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Abstract. The main result implies that a proper convex subset
of an irreducible higher rank symmetric space cannot have Zariski
dense stabilizer.

1. Introduction

In this paper we study convex subsets of symmetric spaces, and their
stabilizers. The main results show that in the higher rank case convex
sets are strongly restricted, and under mild assumptions can only arise
from rank 1 constructions. This rigidity phenomenon for convex subsets
is yet another example of a rigidity property enjoyed by higher rank
symmetric spaces that has no analog for rank 1 symmetric spaces.

One can generate a supply of convex subsets of any Hadamard space
by starting with geodesic segments, geodesic rays, complete geodesics,
and horoballs, and then taking tubular neighborhoods and intersec-
tions. When X is a Hadamard manifold with pinched negative curva-
ture convex subsets are abundant: by a theorem of Anderson [And83],
any closed subset A of the geometric boundary ∂∞X is the limit set of a
closed convex subset Y ⊂ X. On the other hand, for general Hadamard
spaces (or manifolds) it can be difficult to control the convex hull of
even “small” subsets, like the union of three rays.

A group Γ of isometries of a Hadamard space X is convex cocompact
if there is a Γ-invariant convex subset C ⊂ X with compact quotient
C/Γ. Discrete convex cocompact subgroups of the isometry group of
hyperbolic 3-space are an important class in the theory of Kleinian
groups; basic examples are uniform lattices, Schottky groups and quasi-
Fuchsian groups. Analogous examples exist in Isom(Hn), as well as
the isometry groups of other rank 1 symmetric spaces. In a higher
rank symmetric space of noncompact type, one can produce examples
by taking products of uniform lattices and rank 1 convex cocompact
groups. In 1994, Corlette asked if this was essentially the only way
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to produce discrete convex cocompact groups. The answer is yes, see
Theorem 1.3 below; in fact the theorem is proved by reducing it to the
case of convex subsets with Zariski dense stabilizer:

Theorem 1.1. Let X = En × Y , where Y is a symmetric space of
noncompact type, and let X = En × Y1 × Y≥2 denote the decompo-
sition of X into the Euclidean factor, the product of the irreducible
rank 1 factors, the product of the higher rank factors. Suppose Γ ⊂
Isom(X) = Isom(En) × Isom(Y ) is a subgroup whose projection to
Isom(Y ) is Zariski dense in the identity component Isomo(Y ), and
whose projection to Isom(En) does not preserve a proper affine sub-
space of En. If C ⊂ X := En × Y is a Γ-invariant closed convex set,
then C = En × C1 × Y≥2, where C1 ⊂ Y1 is a closed convex subset.
Furthermore, for each de Rham factor Xi of Y1, there is a Γ-invariant
subset Ĉi ⊂ Xi such that

• Ĉi is the closed convex hull of its limit set.
• |∂∞Ĉi| = ∞,

• Ĉ1 :=
∏

i Ĉi ⊂ C1.

• ∂∞Ĉ1 = ∂∞C1.

We recall that by convention, a symmetric space of noncompact type
has no Euclidean de Rham factor. Note that a subgroup of Isomo(Y ) is
Zariski dense if and only if it neither fixes a point in the Tits boundary
∂T Y nor preserves a proper symmetric subspace of Y .

Corollary 1.2. If X is a symmetric space of noncompact type with no
rank 1 de Rham factors and Γ ⊂ Isomo(X) is a Zariski dense subgroup,
then X contains no proper closed Γ-invariant convex subsets.

For discrete convex cocompact groups, we have the following struc-
tural result:

Theorem 1.3. Let X = En × Y , where Y is a symmetric space of
noncompact type. Suppose Γ ⊂ Isom(X) = Isom(En) × Isom(Y ) is a
discrete subgroup acting cocompactly on a closed convex subset C ⊂ X,
and assume Γ does not preserve any proper symmetric subspace of X.
Then Γ projects to a subgroup of Isom(Y ) which is Zariski dense in
Isomo(Y ), and the conclusions of Theorem 1.1 apply to C.

If a convex cocompact subgroup Γ ⊂ Isom(X) preserves a proper
symmetric subspace Z ⊂ X, then it acts convex cocompactly on Z –
just intersect a sufficiently big tubular neighborhood of a Γ-invariant
convex set with Z. Therefore there is no loss of generality in assuming
X contains no proper Γ-invariant symmetric subspace.
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Corollary 1.4. If X is a symmetric space of noncompact type with no
rank 1 de Rham factors, and Γ ⊂ Isom(X) is a discrete subgroup acting
cocompactly on a closed convex subset C ⊂ X, then either C = X and
Γ is a uniform lattice in Isom(X), or Γ preserves a proper symmetric
subspace of X.

We give a brief outline of the proof of Theorem 1.1 in the case the
Euclidean factor is absent, and Y is an irreducible higher rank sym-
metric space. The first step is to apply a Theorem of Benoist [Ben97],
which implies one may find an open neighborhood U of a pair of antipo-
dal points ξ1, ξ2 in the Tits boundary ∂T X, such that U is contained
in the limit set of Γ. Applying a result from [KL97], we deduce that
the geometric boundary of C is a top dimensional subbuilding B of
the Tits boundary of X, which is a closed subset with respect to the
topology of the geometric boundary ∂∞X. The main step in the paper,
implemented in Theorem 3.1, is to show that any such building is con-
tained in the geometric boundary of a proper symmetric subspace Y ,
unless it coincides with ∂T X; the Zariski density assumption rules out
the former possibility in the case at hand. We remark that Theorem
3.1 applies to products of symmetric spaces and Euclidean buildings,
and may be of independent interest.

In view of the results in this paper one may wonder whether suffi-
ciently large convex sets in symmetric spaces of noncompact type or in
spherical buildings (such as Tits boundaries of symmetric spaces) are
rigid.

Question 1.5. Suppose C ⊂ B is a convex subset of a spherical build-
ing. If C does not have circumradius ≤ π

2
, must C itself be a spherical

building?

It is unclear what one should expect here. A. Balser and A. Lytchak
[BL] proved a partial result regarding convex subsets invariant under a
group action, namely if dim(C) ≤ 2 and C is not a spherical building
then Isom(C) has a fixed point in C.

After the first version of this paper was written, Quint informed
the authors of very interesting related work [Qui04] on Zariski dense
subgroups of semi-simple groups. His paper addresses an alternate defi-
nition of convex cocompact groups which is equivalent to the usual def-
inition for rank 1 symmetric spaces but differs from ours in the higher
rank case; for this reason it is difficult to make a direct comparison
between the results of [Qui04] and the theorems above. We mention
that his main result also applies to discrete subgroups of semi-simple
p-adic groups.



4 BRUCE KLEINER AND BERNHARD LEEB

In the last section of the paper, we discuss a variant of Theorem 1.1
for quasiconvex subsets.

