-

space in between, the ^ or the _, specifying a specific variable index.
In the case of indexed total variables given by a variable name or a type

symbol, again the _ can be omitted. The number must then follow, with no
whitespace in between, directly after the variable name or the type.

Note: This is the only place where whitespace is of any significance in
the input. If the ^, _, type name or variable name is separated from the
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following number by whitespace, this number is no longer considered to be
an index for that variable but a numeric term in its own right.

For example, assuming that p is declared as a variable of type boole, we
have:

(i) p a total variable of type boole with name p and no index.
(ii) p_ a total variable of type boole with name p and no index.
(iii) p^ a partial variable of type boole with name p and no index.
(iv) p2 a total variable of type boole with name p and index 2.
(v) p_2 a total variable of type boole with name p and index 2.
(vi) p^2 a partial variable of type boole with name p and index 2.

(vii) boole a total anonymous variable of type boole with no index.
(viii) boole_ a total anonymous variable of type boole with no index.
(ix) boole^ a partial anonymous variable of type boole with no index.
(x) boole_2 a total anonymous variable of type boole with index 2.
(xi) boole2 a total anonymous variable of type boole with index 2.

(xii) boole^2 a partial anonymous variable of type boole with index 2.
(xiii) (boole)_2 a total anonymous variable of type boole with index 2.
(xiv) nat=>boole_2 a total anonymous variable of type function of nat to

boole with index 2.
(xv) nat=>boole^2 a partial anonymous variable of type function of nat to

boole with index 2.
(xvi) (nat=>alpha2) a total anonymous variable of type function of nat to

alpha2 with no index.
(xvii) (nat=>alpha2)_2 a total anonymous variable of type function of nat

to alpha2 with index 2.
(xviii) (nat=>alpha2)^2 a partial anonymous variable of type function of nat

to alpha2 with index 2.

Compare these with the following applicative terms.

(i) nat=>boole 2 a total anonymous variable of type function of nat to
boole with no index applied to the numeric term 2.

(ii) nat=>boole_ 2 a total anonymous variable of type function of nat to
boole with no index applied to the numeric term 2.

(iii) nat=>boole^ 2 a partial anonymous variable of type function of nat
to boole with no index applied to the numeric term 2.

(iv) nat=>boole_2 2 a total anonymous variable of type function of nat to
boole with index 2 applied to the numeric term 2.

(v) nat=>boole^2 2 a partial anonymous variable of type function of nat
to boole with index 2 applied to the numeric term 2.

(vi) (nat=>alpha)2 a total anonymous variable of type function of nat to
alpha with no index applied to the numeric term 2.
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(vii) (nat=>alpha)_ 2 a total anonymous variable of type function of nat
to alpha with no index applied to the numeric term 2.

(viii) (nat=>alpha)^ 2 a partial anonymous variable of type function of nat
to alpha with no index applied to the numeric term 2.

(ix) (nat=>alpha)_2 2 a total anonymous variable of type function of nat
to alpha with index 2 applied to the numeric term 2.

(x) (nat=>alpha)^2 2 a partial anonymous variable of type function of
nat to alpha with index 2 applied to the numeric term 2.

(xi) (nat=>alpha2)_2 2 a total anonymous variable of type function of
nat to alpha2 with index 2 applied to the numeric term 2.

(xii) (nat=>alpha2)^2 2 a partial anonymous variable of type function of
nat to alpha2 with index 2 applied to the numeric term 2.

Terms are built from atomic terms using application and operators.
An atomic term is one of the following: a constant, a variable, a number,

a conditional, or any other term enclosed in parentheses.
Constants have const as token type, and the respective term in inter-

nal form as value. There are also composed constants, so-called constant
schemata. A constant schema has the form of the name of the constant
schema (token type constscheme) followed by a list of types, the whole
thing enclosed in parentheses. There are a few built in constant schemata:
(Rec <typelist>) is the recursion over the types given in the type list;
(EQat <type>) is the equality for the given type; (Eat <type>) is the ex-
istence predicate for the given type. The constant schema EQat can also be
written as the relational infix operator =; the constant schemata Eat can
also be written as the prefix operator E.

For a number, the user defined function make-numeric-term is called
with the number as argument. The return value of make-numeric-term
should be the internal term representation of the number.