The authors proved slightly weaker versions of Theorems 1.1 and 1.3
in 1998, and spoke publicly about them in the subsequent year.

Acknowledgement. The authors would like to thank Andreas Balser
and the referee for helpful remarks and Gopal Prasad for bringing ref-
erence [BT71] to our attention.
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2. Preliminaries

2.1. Hadamard spaces. We recommend [Bal95, BH99, KL97] as ref-
erences for Hadamard space facts.

The term Hadamard space is a synonym for a CAT (0)-space.
If X is a Hadamard space, we denote the geometric boundary by

∂∞X, the Tits boundary by ∂T X, and the Tits angle between ξ1, ξ2 ∈
∂T X by ∠T (ξ1, ξ2).

Recall that the set underlying ∂∞X is the set of asymptote classes
of geodesic rays, and that this may be identified with the set of rays
leaving a given basepoint p ∈ X. If x1, x2 ∈ X, Y ⊂ X is a subset,
yi ∈ Y is a sequence with limi→∞ d(yi, p) = ∞, then the segments x1yi

converge to a ray x1ξ iff the segments x2yi converge to a ray x2ξ. Thus
the set of rays which can be obtained as limits in this fashion, as {yi}
ranges over all such sequences, is a collection of asymptote classes and
therefore determines a subset of ∂∞X, the limit set of Y , which we
denote by Λ(Y ).
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Lemma 2.1. If C ⊂ X is a closed convex subset, and p ∈ C, then
every ray pξ is contained in C, for ξ ∈ Λ(C).

Proof. This follows from the convexity of C and the definition of the
limit set, since we are at liberty to select the basepoint. �

Definition 2.2. A subset Y of a CAT (1) space Z is convex if it contains
every segment of the form ξ1ξ2, where ξ1, ξ2 ∈ Y and dZ(ξ1, ξ2) < π.

Lemma 2.3. Let X be a proper Hadamard space, and let C ⊂ X be
a closed convex subset. Then the limit set of C in ∂∞X determines a
convex subset of ∂T X, which is isometric to the Tits boundary of C,
viewed as a Hadamard space.

Proof. The isometric embedding C → X of Hadamard spaces induces
an isometric embedding ∂T C → ∂T X of Tits boundaries. Since ∂T C is
a CAT (1) space, the image of the embedding is convex. �

Lemma 2.4. If Γ y X is a discrete, cocompact, isometric action on
a Hadamard space X, and Γ fixes a point ξ ∈ ∂T X, then there is a
geodesic γ ⊂ X such that ξ ∈ ∂T γ and the parallel set P(γ) ⊂ X is
Γ-invariant.

Proof. We may assume that X contains no proper, closed, convex, Γ-
invariant nonempty subset, by applying Zorn’s lemma.

Note that any element g ∈ Z(Γ) is semi-simple and its minimum
displacement set, min(g) ⊂ X, is a closed, convex, and Γ-invariant
subset; therefore by assumption we have min(g) = X. Thus elliptic
elements in Z(Γ) act trivially on X and nonelliptic elements act by
Clifford translations, i.e. they translate along the R-factor of a product
splitting X = R× Z. Hence X admits a product structure

(2.5) X = En × Y

where Z(Γ) acts cocompactly by translations on En and trivially on Y .
Pick a point p ∈ X, and a finite generating set Σ ⊂ Γ. Let C :=

maxσ∈Σ d(σp, p). Note that the ray pξ ⊂ X lies in the closed convex
set

∆ := {x ∈ X | For all σ ∈ Σ, d(σx, x) ≤ C},
since for all g ∈ Γ and every x ∈ pξ, we have d(gx, x) ≤ d(gp, p)

because pξ and (gp)ξ are asymptotic rays. By a standard argument
the centralizer, Z(Σ) = Z(Γ), of the set Σ acts cocompactly on ∆,
which implies that pξ is contained in a finite tubular neighborhood of
an n-flat En×{y} of the product decomposition (2.5). Hence ξ ∈ ∂T En,
and this implies the lemma. �
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2.2. Affine and concave functions on convex sets.

Lemma 2.6. Let Z be a geodesic metric space with extendible geodesics.
Then any concave function Z → [0,∞) is constant.

Proof. Trivial. �

Lemma 2.7. Let Z be a CAT(-1)-space whose ideal boundary ∂∞Z
consists of at least two points. Suppose that there is no proper closed
convex subset of Z whose ideal boundary equals ∂∞Z. Then any con-
tinuous concave function f : Z → [0,∞) is constant.

Proof. We first observe that f is constant along each complete geodesic.
Furthermore, f is non-decreasing along each geodesic ray, and the re-
striction of f to a compact geodesic segment assumes its minimum at
one of the endpoints.

Note that, by assumption, Z contains at least one complete geodesic.
Let l be a complete geodesic and z ∈ Z be an arbitrary point. Denote
by ρ1, ρ2 : [0,∞) → Z the rays emanating from z and asymptotic to
the two ends of l. Then f is ≥ f(z) along each segment connecting
ρ1(t) to ρ2(t) for t ≥ 0. Since Z is CAT(-1) these segments converge to
the line l. The continuity of f then implies that f(l) ≥ f(z). Thus f
assumes on l its maximum which we denote by m.

It follows that f equals m on the union H1 of all lines in Z. Con-
sider the ascending sequence of subsets Hn ⊂ Z defined inductively
by requiring that Hn+1 is the union of all segments with endpoints in
Hn. Then the sequence of suprema sup(f |Hn) is non-decreasing. Hence
m = sup(f |H1) ≤ sup(f |Hn) ≤ m and f ≡ m on the closure of ∪n∈NHn.
This closure is a closed convex subset of Z with the same ideal bound-
ary and, by assumption, equals Z. �

By an affine function on a geodesic metric space we mean a function
whose restriction to each geodesic segment is an affine function.

Lemma 2.8. Let Z be a CAT(-1)-space whose ideal boundary ∂∞Z
consists of at least three points. Then any affine continuous function
f : Z → R is constant.

Proof. We first observe that the slope of f along a geodesic ray depends
only on the ideal point represented by it. Indeed, let ρ1, ρ2 : [0.∞) → Z
be two rays parametrized by unit speed. Since the geodesic segments
connecting ρ1(0) with ρ2(t) converge to the ray ρ1 it follows using con-
tinuity that the slope of f along ρ1 equals its slope along ρ2.

Since any two ideal points in ∂∞Z may be connected by a complete
geodesic in Z it follows that the slopes of f at any two ideal points have
opposite sign. Since ∂∞Z contains at least three points the slopes of f
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must be zero at all ideal points, i.e. f is constant along every geodesic
ray.