To form a conditional term, the if operator if followed by a list of atomic
terms is enclosed in square brackets. Depending on the constructor of the
first term, the selector, a conditional term can be reduced to one of the
remaining terms.

From these atomic terms, compound terms are built not only by appli-
cation but also using a variety of operators, that differ in binding strength
and associativity.

Postfix operators (token type postfix-op) bind strongest, next in binding
strength are prefix operators (token type prefix-op), next come binding
operators (token type binding-op).

A binding operator is followed by a list of variables and finally a term.
There are two more variations of binding operators, that bind much weaker
and are discussed later.
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Next, after the binding operators, is plain application. Juxtaposition of
two terms means applying the first term to the second. Sequences of appli-
cations associate to the left. According to the vector notation convention
the meaning of application depends on the type of the first term. Two
forms of applications are defined by default: if the type of the first term is
of arrow-form? then make-term-in-app-form is used; for the type of a free
algebra we use the corresponding form of recursion. However, there is one ex-
ception: if the first term is of type boole application is read as a short-hand
for the “if. . . then . . . else” construct (which is a special form) rather than
boolean recursion. The user may use the function add-new-application
to add new forms of applications. This function takes two arguments, a
predicate for the type of the first argument, and a function taking the two
terms and returning another term intended to be the result of this form of
application. Predicates are tested in the inverse order of their definition, so
more general forms of applications should be added first.

By default these new forms of application are not used for output; but the
user might declare that certain terms should be output as formal application.
When doing so it is the user’s responsibility to make sure that the syntax
used for the output can still be parsed correctly by the parser! To do so the
function (add-new-application-syntax pred toarg toop) can be used,
where the first argument has to be a predicate (i.e., a function mapping
terms to #t and #f) telling whether this special form of application can be
used. If so, the arguments toarg and toop have to be functions mapping
the term to operator and argument of this “application” respectively.

After that, we have binary operators written in infix notation. In order
of decreasing binding strength these are:

(i) multiplicative operators, leftassociative, token type mul-op;
(ii) additive operators, leftassociative, token type add-op;

(iii) relational operators, not associative, token type rel-op;
(iv) boolean and operators, leftassociative, token type and-op;
(v) boolean or operators, leftassociative, token type or-op;

(vi) boolean implication operators, rightassociative, token type imp-op;
(vii) pairing operators, rightassociative, token type pair-op.

On the top level, we have two more forms of binding operators, one using
the dot “.”, the other using square brackets “[ ]”. Recall that a binding
operator is followed by a list of variables and a term. This notation can
be augmented by a period “.” following after the variable list and before
the term. In this case the scope of the binding extends as far to the right
as possible. Bindings with the lambda operator can also be specified by
including the list of variables in square brackets. In this case, again, the
scope of the binding extends as far as possible.
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Predefined operators are E and = as described above, the binding operator
lambda, and the pairing operator @ with two prefix operators left and right
for projection.

The value of an operator token is a function that will obtain the internal
representation of the component terms as arguments and returns the internal
representation of the whole term.

If a term is formed by application, the function make-gen-application
is called with two subterms and returns the compound term. The default
here (for terms with an arrow type) is to make a term in application form.
However other rules of composition might be introduced easily.

Formulas are built from atomic formulas using junctors and quantors.
The simplest atomic formulas are made from terms using the implicit

predicate “atom”. The semantics of this predicate is well defined only for
terms of type boole. Further, a predicate constant (token type predconst)
or a predicate variable (token type pvar) followed by a list of atomic terms is
an atomic formula. Lastly, any formula enclosed in parentheses is considered
an atomic formula.

The composition of formulas using junctors and quantors is very similar
to the composition of terms using operators and binding. So, first postfix
junctors, token type postfix-jct, are applied, next prefix junctors, token
type prefix-jct, and quantors, token type quantor, in the usual form:
quantor, list of variables, formula. Again, we have a notation using a pe-
riod after the list of variables, making the scope of the quantor as large as
possible. Predefined quantors are ex, excl, exca, and all.

The remaining junctors are binary junctors written in infix form. In order
of decreasing binding strength we have:

(i) conjunction junctors, leftassociative, token type and-jct;
(ii) disjunction junctors, leftassociative, token type or-jct;

(iii) tensor junctors, rightassociative, token type tensor-jct;
(iv) implication junctors, rightassociative, token type imp-jct.

Predefined junctors are & (and), ! (tensor), and -> (implication).
The value of junctors and quantors is a function that will be called with

the appropriate subformulas, respectively variable lists, to produce the com-
pound formula in internal form.
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and-form-to-left, 47
and-form-to-right, 48
and-form?, 47
animate, 86
animation, 44
argument type

parameter, 14
recursive, 14

arity
of a predicate variable, 31
of a program constant, 22

arity-to-string, 31
arity-to-types, 31
arrow-form-to-arg-type, 18
arrow-form-to-arg-types, 18
arrow-form-to-final-val-type, 18
arrow-form-to-val-type, 18
arrow-form?, 18
arrow-types-to-cases-const, 31
arrow-types-to-rec-const, 30
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assert, 70
assume, 68
assumption constant, 52
asubst, 10
Atom-False, 57
atom-form-to-kernel, 47
atom-form?, 46
Atom-True, 57
atr-arb-definite-proof, 89
atr-arb-goal-proof, 89
atr-definite?, 88
atr-expand-theorems, 89
atr-goal?, 88
atr-goals-F-to-bot-proof, 89
atr-irrel-goal-proof, 89
atr-min-excl-proof-to-bot-reduced-proof,

89
atr-min-excl-proof-to-ex-proof, 89
atr-rel-definite-proof, 89
atr-relevant?, 88
A-translation, 87
avar-proof-equal?, 10
avar-to-formula, 51
avar-to-index, 51
avar-to-name, 51
avar=?, 10
avar=?, 51
avar?, 51
axiom

independence of premise, 91
of choice, 91
of extensionality, 37

Barral, 3
Benl, 3
Berger, 3, 84
Bopp, 3
bottom, 31
Buchholz, 3, 11
by-assume-minimal-with, 74
by-assume-with, 72
by-exnc-assume-with, 72

canonical inhabitant, 25
casedist, 72
Cases, 56, 57
cases, 72
cases-construct, 56
Cases-Log, 59

cdp, 65
check-and-display-proof, 66
check-and-display-proof, 65
Chiarabini, 3
classical-cterm=?, 50
classical-formula=?, 50
Compatibility, 53
Compose, 27
compose-substitutions, 45
compose-substitutions-wrt, 10
compose-t-substitutions, 11
composition, 10
comprehension term, 34, 46
computation rule, 22, 25
conjunction, 37, 46
consistent-substitutions-wrt?, 10
const-to-kind, 29
const-to-name, 29
const-to-object-or-arity, 29
const-to-arrow-types-or..., 29
const-to-t-deg, 29
const-to-token-type, 29
const-to-tsubst, 29
const-to-tvars, 29
const-to-type, 29
const-to-uninst-type, 29
const=?, 29
const?, 29
Constable, 62
constant scheme, 95
constr-name-and-tsubst..., 30
constr-name-to-constr, 29
constr-name?, 29
Constr-Total, 54
Constr-Total-Args, 54
constructor, 29
constructor symbol, 15
constructor type

nullary, 14, 15
context, 59
context-to-avars, 62
context-to-vars, 62
context=?, 62
conversion, 25
D-, 25
β-, 25
η-, 25
R-, 25

Coquand, 7
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cpx, 18
CpxConstr, 18
Crosilla, 3
cterm-subst, 51
cterm-substitute, 51
cterm-to-formula, 50
cterm-to-free, 50
cterm-to-string, 50
cterm-to-vars, 50
cterm=?, 50
cterm?, 50
current-goal, 67
current-proof, 67
cut, 69
Cvind-with-measure-11, 58

deanimate, 86
decorate, 64
decoration

algorithm, 63
of proofs, 63

default-var-name, 19, 20
degree

of negativity, 31
of positivity, 31

degree of totality, 19
Dialectica interpretation, 89
disjunction, 38
display-constructors, 30
display-current-goal, 67
display-current-goal-with..., 67
display-current-num-goals..., 67
display-global-assumptions, 59
display-normalized-proof, 66
display-normalized-proof-expr, 66
display-normalized-pterm, 66
display-program-constants, 30
display-proof, 66
display-proof-expr, 66
display-pterm, 66
display-substitutions, 45
display-t-substitution, 11
display-theorems, 57
dnp, 66
dnpe, 66
dnpt, 66
cdp, 66
dp, 66
dpe, 66