The same reasoning as in the proof of Lemma 2.7 above shows that
for any point z and any complete geodesic l in Z we have f(z) = f(l).
Thus f is constant. �

The following observation is a special case of the main result in
[Inn82] (which applies to complete Riemannian manifolds without any
curvature assumption).

Lemma 2.9. Let Z be a symmetric space of noncompact type and
higher rank without Euclidean de Rham factor. Then any affine con-
tinuous function f : Z → R is constant.

Proof. We may apply Lemma 2.8 to (nonflat) totally geodesic subspaces
of rank one and get that f is constant on any such subspace.

Let F be a maximal flat. Then f |F is affine. The previous remark
implies that the gradient of f |F at a point z ∈ F must be tangent to
every singular hyperplane H through z because the lines in F perpen-
dicular to H lie in a rank one subspace. Since Z has no Euclidean
factor the intersection of all these hyperplanes H is just the point z.
We conclude that f is constant along every maximal flat; since any two
points lie in a maximal flat, this implies that f is constant on Z. �

2.3. Asymptotic slopes of convex functions. Let Z be a Hadamard
space and f : Z → R a continuous convex function. For a unit speed
geodesic ray ρ : [0,∞) → Z we define the asymptotic slope of f along

ρ as slopef (ρ) := limt→∞
f(ρ(t))

t
∈ R ∪ {∞}.

Lemma 2.10. For any two asymptotic unit speed rays ρ1 and ρ2,
slopef (ρ1) = slopef (ρ2).

Proof. Since the segments connecting ρ2(0) with ρ1(t) Hausdorff con-
verge to ρ2 one estimates using the continuity of f that f(ρ2(t)) ≤
C + slopef (ρ1) · t for t ≥ 0 and hence slopef (ρ2) ≤ slopef (ρ1). Symme-
try implies equality. �

Thus we may speak of the asymptotic slope, slopef (ξ), at an ideal
point ξ ∈ ∂∞Z.

Lemma 2.11. slopef : ∂∞Z → R∪ {∞} is lower semicontinuous with
respect to the cone topology.

Proof. Consider a sequence of unit speed rays ρn with same initial
point which Hausdorff converges to the ray ρ. Since slopef (ρn) ≥
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f(ρn(t))−f(ρn(0))
t

for t ≥ 0 we obtain

lim inf
n→∞

slopef (ρn) ≥ f(ρ(t))− f(ρ(0))

t

t↗∞−→ slopef (ρ).

�
As a consequence, slopef attains a minimum if Z is locally compact.

Proposition 2.12. If slopef : ∂∞Z → R ∪ {∞} assumes negative
values then it has a unique minimum.

Proof. Let ξ1, ξ2 ∈ ∂∞Z be ideal points with slopef (ξi) ≤ −a < 0 and
∠T (ξ1, ξ2) ≥ ε > 0. Let ρi be unit speed rays emanating from the same
point o ∈ Z and asymptotic to the ideal points ξi. For the midpoints
m(t) of the segments ρ1(t)ρ2(t) holds

lim sup
t→∞

d(o,m(t))

t
≤ cos

∠T (ξ1, ξ2)

2
≤ cos

ε

2
.

On the other hand, f(m(t)) − f(o) ≤ −at for t ≥ 0. Using the
continuity of f in o, there exists δ > 0 such that f ≥ f(o) − 1 on the
ball Bδ(o). By convexity, we have f(m(t))− f(o) ≥ −1

δ
d(o,m(t)) and

so d(o,m(t)) ≥ δat. This implies that

lim inf
t→∞

d(o,m(t))

t
> 0

and hence ∠T (ξ1, ξ2) < π. The segments om(t) Hausdorff converge to
a ray asymptotic to the midpoint µ of ξ1ξ2 which therefore satisfies
slopef (µ) ≤ −a(cos ε

2
)−1.

It follows that any sequence (ξn) in ∂∞Z with slopef (ξn) ↘ inf slopef

is a Cauchy sequence with respect to the Tits metric. Hence slopef has
a unique minimum on ∂∞Z. �

2.4. Spherical buildings. We refer the reader to [KL97, Ron89, Tit74]
for further discussion of the material here.

We will be using the geometric definition of spherical buildings from
[KL97], which we now recall.

Let (S, W ) be a spherical Coxeter complex, so S is a Euclidean sphere
and W is a finite group generated by reflections acting on S. A spher-
ical building modelled on (S, W ) is a CAT (1)-space B together with a
collection A of isometric embeddings ι : S → B, called charts, which
satisfies properties SB1-2 described below and which is closed under
precomposition with isometries in W . An apartment in B is the image
of a chart ι : S → B; ι is a chart of the apartment ι(S).

SB1: Plenty of apartments. Any two points in B are contained in
a common apartment.
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Let ιA1 , ιA2 be charts for apartments A1, A2, and let C = A1 ∩ A2,

C ′ = ι−1
A2

(C) ⊂ S. The charts ιAi
are W -compatible if ι−1

A1
◦ ιA2|C′ is the

restriction of an isometry in W .

SB2: Compatible apartments. The charts are W -compatible.

2.5. Root groups. If B is a spherical building, and a ⊂ B is a root,
then the root group of a is the collection Ua of building automorphisms
of B which fix a pointwise, as well as any chamber σ ⊂ B such that
σ ∩ a is a panel π which is not contained in the wall ∂a. The building
B is Moufang if for every root a ⊂ B, the group Ua acts transitively
on the set of roots opposite a.

Properties of root groups:
• When all the join factors of B have dimension at least 1, then Ua

acts freely on the collection of roots opposite a.
• When X is a symmetric space of noncompact type and B := ∂T X,

then B is a Moufang building and G := Isomo(X) acts effectively on
B by building automorphisms, so we may view G as a subgroup of
Aut(B). Each root group of B is contained in G, and is a unipotent
subgroup [Tit74, pp. 77-78]. Furthermore, G is generated by the root
groups of B.

2.6. Groups acting on symmetric spaces. Let X be a symmetric
space of noncompact type, and let G := Isomo(X). We will require the
following well known facts [Mos55, BT71]:

• A subgroup H ⊂ G is Zariski dense if and only if H neither fixes
a point in ∂T X nor preserves a proper symmetric subspace.

• A proper subgroup H ( G with finitely many connected com-
ponents is not Zariski dense; in particular H must either fix a
point in ∂T X or preserve a proper symmetric subspace.

Remark 2.13. If a Zariski dense subgroup of a real simple group is not
dense in the usual topology, then it must be discrete.

Lemma 2.14. Let F ⊂ X be a maximal flat, and suppose K ⊂ G is a
subgroup fixing ∂∞F pointwise, and acting transitively on F . Then
• The fixed point set of K in ∂∞X is precisely ∂∞F .
• If ξ ∈ ∂∞X, ξ′ ∈ ∂T F is antipodal to ξ, and ξ̂ ∈ ∂T F is the

antipode of ξ′, then the closure of the K-orbit K(ξ) contains ξ̂.

Proof. The first assertion is implied by the second.
First assume that ξ is regular. Then there is a geodesic γ with

∂∞γ = {ξ, ξ′}, and hence if g ∈ K translates F in the direction ξ̂, we

get that gkξ converges to ξ̂ in the topology of ∂∞X.
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In the general case, if σ ⊂ ∂T X is a chamber containing ξ, then there
is a chamber σ′ ⊂ ∂T F containing ξ′ opposite to σ, and σ′ is opposite a
chamber σ̂ ⊂ ∂T F . By the regular case, the K-orbit of σ accumulates
on σ̂, which implies that the K-orbit of ξ accumulates on ξ̂. �

3. Top dimensional subbuildings in the boundary of a
symmetric space

In this section we prove:

Theorem 3.1. Suppose

(3.2) X = X1 × . . .×Xk

is a product of irreducible symmetric spaces of noncompact type, irre-
ducible Euclidean buildings with discrete affine Weyl groups, and Eu-
clidean spaces. Let B ⊂ ∂T X be a top dimensional subbuilding which is
closed with respect to the topology of the geometric boundary ∂∞X, and
which is not contained in the boundary of any proper subspace Y ⊂ X
of the form Y = Y1× . . .×Yk, where Yi ⊂ Xi is either a totally geodesic
subspace or a subbuilding, according to the type of Xi. Then there is a
join decomposition

B = B1 ◦ . . . ◦Bk

where Bi := B ∩∂T Xi, such that Bi = ∂T Xi unless Xi is an irreducible
rank 1 symmetric space of noncompact type.

We begin the proof by observing that if there is more than one factor
in the product decomposition (3.2), then by [KL97, Prop. 3.3.1], B and
∂T X will admit corresponding compatible join decompositions

B = B1 ◦ . . . ◦Bk, ∂T X = ∂T X1 ◦ . . . ◦ ∂T Xk,

and hence it is sufficient to prove the theorem for the irreducible factors
Xi separately. So henceforth we will assume that X is irreducible. If
X is Euclidean, then ∂T X is the only top dimensional subbuilding of
∂T X, and so this case is trivial.

3.1. The case when X is a Euclidean building. Let Y ⊂ X be
the union of the collection of apartments A ⊂ X such that ∂T A ⊂ B.
By a chamber in X we mean a top-dimensional simplex with respect
to the natural structure of the irreducible discrete Euclidean building
X as a simplicial complex.

Lemma 3.3. Any two chambers σ1, σ2 ⊂ Y lie in an apartment A ⊂ X
which is entirely contained in Y .



RIGIDITY OF INVARIANT CONVEX SETS IN SYMMETRIC SPACES 11

Proof. By the definition of Y , for i = 1, 2 there exists an apartment
Ai ⊂ X such that ∂T Ai ⊂ B and σi ⊂ Ai. For i = 1, 2, choose an
interior point pi ∈ σi, and consider the geodesic segment p1p2 ⊂ X.
By perturbing p2 slightly, if necessary, we may assume that the ∆mod-
direction of p1p2 is regular. We may prolong p1p2 to a complete regular
geodesic γ ⊂ X by concatenating it with rays p1ξ1 ⊂ A1, p2ξ2 ⊂ A2.
Since ∂T γ = {ξ1, ξ2} where ξi ∈ ∂T Ai ⊂ B are regular, there is a
unique apartment ∂T A ⊂ ∂T X containing ∂∞γ, and it is contained
in B. Then by the definition of Y we have A ⊂ Y , and since γ is
regular and ∂T γ ⊂ ∂T A, we get γ ⊂ A. This implies that σi ⊂ A, since
σi ∩ A ⊃ {pi} 6= ∅ is a subcomplex of X. �

The lemma implies that Y is a subbuilding of X with Tits boundary
B. By assumption we must therefore have B = ∂T X, which proves
Theorem 3.1 in this case.

3.2. X is an irreducible symmetric space of noncompact type.
We will assume that X has rank at least two, since otherwise there is
nothing to prove. The strategy of the proof is to use B to produce a
subgroup H ⊂ G which has no fixed point in ∂T X, which can be used
to tie B closely with X. When B is irreducible, H is generated using
“restricted” root groups, and when B is reducible H is generated by
transvections, and decomposes as a product.

We let W denote the Weyl group of X. Thus ∂T X is a spherical
building modelled on a spherical Coxeter complex (S, W ). We let WB ⊂
W denote the sub-Coxeter group defining a thick building structure on
B, see [KL97, sec. 3.7]; thus each WB-wall in B lies in at least 3 roots
(or half-apartments) of B.

Case 1. The subbuilding B is irreducible. Our first step is to show
that the Moufang property restricts to top dimensional irreducible sub-
buildings. Let a ⊂ B be a WB-root in B. Let Ua ⊂ Aut(∂T X) denote
the root group of a (see section 2.5).

Definition 3.4. The restricted root group of a is defined to be the
subgroup UB

a ⊂ Ua which preserves the subbuilding B ⊂ ∂T X.

Lemma 3.5. UB
a acts transitively on the collection of roots in B op-

posite to a.

Proof. Pick two WB-roots a1, a2 ⊂ B opposite a. Since ∂T X is Mo-
ufang, there is a unique g ∈ Ua such that g(a1) = a2. Let B′ :=
B ∩ g−1(B). Note that B′ ⊂ B is a convex subset (see Definition 2.2)
containing the apartment a∪ a1; therefore by [KL97, Prop. 3.10.3], B′



12 BRUCE KLEINER AND BERNHARD LEEB

is a top dimensional subbuilding of B. Let σ ⊂ a be a W -chamber dis-
joint from the boundary ∂a, and for i = 1, 2 let σi ⊂ ai be the chamber
in ai opposite σ; likewise, let π ⊂ σ be a panel (a codimension 1 face)
of σ, and for i = 1, 2 let πi ⊂ σi be the opposite panel in ai. Now for
each chamber σ′ ⊂ B incident to σ along π, for each i = 1, 2 there is
a unique chamber σ′i incident to σi along πi, which corresponds to σ′

under the correspondence of [KL97, Prop. 3.6.4]; clearly g(σ1) = σ2,
and hence g(σ′1) = σ′2. This implies that σ′1 ⊂ B′. Now we may argue
as in the proof of [KL97, Prop. 3.12.2] to see that B′ = B, and there-
fore g(B) ⊂ B; applying the same reasoning to g−1 we conclude that
g(B) = B. Thus we have shown that UB

a acts transitively on the roots
in B opposite a. �

Now pick a WB-wall ω ⊂ B, and let ∂T X(ω) ⊂ ∂T X be the subbuild-
ing consisting of the union of the apartments containing ω; similarly,
let B(ω) be the subbuilding of B determined by ω. Thus if F ⊂ X
is a singular flat with ∂T F = ω, then the parallel set P(F ) has Tits
boundary ∂T X(ω), the product splitting P(F ) = F × Y induces a join
decomposition ∂T X(ω) = ω ◦ ∂T Y , and Y ⊂ X is a rank 1 symmetric
subspace of dimension > 1. This join decomposition induces a join
decomposition B(ω) = ω ◦ Λ, where Λ := ∂T Y ∩B.