dpt, 66
Dragalin, 4, 87
drop, 70

E, 27
E-to-Total, 55
E-to-Total-nat, 54
Eberl, 3
Efq, 59
Efq-Atom, 57
Efq-Log, 59
elaboration path, 83
Elim, 57
elim, 71
elimination axiom, 35
empty-subst, 10
Eq, 27
Eq-Compat, 55
eq-compat-aconst, 55
Eq-Ext, 55
Eq-Refl, 53, 55
eq-refl-aconst, 55
Eq-Symm, 53, 55
eq-symm-aconst, 55
Eq-to-=-1, 55
Eq-to-=-1-nat, 54
Eq-to-=-2, 55
Eq-to-=-2-nat, 54
Eq-Trans, 53, 55
eq-trans-aconst, 55
equal-pvars?, 32
=-Refl-nat, 58
=-Symm-nat, 58
=-Trans-nat, 58
equality, 7

decidable, 36
Leibniz, 4, 36, 37, 46, 53
pointwise, 37

=-to-E-1-nat, 54
=-to-E-2-nat, 54
=-to-Eq-nat, 54
Ex-Elim, 52, 55
Ex-Elim, 57
ex-elim, 72
Ex-ExPartial, 54, 55
ex-expartial-aconst, 55
Ex-ExPartial-nat, 54
ex-falso-quodlibet, 36
ex-form-to-kernel, 48
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ex-form-to-var, 48
ex-form-to-vars-and..., 49
ex-form?, 47
ex-for...-to-ex-elim-const, 31, 57
ex-formula-to-ex-intro-aconst, 57
Ex-Intro, 52, 54
Ex-Intro, 57
ex-intro, 72
exc-elim, 75
exc-formula-and-concl-to-exc-elim-aconst,

75
exc-formula-to-exc-intro-aconst, 75
exc-formula-to-min-pr-proof, 74
exc-intro, 75
exca, 46
exca-form-to-kernel, 48
exca-form-to-var, 48
exca-form?, 47
excl, 46
excl-form-to-kernel, 48
excl-form-to-var, 48
excl-form?, 47
existential quantification, 46

without computational content, 46
exnc-elim, 72
exnc-form-to-kernel, 48
exnc-form-to-var, 48
exnc-form?, 47
exnc-intro, 72
expand-theorems, 65
ExPartial-Ex, 54, 55
expartial-ex-aconst, 55
ExPartial-Ex-nat, 54
ext-aconst, 55
Extensionality, 53
extracted program, 86
extracted term, 86

falsity, 47
falsity F, 4, 36
falsity-log, 47
Filliatre, 8
finalg-to-=-const, 30
finalg-to-=-to-e-1-aconst, 55
finalg-to-=-to-e-2-aconst, 55
finalg-to-=-to-eq-aconst, 55
finalg-to-all-allpartial-aconst, 55
finalg-to-e-const, 30
finalg-to-e-to-total-aconst, 55

finalg-to-eq-to-=-1-aconst, 55
finalg-to-eq-to-=-2-aconst, 55
finalg-to-expartial-ex-aconst, 55
finalg-to-total-to-e-aconst, 55
finalg?, 17
fold-cterm, 50
fold-formula, 49
formula, 45

definite, 88
folded, 46
goal, 88
negative content, 90
positive content, 90
prime, 45
relevant, 88
unfolded, 46
uninstantiated, 51

formula-subst, 51
formula-substitute, 51
formula-to-bound, 50
formula-to-d-formula, 91
formula-to-et-type, 86
formula-to-etdn-type, 90
formula-to-etdp-type, 90
formula-to-free, 50
formula-to-prime-subformulas, 50
formula-to-string, 50
formula=?, 50
Friedman, 4, 87

get, 70
gind, 70
global assumption, 59
global-assdots-name-to-aconst, 59
goal, 67
goal-subst, 67
goal-to-context, 67
goal-to-formula, 67
goal-to-goalvar, 67
goal=?, 67
Gödel, 89

translation, 90
ground-type?, 17

Harrop degree, 31
Harrop formula, 31
head, 83
Hernest, 3
Heyting arithmetic, 91
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Huber, 3
Huet, 7
huet-match, 68

if-construct, 41, 56
ImagPart, 18
imitation, 77
imp-form-to-conclusion, 47
imp-form-to-final-conclusion, 49
imp-form-to-premise, 47
imp-form-to-premises, 49
imp-form?, 46
imp-formulas-to-elim-aconst, 57
implication, 45

without computational content, 46
Ind, 56, 57
Ind, 56
ind, 70
induction, 55, 70

general, 41, 70, 74
simultaneous, 70
strengthened form, 33

inductive definition
of conjunction, 37
of disjunction, 38
of existence, 37
of totality, 33

inst-with, 69
inst-with-to, 69
int, 18
IntNeg, 18
IntPos, 18
Intro, 57
intro, 71
intro-search, 84
intro-with, 71
IntZero, 18
inversion, 71

Joachimski, 3

least-fixed-point axiom, 35
Leibniz equality, 4, 36, 37, 46, 53
Letouzey, 8
lexical analysis, 92

make-=, 47
make-aconst, 52
make-alg, 17
make-all, 48

make-allnc, 48
make-and, 47
make-arity, 31
make-arrow, 18
make-atomic-formula, 47
make-avar, 51
make-const, 29
make-cterm, 50
make-e, 47
make-eq, 47
make-ex, 48
make-exc-elim-aconst, 75
make-exc-intro-aconst, 75
make-exca, 48
make-excl, 48
make-exnc, 48
make-gind-aconst, 74
make-imp, 47
make-inhabited, 17
make-min-pr-aconst, 75
make-predconst, 32
make-predicate-formula, 47
make-proof-in-aconst-form, 60
make-proof-in-all-elim-form, 61
make-proof-in-all-intro-form, 61
make-proof-in-and-elim-l..., 60
make-proof-in-and-elim-r..., 60
make-proof-in-and-intro-form, 60
make-proof-in-avar-form, 60
make-proof-in-cases-form, 61
make-proof-in-ex-intro-form, 61
make-proof-in-imp-elim-form, 60
make-proof-in-imp-intro-form, 60
make-pvar, 32
make-quant-formula, 49
make-star, 18
make-subst, 9
make-subst-wrt, 10
make-substitution, 9
make-substitution-wrt, 9
make-tensor, 48
make-term-in-abst-form, 42
make-term-in-app-form, 42
make-term-in-const-form, 42
make-term-in-if-form, 42
make-term-in-lcomp-form, 42
make-term-in-pair-form, 42
make-term-in-rcomp-form, 42
make-term-in-var-form, 41
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make-total, 47
Markov principle, 91
Martin-Löf, 37
matching tree, 76
Matthes, 3
match, 68
Miller, 8, 84
min-excl-proof, 89
min-pr, 74
minimum principle, 75
Minpr-with-measure-l11, 58
mk-all, 49
mk-allnc, 49
mk-and, 49
mk-arrow, 18
mk-ex, 49
mk-exca, 49
mk-excl, 49
mk-exnc, 49
mk-imp, 48
mk-neg, 48
mk-neg-log, 49
mk-proof-in-and-intro-form, 61
mk-proof-in-elim-form, 61
mk-proof-in-ex-intro-form, 62
mk-proof-in-intro-form, 61
mk-quant, 49
mk-tensor, 49
mk-term-in-abst-form, 43
mk-term-in-app-form, 43
mk-var, 20
msplit, 70

name-hyp, 70
nat, 18
nbe-constr-value-to-constr, 44
nbe-constr-value-to-name, 44
nbe-constr-value?, 44
nbe-constructor-pattern?, 45
nbe-extract, 45
nbe-fam-value?, 44
nbe-formula-to-type, 50
nbe-genargs, 45
nbe-inst?, 45
nbe-make-constr-value, 44
nbe-make-object, 44
nbe-match, 45
nbe-normalize-proof, 65
nbe-normalize-term, 45

nbe-object-app, 44
nbe-object-apply, 44
nbe-object-compose, 44
nbe-object-to-type, 44
nbe-object-to-value, 44
nbe-object?, 44
nbe-pconst-...-to-object, 44
nbe-reflect, 45
nbe-reify, 45
nbe-term-to-object, 44
new-tvar, 16
nf, 50
ng, 67
Niggl, 3
Nipkow, 8
normalize-formula, 50
normalize-goal, 67
np, 65
nt, 45
nullary clause, 34
number-and-idpredconst-to-intro-aconst,