Lemma 3.6. Λ is a compact connected manifold of positive dimension,
and each restricted root group UB

a , when viewed as a subset of G =
Isomo(X), is connected.

Proof. We observe that for each root a ⊂ ∂T X with ∂a = ω, the root
group Ua acts freely transitively by homeomorphisms on ∂∞Y \ {ξ},
where a = ω ◦ ξ. Thus if we choose ξ′ ∈ ∂T Y \ {ξ} and let a′ := ω ◦ ξ′,
then the map φ : Ua → ∂∞Y \{ξ} defined by φ(g) := gξ′ is a continuous
bijection between manifolds, and is therefore a homeomorphism. Now
suppose ξ, ξ′ ∈ Λ, so that a, a′ ⊂ B. The restricted root group UB

a ⊂ Ua

acts simply transitively on Λ \ {ξ}, so φ restricts to a homeomorphism
UB

a → Λ \ {ξ}. Thus UB
a is a closed subgroup of Ua, and is therefore

a manifold, which means that Λ \ {ξ} is also a manifold. Note that
|Λ| ≥ 3, since Λ is in bijection with the roots of B containing ω. Since
ξ ∈ Λ was chosen arbitrarily, it follows that the group generated by
the collection of restricted root groups {UB

a | a = ω ◦ ξ, ξ ∈ Λ}, acts
transitively on Λ. Thus Λ is a compact manifold.

Since Ua is unipotent, every g ∈ UB
a \ {e} has infinite order. This

implies that Λ is an infinite set; being a compact manifold, it must
have positive dimension.
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If ξ ∈ Λ and a := ω ◦ ξ, then UB
a acts transitively on Λ \ {ξ} while

preserving the connected component of Λ containing ξ. It follows that
Λ is connected.

For any WB root a = ω◦ξ, the restricted root group UB
a is homeomor-

phic to Λ \ {ξ}; since Λ is a compact connected manifold of dimension
≥ 1, this is obviously connected. �

Let Hω ⊂ G be the subgroup generated by the restricted root groups
UB

a , where ∂a = ω. Since each UB
a is connected, so is Hω. As each

restricted root group is unipotent, Hω acts trivially on the flat factor
F of P(F ) = F × Y .

Lemma 3.7. There is an Hω-invariant symmetric subspace Z ⊂ Y
such that ∂T Z = Λ, and the image of Hω in Isom(Z) is the identity
component of Isom(Z). Moreover, if ξ1, ξ2 ∈ Λ, and γ ⊂ Y is the
geodesic asymptotic to {ξ1, ξ2}, then there is a 1-parameter subgroup of
Hω which acts on F × γ by translating in the γ-direction.

Proof. First observe that Hω has no fixed points in ∂∞Y : if ξ ∈ Λ and
a := ω◦ξ, then UB

a is a unipotent group whose only fixed point in ∂∞Y
is ξ.

Let Z ⊂ X be a minimal Hω-invariant symmetric subspace of Y .
Clearly Z cannot be a single point, because it is invariant under the
unipotent groups UB

a . Since Hω has a connected image H̄ω in Isom(Z),
and no fixed points in ∂∞Z, it follows that dim Z > 1, and hence by
section 2.6, H̄ω is the entire identity component of Isom(Z).

If ξ ∈ Λ, a := ω◦ξ, and g ∈ UB
a \{e}, then every orbit of {gi} in ∂∞Y

accumulates on ξ; since ∂∞Z is closed and Hω-invariant, it follows that
ξ ∈ ∂∞Z. Both Λ and ∂∞Z are Hω-orbits, so Λ = ∂∞Z as claimed.

The last statement follows immediately from the fact that Λ = ∂∞Z,
and Isom(Z) contains the transvection along the geodesic γ. �

Let H ⊂ G be the subgroup generated by the restricted root groups
UB

a , where a ranges over all WB-roots in B. H is a connected subgroup
of the Lie group G since it is generated by connected subgroups.

For a maximal flat F ⊂ X with ∂T F ⊂ B let HF ⊂ H be the sub-
group of H which fixes ∂T F pointwise. Thus each g ∈ HF acts by a
translation on F . By the previous lemma, for each WB-wall ω ⊂ ∂T F ,
there is a 1-parameter subgroup of HF which translates in the direc-
tion orthogonal to ω; as B is irreducible, these 1-parameter subgroups
generate a subgroup of HF which acts on F as the full translation
group. Lemma 2.14 then implies that the fixed point set of H in ∂T X
is contained in the intersection of the apartments of B, which is empty.
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If H preserves a symmetric subspace Y ⊂ X, then ∂T Y ⊂ ∂T X
is a proper H-invariant subbuilding which defines a closed subset of
∂∞X. Each ξ′ ∈ B is opposite to some ξ ∈ ∂T Y , and hence by Lemma
2.14, any antipode of ξ′ in B belongs to ∂T Y . Thus B ⊂ ∂T Y , forcing
Y = X.

Thus H is a connected subgroup of G which neither fixes a point
in ∂T X nor preserves a proper symmetric subspace of X, and so we
conclude that H = G, see section 2.6. Therefore B = ∂T X.

Case 2. The subbuilding B is reducible.

Lemma 3.8. B cannot have a nontrivial spherical join factor.

Proof. Let S ⊂ B be a maximal spherical join factor of B, and let
F ⊂ X be a flat with ∂T F = S. Then the boundary of the parallel set
P(F ) contains B. By our assumption we may conclude that X = P(F ).
However, X is an irreducible symmetric space of noncompact type, so
this is a contradiction. �

Let
B = B1 ◦ . . . ◦Bl

be the unique join decomposition of B into irreducible nonspherical
join factors. By case 1 above we are done if there is only one factor, so
we assume that l > 1.

For each i, we let Hi ⊂ G be the closure of the subgroup generated by
transvections along geodesics whose ideal endpoints lie in Bi. Note that
Hi is connected. Since transvections along parallel geodesics coincide,
and transvections along geodesics lying in a single flat commute, it
follows that Hi commutes with Hj when i 6= j. Let H := H1× . . .×Hl.