57
numerated-var-to-index, 20
numerated-var, 20

object-type?, 18
One, 18
osubst, 10

pair-elim, 75
parameter premise, 34
parsing, 93
pattern, 85
pattern unification problem, 78
Paulin-Mohring, 7
Paulson, 8
pconst-name-to-comprules, 30
pconst-name-to-inst-objs, 30
pconst-name-to-object, 30
pconst-name-to-pconst, 30
pconst-name-to-rewrules, 30
pf, 92
Pol, van de, 3
pos, 18
pp, 18, 50, 57
pp-subst, 45
pp-subst, 11
pproof-state-to-formula, 67
pproof-state-to-proof, 67
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predconst-name-to-arity, 33
predconst-name?, 33
predconst-to-index, 33
predconst-to-name, 33
predconst-to-string, 33
predconst-to-tsubst, 33
predconst-to-uninst-arity, 33
predconst?, 33
predicate

inductively defined, 34
predicate constant, 32
predicate-form-to-args, 47
predicate-form-to-predicate, 47
predicate-form?, 46
Presburger, 8
prime-form?, 46
progressive, 41
projection, 77
proof

pattern, 63
proof-in-aconst-form-to-aconst, 60
proof-in-aconst-form?, 60
proof-in-all-elim-form-to-arg, 61
proof-in-all-elim-form-to-op, 61
proof-in-all-elim-form?, 61
pr...all-intro-form-to-kernel, 61
pr...all-intro-form-to-var, 61
proof-in-all-intro-form?, 61
proof-in-and-elim..., 60
proof-in-and-elim-left-form?, 60
proof-in-and-elim..., 60
proof-in-and-elim-right-form?, 60
pr...and-intro-form-to-left, 60
pr...and-intro-form-to-right, 60
proof-in-and-intro-form?, 60
proof-in-avar-form-to-avar, 60
proof-in-avar-form?, 60
proof-in-cases-form-to-alts, 61
proof-in-cases-form-to-rest, 61
proof-in-cases-form-to-test, 61
proof-in-cases-form?, 61
proof-in-elim-form-to-args, 61
pr...elim-form-to-final-op, 61
proof-in-imp-elim-form-to-arg, 60
proof-in-imp-elim-form-to-op, 60
proof-in-imp-elim-form?, 60
proof-in-imp-intro-form-to-avar, 60
pr...-imp-intro-form-to-kernel, 60
proof-in-imp-intro-form?, 60

proof-in-intro-form-to..., 61
proof-of-efq-at, 66
proof-of-efq-log-at, 66
proof-of-stab-at, 66
proof-of-stab-log-at, 66
proof-subst, 65
proof-substitute, 65
proof-to-aconsts, 62
proof-to-aconsts-without-rules, 62
proof-to-bound-avars, 62
proof-to-context, 62
proof-to-expr, 66
proof-to-expr-with-aconsts, 66
proof-to-expr-with-formulas, 66
proof-to-extracted-d-terms, 91
proof-to-extracted-term, 86
proof-to-formula, 62
proof-to-free, 62
proof-to-free-and-bound-avars, 62
proof-to-free-avars, 62
proof-to-ppat, 64
proof-to-soundness-proof, 87
proof=?, 62
proof?, 62
proofs=?, 62
psubst, 10
pt, 92
pv, 92
pvar-cterm-equal?, 10
pvar-name-to-arity, 31
pvar-name?, 31
pvar-to-arity, 32
pvar-to-h-deg, 32
pvar-to-index, 32
pvar-to-n-deg, 32
pvar-to-name, 32
pvar?, 32
py, 92

Q-clause, 78
Q-formula, 76
Q-goal, 78
Q-sequent, 81, 82
Q-substitution, 76, 78
Q-term, 76, 78
quant-form-to-kernel, 49
quant-form-to-quant, 49
quant-form-to-vars, 49
quant-form?, 49
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quant-free?, 47
quant-prime-form?, 47