Lemma 3.9. (i) H does not fix any point in ∂T X.
(ii) H preserves no proper symmetric subspace of X.

Proof. (i) Pick a maximal flat F ⊂ X such that ∂T F ⊂ B. As H
contains the full transvection group of F , Lemma 2.14 implies that the
fixed point set of H on ∂T X is contained in ∂T F . This means that the
fixed point set is contained in the intersection of the apartments of B;
this intersection is empty since B has no spherical join factor.

(ii) Suppose that H preserves a symmetric subspace Y ⊂ X. For an
apartment A in B consider the maximal flat F in X with ∂T F = A.
Since the whole group of transvections along F belongs to H the flat
F has finite Hausdorff distance from Y and A ⊂ ∂T Y . Hence B ⊂ ∂T Y
and our assumption on B implies that Y = X. �

We must therefore have H = H1 × . . . × Hl = G, see section 2.6.
This contradicts the fact that G is a simple Lie group.
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4. Convex sets preserved by Zariski dense groups

Theorem 4.1. Let X be a symmetric space of noncompact type with
de Rham decomposition X = X1 × . . . × Xk, let πi : X → Xi be the
projection map, and G = Isomo(X) be the associated connected semi-
simple Lie group. We denote by X = Y1× Y≥2 the decomposition of X
into (the product of the) rank 1 and the higher rank factors. Suppose
Γ ⊂ G is a Zariski dense subgroup which preserves a closed convex
subset C ⊂ X. Then C is of the form

(4.2) C1 × Y≥2,

where C1 ⊂ Y1 is closed convex. Furthermore, for each de Rham factor
Xi of Y1, there is a Γ-invariant subset Ĉi ⊂ Xi such that

• Ĉi is the closed convex hull of its limit set.
• |∂∞Ĉi| = ∞,

• Ĉ1 :=
∏

i Ĉi ⊂ C1.

• ∂∞Ĉ1 = ∂∞C1.

Proof. By Lemma 2.3, the limit set Λ(C) = ∂∞C is a (cone topology)
closed convex subset containing the limit set of Γ. By Benoist [Ben97],
the limit set of Γ contains an open neighborhood (with respect to the

topology of ∂T X) of a pair of antipodal regular points ξ, ξ̂ ∈ ∂T X.
Hence ∂T C contains an apartment in ∂∞X. By [KL97, Prop. 3.10.3]
it follows that ∂T C is a top dimensional subbuilding of ∂T X.

Suppose ∂T C ⊂ ∂T Y for some proper symmetric subspace Y ⊂ X.
For every apartment A ⊂ ∂T C, there is a unique maximal flat F ⊂ X
with ∂T F = A, and so F ⊂ Y ; likewise, we have F ⊂ gY for all g ∈ Γ
which implies that F ⊂ ∩g∈ΓgY . Since A was chosen arbitrarily, we
conclude that ∩g∈ΓgY ⊂ X is a Γ-invariant proper symmetric subspace,
which contradicts the Zariski density of Γ.

Theorem 3.1 applies, so the Tits boundary ∂T C splits as a join ∂T C =
B1 ◦ . . . ◦ Bk, where Bi = ∂T Xi when Xi has rank at least two, and
|Bi| = ∞ for each i, by the Zariski density of Γ.

Applying Lemma 2.1, it follows that C splits as in (4.2).

Define Ĉi ⊂ Xi to be the closed convex hull of Bi; when Rank(X) ≥ 2

then Ĉi = Xi. Applying Lemma 2.1, it follows that Ĉ1 :=
∏

i Ĉi ⊂
C1. �

5. Invariant convex subsets in symmetric spaces with
Euclidean deRham factors

Theorem 5.1. Let Y be a symmetric space of noncompact type without
Euclidean de Rham factor, and suppose Γ ⊂ Isom(Y )× Isom(En) is a
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subgroup whose projection πY (Γ) ⊂ Isom(Y ) is Zariski dense in the
identity component Isomo(Y ). If C ⊂ X := Y × En is a Γ-invariant
closed convex set, then either C = πY (C) × En or there is a proper
Γ-invariant affine subspace A ⊂ En (i.e. A is preserved by the induced
action of Γ on En).

Proof. We denote by Sh := πY (C) the shadow of C in Y . For every
point y ∈ Sh we consider the slice ({y} × En) ∩ C =: Cy. Since C is
closed, the boundary at infinity ∂T Cy does not depend on y and it is
a closed convex subset D of the round (n − 1)-sphere ∂T En. We may
assume that it is a proper subset because otherwise C = Sh×En and
we are done.

If the Cy split off an Rk-factor, 1 ≤ k < n, then C itself splits
off an Rk-factor. If E ′ ⊂ En is the maximal Euclidean factor and
En = E ′ ×E ′′ a splitting then this splitting is preserved by Γ. We can
therefore reduce to the case that the Cy have no Euclidean factor.

Case 1: The slices Cy are unbounded. The set D ⊂ ∂T En has diam-
eter < π and hence a well-defined center ζ which must be fixed by Γ.
Let bζ denote the Busemann function on X associated to ζ. For every
γ ∈ Γ the difference bζ(γ ·) − bζ equals a constant ρ(γ) and the map
ρ : Γ → R is a group homomorphism.

The restriction of bζ to Cy is bounded above and proper because
∂T Cy is contained in the open ball Bπ

2
(ζ). We may therefore assign to

each y ∈ Sh the bottom height of the slice Cy in the direction ζ defined
as h(y) := min(−bζ |Cy). The function h : Sh → R is convex. We
consider the asymptotic slope function slopeh : ∂T Sh → R ∪ {∞}, see
section 2.3. It is Γ-invariant. If the homomorphism ρ is nontrivial then
slopeh assumes also negative values, and by Proposition 2.12 it has a
unique minimum. This minimum must be fixed by Γ, a contradiction
to the Zariski density of πY (Γ) in Isom(Y ). Therefore ρ must be trivial,
and the level sets of bζ yield Γ-invariant hyperplanes in En.

Case 2: The slices Cy are bounded. We pick an ideal point ζ ∈ ∂T En.
As above, measuring the height in the direction of ζ, we can consider
the convex function bot : Sh → R given by bot(y) := min(−bζ |Cy) and
the concave function top : Sh → R given by top(y) := max(−bζ |Cy).
both functions are continuous because C is closed.

We now use the structure Theorem 4.1 for convex sets invariant under
a Zariski dense group. It implies that ∂T Sh splits as the spherical join
of the boundaries of the higher rank factors and of infinite subsets in
the boundaries of the rank one factors. In particular, ∂∞ Sh has a
well-defined and therefore πY (Γ)-invariant convex hull CH(∂∞ Sh) in
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Y which is the product of the higher rank factors of Y with the closed
convex hulls of the subsets in the boundaries of the rank one factors.

Lemma 2.6 applied to the higher rank factors and Lemma 2.7 applied
to the rank one factors imply that the continuous concave function
top− bot : Sh → [0,∞) is constant on CH(∂∞ Sh). It follows that
the restrictions of top and bot to CH(∂∞ Sh) are affine . According to
Lemmas 2.9 and 2.8 both functions are constant on CH(∂∞ Sh).

Since the values of top(y) (or bot(y)) for all directions ζ determine
the slice Cy it follows that the slices Cy equal the same compact set B ⊂
En for all y in the πY (Γ)-invariant subset CH(∂∞ Sh). In particular, the
action of Γ on En has bounded orbits and therefore a fixed point. �

6. The convex cocompact case

In this section we prove:

Lemma 6.1. Let X = En × Y , where Y is a symmetric space of
noncompact type. If Γ ⊂ Isom(X) is a discrete convex cocompact group
which does not preserve any proper symmetric subspace of X, then the
fixed point set of Γ in ∂T X is contained in the Tits boundary of the
Euclidean factor En.

Proof. Let C be a Γ-invariant closed convex set on which Γ acts co-
compactly. Suppose Γ fixes a point ξ ∈ ∂∞X \ ∂∞En. The Γ-action
respects the join structure of ∂T X, so we may assume without loss of
generality that ξ ∈ ∂∞Y .

Recall that since Γ fixes ξ, the Γ-translates of the Busemann function
bξ differ by a constant, and the map Γ 3 g 7→ g∗(bξ) − bξ defines a
homomorphism ρ : Γ → R.

Suppose first that the homomorphism ρ is trivial, i.e. bξ is Γ-invariant.
Then bξ|C is bounded and attains a minimum. The minimum set of
bξ|C is a convex subset C1 ⊂ C lying in a horosphere. By triangle
comparison one concludes that if p1, p2 ∈ C1, then the ideal geodesic
triangle ξp1 ∪ p1p2 ∪ p2ξ bounds a flat half-strip. Thus C1 is contained
in the parallel set P(γ) of a geodesic γ ⊂ En×Y which is parallel to the
Y factor. Since C1 is Γ-invariant it follows that Γ preserves a proper
symmetric subspace of X, which is a contradiction. Therefore ρ is a
nontrivial homomorphism and bξ(C) = R.

Consider a group element g ∈ Γ which translates the Busemann
function bξ. We may assume that bξ(gx) = bξ(x)−a for all x ∈ X with
a > 0. As the action is discrete, Γ acts on C by semi-simple isometries,
and so g is an axial isometry. Pick a point x0 ∈ C and let r : [0,∞) →
X be the unit speed ray starting in x0 and asymptotic to ξ. Then for
xn = gnx0 holds bξ(xn) = bξ(r(na)). We obtain that d(xn, r(na)) ≤
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n d(x1, r(a)) and ∠r(na)(xn, x0) ≥ π
2
. Triangle comparison implies for

the forward ideal endpoint of the g-axes ξ1 := limn→∞ xn that

tan ∠T (ξ1, ξ) ≤
d(x1, r(a))

a

and thus ∠T (ξ1, ξ) < π
2
.

Since ξ1 ∈ ∂∞C we have ∠T (ξ, ∂∞C) < π
2

there is a unique η ∈ ∂∞C
at minimum Tits distance from ξ, and so η is fixed by Γ. As ∠T (η, ξ) <
π
2
, it follows that η does not lie in ∂T En.
We now apply Lemma 2.4 to the convex set C. We obtain that the

convex set C contains a Γ-invariant parallel set (with respect to C)
Z := P(γ) ⊂ C, where ∂T γ 3 η. Therefore Γ preserves the parallel set
of γ in X, which is a contradiction. �

7. The proof of Theorems 1.1 and 1.3

Proof of Theorem 1.1. This follows immediately from Theorem 5.1
and Theorem 4.1.

Proof of Theorem 1.3. By Lemma 6.1 and the fact that X contains
no proper Γ-invariant symmetric subspace, the fixed point set of Γ is
contained in En. Therefore the projection of Γ to Isom(Y ) is Zariski
dense in Isomo(Y ), since otherwise it would preserve a proper symmet-
ric subspace Y ′ ⊂ Y , contradicting our assumption on X. The theorem
then follows from Theorem 1.1. �

8. Quasiconvex sets and their stabilizers

Definition 8.1. A subset Q of a Hadamard space X is K-quasiconvex
if for every pair of points x1, x2 ∈ X, the segment x1x2 is contained in
the closed tubular neighborhood NK(Q). We say that Q is quasiconvex
if it is K-quasiconvex for some K < ∞.

Lemma 8.2. Let Q be a K-quasiconvex subset of a Hadamard space
X.

1. For all r ≥ 0, the closed r-neighborhood N r(C) is K-quasiconvex.
2. For all p ∈ Q, ξ ∈ Λ(Q), the ray pξ is contained in NK(Q).
3. The limit set Λ(Q) ⊂ ∂∞X is a closed subset with respect to the

topology of ∂∞X which defines a convex subset of ∂T X.

Proof. 1 and 2 follow immediately from triangle comparison. To see 3,
pick p ∈ Q, ξ1, ξ2 ∈ Λ(Q) with ∠T (ξ1, ξ2) < π, and note that if η ∈ ∂T X
lies on the segment ξ1ξ2 ⊂ ∂T X, then the ray pη may be constructed as
a limit of geodesic segments pxj ⊂ X, where xj ∈ N2K(Q); this clearly
implies that η ∈ Λ(Q). �
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Using this lemma, we may adapt Theorem 4.1 to the quasiconvex
case:

Theorem 8.3. Let X be a symmetric space of noncompact type with de
Rham decomposition X = X1× . . .×Xk, let πi : X → Xi be the projec-
tion map, and G = Isomo(X) be the associated connected semi-simple
Lie group. We denote by X = Y1×Y≥2 the decomposition of X into (the
product of the) rank 1 and the higher rank factors. Suppose Γ ⊂ G is a
Zariski dense subgroup which preserves a closed K-quasiconvex subset
Q ⊂ X. Then

(8.4) Q1 × Y≥2 ⊂ NK(Q),

where Q1 := πY1(Q). Furthermore, for each de Rham factor Xi of Y1,

there is a Γ-invariant subset Ĉi ⊂ Xi such that

• Ĉi is the closed convex hull of its limit set.
• |∂∞Ĉi| = ∞,

• Ĉ1 :=
∏

i Ĉi ⊂ NK′(Q1), where K ′ depends only on K and X.

• ∂∞Ĉ1 = Λ(Q1).