Ranzi, 3
rat, 18
RatConstr, 18
RatD, 18
Ratiu, 4
RatN, 18
real, 18
RealConstr, 18
realMod, 18
RealPart, 18
RealSeq, 18
Rec, 26
Rec, 95
recursion, 23

operator, 23, 24
operator, simultaneous, 24

recursion operator, 23
recursive premise, 34
reduce-efq-and-stab, 66
relation

accessible part, 39
remove-alg-name, 17
remove-computation-rules-for, 30
remove-global-assumption, 59
remove-predconst-name, 32
remove-program-constant, 30
remove-pvar-name, 32
remove-rewrite-rules-for, 30
remove-theorem, 57
remove-tvar-name, 16
remove-var-name, 19
restrict-substitution-to-args, 10
restrict-substitution-wrt, 10
rewrite rule, 22
rm-exc, 66
Ruckert, 4

save, 57
Schimanski, 4
search, 85
Seisenberger, 4
select, 84
set-goal, 67
sfinalg?, 17
simind, 70
simp, 73

simp-with, 73
simp-with-to, 74
simphyp-with, 73
simplified-inversion, 71
solution, 78

to a unification problem, 76
SOne, 18
soundness theorem

for Dialectica, 91
special form, 41
split, 70
Stärk, 4
Stab, 59
Stab-Atom, 57
Stab-Log, 59
star-form-to-left-type, 18
star-form-to-right-type, 18
star-form?, 18
state, 82
state transition, 82
strictly positive, 14, 34
strip, 70
subst-item-equal-wrt?, 10
substitution, 11, 45, 51, 52, 65, 76

admissible, 11, 12, 65
substitution-equal-wrt?, 10
substitution-equal?, 10
substitution-to-string, 45
Succ, 18
synt-total?, 43
SZero, 18

tensor, 46
tensor-form-to-left, 48
tensor-form-to-parts, 49
tensor-form-to-right, 48
tensor-form?, 47
term

of Gödel’s T, 25
term-in-abst-form-to-kernel, 42
term-in-abst-form-to-var, 42
term-in-abst-form?, 42
term-in-app-form-to-arg, 42
term-in-app-form-to-args, 43
term-in-app-form-to-final-op, 43
term-in-app-form-to-op, 42
term-in-app-form?, 42
term-in-const-form-to-const, 42
term-in-const-form?, 42
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term-in-if-form-to-alts, 42
term-in-if-form-to-rest, 42
term-in-if-form-to-test, 42
term-in-if-form?, 43
term-in-lcomp-form-to-kernel, 42
term-in-lcomp-form?, 42
term-in-pair-form-to-left, 42
term-in-pair-form-to-right, 42
term-in-pair-form?, 42
term-in-rcomp-form-to-kernel, 42
term-in-rcomp-form?, 42
term-in-var-form-to-var, 41
term-in-var-form?, 42
term-subst, 45
term-substitute, 45
term-to-bound, 43
term-to-free, 43
term-to-string, 43
term-to-t-deg, 43
term-to-type, 43
term=?, 43
term?, 43
terms=?, 43
theorem-name-to-aconst, 57, 59
theorem-name-to-inst-proof, 57
theorem-name-to-proof, 57
token, 92
token type, 27
Total, 54, 55
total-aconst, 55
Total-to-E, 55
Total-to-E-nat, 54
Trifonov, 4
truth, 47
truth-aconst, 55
Truth-Axiom, 53, 55
tsubst, 10
tvar-to-index, 16
tvar-to-name, 16
tvar?, 16
type, 14

base, 16
higher, 16
level of, 16

type constant, 9
type parameter, 14
type variable, 9
type-le?, 19
type-match, 13

type-match-list, 13
type-match-modulo-coercion, 19
type-subst, 11
type-substitute, 10
type-to-new-partial-var, 21
type-to-new-var, 21
type-to-string, 18
type-unify, 13
type-unify-list, 13
type?, 18
types-lub, 19
types-to-embedding, 19

undo, 70
unfold-cterm, 50
unfold-formula, 49
unification problem, 76
use, 68
use-with, 68
use2, 68

var-form?, 20
var-term-equal?, 10
var-to-index, 20
var-to-name, 20
var-to-new-partial-var, 21
var-to-new-var, 21
var-to-t-deg, 20
var-to-type, 20
var?, 20
variable

flexible, 76
forbidden, 76
rigid, 76
signature, 76

Weich, 4

Zero, 18
Zuber, 4
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