Proof. The proof is almost identical to the proof of Theorem 4.1, so we
simply note the necessary changes. First, one uses Lemma 8.2 instead
of Lemma 2.3 to see that Λ(Q) defines a convex subset of ∂T X. In the
second to last paragraph of the proof, one invokes Lemma 8.2 again
to obtain (8.4). In the last paragraph, one uses Lemma 8.2, together

with the fact that every point in Ĉi lies within a uniformly bounded
distance of a geodesic with ideal endpoints in ∂∞Ĉi. �

Next, we adapt Theorem 5.1 to quasiconvex sets.

Theorem 8.5. Let Y be a symmetric space of noncompact type without
Euclidean de Rham factor, and suppose Γ ⊂ Isom(Y )× Isom(En) is a
subgroup whose projection πY (Γ) ⊂ Isom(Y ) is Zariski dense in the
identity component Isomo(Y ). If Q ⊂ X := Y × En is a Γ-invariant
closed K-quasiconvex set, then either πY (Q) × En ⊂ NK(Q) or there
is a proper Γ-invariant affine subspace A ⊂ En.

Proof. We assume that there exists no proper Γ-invariant affine sub-
space A ⊂ En. By Lemma 8.2, it suffices to show that Λ(Q) contains
the subset ∂∞En of ∂∞X. The argument is very similar to the proof of
Theorem 5.1.

As before, we define the shadow of Q as Sh := πY (Q). It is a K-
quasiconvex subset of Y . For R ≥ 0 and a point y ∈ NR(Sh) we define
the slice QR

y := NR+K(Q) ∩ π−1
Y (y). It has limit set Λ(Q) ∩ ∂∞En

independent of y and R.
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Case 1: The slices QR
y are unbounded, i.e. Λ(Q)∩∂∞En 6= ∅. We may

assume that Λ(Q)∩∂∞En has diameter < π because otherwise we could
reduce the dimension of the Euclidean factor En. Hence Λ(Q)∩ ∂∞En

has a well-defined center ζ. The height function h(y) := min(−bζ |QK
y
)

defined on NK(Sh) is merely quasiconvex in the sense that its super-
graph is 2K-quasiconvex. Thus the limit set of the supergraph is a
convex subset of ∂T (Y ×R) by Lemma 8.2 and we can use it to define
the asymptotic slope function slopeh on Λ(Sh). As before we conclude
that the homomorphism ρ must be trivial and obtain a contradiction.

Case 2: The slices QR
y are bounded, i.e. Λ(Q)∩∂∞En = ∅. We rework

the argument from the convex case in a different language. Observe
first that for y1, y2 ∈ NR(Sh) and a point y ∈ y1y2 every segment x1x2

connecting points xi ∈ QR
yi

must intersect QR+K
y . This has the following

implications. If ρ : [0,∞) → Y is a ray asymptotic to Λ(Sh) with initial
point ρ(0) ∈ NR(Sh) – and is therefore contained in NR+K(Sh) – then
for every t ≥ 0 there is an isometric embedding

(8.6) QR
ρ(0) ↪→ QR+K

ρ(t)

induced by a translation. Here we regard the slices as subsets of En via
the projection πEn . In particular, for a complete geodesic c : R → Y
moving in NR(Sh) every QR

c(t) embeds into every QR+K
c(t′) . It follows that

diam(QR
c(t)) is bounded uniformly in t. Furthermore, for t1 < 0 < t2

and xt1 ∈ QR
c(t1) the cone consisting of all rays initiating in xt1 and

intersecting QR+K
c(0) contains QR

c(t2). Letting t1 → −∞ and t2 → ∞ we

deduce that the limit limt1→−∞ xt1 in ∂T X exists. Analogously, for any
choice of points xt2 ∈ QR

c(t2), t2 ≥ 0, the limit limt2→∞ xt2 exists.

Note that each point η ∈ Λ(Sh) has antipodes in Λ(Sh), cf. Theorem
8.3, and thus is the ideal endpoint of a geodesic c running in some
neighborhood NR(Sh). Our previous consideration yields more gener-
ally that for any η ∈ Λ(Sh), any sequence of points yn ∈ NR(Sh) with
yn → η and points xn ∈ QR

yn
the limit limn→∞ xn =: ξ(η) exists and is

an interior point of the hemisphere η ◦ ∂T En. Hence Λ(Q) is the image
of the “section” ξ : Λ(Sh) → ∂T X − ∂T En. We observe that ξ maps
antipodes to antipodes. The arguments used to proving Lemmas 2.8
and 2.9 together with the convexity of Λ(Q) show that Λ(Q) must be
horizontal, that is, Λ(Q) ⊂ ∂T Y , where we regard ∂T Y as a subset of
∂T X.

The embeddings of slices (8.6) are now induced by the identity, i.e.
πEn(QR

ρ(0)) ⊆ πEn(QR+K
ρ(t) ). For a geodesic c in NR(Sh) we have that

QR
c(t) ⊆ QR+K

c(t′) for all t, t′ ∈ R. If ρ is a ray strongly asymptotic to
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c, i.e. limt→∞ d(ρ(t), c(t + a)) = 0 for some a ∈ R, one obtains that
QR

ρ(0) ⊆ QR+2K
c(t) for all t.

Invoking our structural result Theorem 8.3 and arguing in the spirit
of Lemmas 2.6 and 2.7 we conclude that for sufficiently large R the
union of slices ∪y∈Ĉ1×Y≥2

πEn(QR
y ) is a bounded subset of En. It follows

that the action of Γ on En preserves a bounded subset, namely the set
∪γ∈ΓπEn(QR

γy0
) with y0 ∈ Ĉ1 × Y≥2, and hence fixes a point. This is a

contradiction and concludes the proof of the Theorem. �

Combining Theorems 8.3 and 8.5, we obtain:

Theorem 8.7. Let X = En × Y , where Y is a symmetric space of
noncompact type, and let X = En × Y1 × Y≥2 denote the decompo-
sition of X into the Euclidean factor, the product of the irreducible
rank 1 factors, the product of the higher rank factors. Suppose Γ ⊂
Isom(X) = Isom(En) × Isom(Y ) is a subgroup whose projection to
Isom(Y ) is Zariski dense in the identity component Isomo(Y ), and
whose projection to Isom(En) does not preserve a proper affine subspace
of En. If Q ⊂ X := En × Y is a Γ-invariant closed K-quasiconvex set
and Q1 := πY1(Q), then En × Q1 × Y≥2 ⊂ NK(Q). Furthermore, for

each de Rham factor Xi of Y1, there is a Γ-invariant subset Ĉi ⊂ Xi

such that

• Ĉi is the closed convex hull of its limit set.
• |∂∞Ĉi| = ∞,

• Ĉ1 :=
∏

i Ĉi ⊂ NK′(Q1), where K ′ depends only on K and X.

• ∂∞Ĉ1 = Λ(Q1).
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