RIGIDITY OF INVARIANT CONVEX SETS IN
SYMMETRIC SPACES

BRUCE KLEINER AND BERNHARD LEEB

ABSTRACT. The main result implies that a proper convex subset
of an irreducible higher rank symmetric space cannot have Zariski
dense stabilizer.

1. INTRODUCTION

In this paper we study convex subsets of symmetric spaces, and their
stabilizers. The main results show that in the higher rank case convex
sets are strongly restricted, and under mild assumptions can only arise
from rank 1 constructions. This rigidity phenomenon for convex subsets
is yet another example of a rigidity property enjoyed by higher rank
symmetric spaces that has no analog for rank 1 symmetric spaces.

One can generate a supply of convex subsets of any Hadamard space
by starting with geodesic segments, geodesic rays, complete geodesics,
and horoballs, and then taking tubular neighborhoods and intersec-
tions. When X is a Hadamard manifold with pinched negative curva-
ture convex subsets are abundant: by a theorem of Anderson [And83],
any closed subset A of the geometric boundary 0., X is the limit set of a
closed convex subset Y C X. On the other hand, for general Hadamard
spaces (or manifolds) it can be difficult to control the convex hull of
even “small” subsets, like the union of three rays.

A group I' of isometries of a Hadamard space X is conver cocompact
if there is a I'-invariant convex subset C' C X with compact quotient
C/T. Discrete convex cocompact subgroups of the isometry group of
hyperbolic 3-space are an important class in the theory of Kleinian
groups; basic examples are uniform lattices, Schottky groups and quasi-
Fuchsian groups. Analogous examples exist in Isom(H™), as well as
the isometry groups of other rank 1 symmetric spaces. In a higher
rank symmetric space of noncompact type, one can produce examples
by taking products of uniform lattices and rank 1 convex cocompact
groups. In 1994, Corlette asked if this was essentially the only way
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to produce discrete convex cocompact groups. The answer is yes, see
Theorem 1.3 below; in fact the theorem is proved by reducing it to the
case of convex subsets with Zariski dense stabilizer:

Theorem 1.1. Let X = E" x Y, where Y is a symmetric space of
noncompact type, and let X = E" x Y; X Y>o denote the decompo-
sitton of X nto the Fuclidean factor, the product of the irreducible
rank 1 factors, the product of the higher rank factors. Suppose I' C
Isom(X) = Isom(E") x Isom(Y) is a subgroup whose projection to
Isom(Y') is Zariski dense in the identity component Isom,(Y), and
whose projection to Isom(E"™) does not preserve a proper affine sub-
space of E™. If C' C X :=E™ x Y s a ['-invariant closed conver set,
then C = E" x () X Ysq9, where Cy C Y; is a closed convex subset.
Furthermore, for each de Rham factor X; of Y1, there is a I'-invariant
subset CA'z C X, such that

e C; is the closed convex hull of its limit set.
hd |aooéz| = 00,

L] él = Hzél C Cl.

® 80001 = 80001

We recall that by convention, a symmetric space of noncompact type
has no Euclidean de Rham factor. Note that a subgroup of Isom,(Y’) is
Zariski dense if and only if it neither fixes a point in the Tits boundary
OrY nor preserves a proper symmetric subspace of Y.

Corollary 1.2. If X is a symmetric space of noncompact type with no
rank 1 de Rham factors and I' C Isom,(X) is a Zariski dense subgroup,
then X contains no proper closed I'-invariant convex subsets.

For discrete convex cocompact groups, we have the following struc-
tural result:

Theorem 1.3. Let X = E" x Y, where Y is a symmetric space of
noncompact type. Suppose I' C Isom(X) = Isom(E") x Isom(Y') is a
discrete subgroup acting cocompactly on a closed convex subset C' C X,
and assume I does not preserve any proper symmetric subspace of X.
Then T' projects to a subgroup of Isom(Y') which is Zariski dense in
Isom,(Y'), and the conclusions of Theorem 1.1 apply to C.

If a convex cocompact subgroup I' C Isom(X) preserves a proper
symmetric subspace Z C X, then it acts convex cocompactly on Z —
just intersect a sufficiently big tubular neighborhood of a I'-invariant
convex set with Z. Therefore there is no loss of generality in assuming
X contains no proper I'-invariant symmetric subspace.
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Corollary 1.4. If X is a symmetric space of noncompact type with no
rank 1 de Rham factors, and I' C Isom(X) is a discrete subgroup acting
cocompactly on a closed convex subset C' C X, then either C' = X and
[ is a uniform lattice in Isom(X), or I' preserves a proper symmetric
subspace of X.

We give a brief outline of the proof of Theorem 1.1 in the case the
Euclidean factor is absent, and Y is an irreducible higher rank sym-
metric space. The first step is to apply a Theorem of Benoist [Ben97],
which implies one may find an open neighborhood U of a pair of antipo-
dal points &1, & in the Tits boundary dr X, such that U is contained
in the limit set of I". Applying a result from [KL97], we deduce that
the geometric boundary of C' is a top dimensional subbuilding B of
the Tits boundary of X, which is a closed subset with respect to the
topology of the geometric boundary d,,X. The main step in the paper,
implemented in Theorem 3.1, is to show that any such building is con-
tained in the geometric boundary of a proper symmetric subspace Y,
unless it coincides with 0rX; the Zariski density assumption rules out
the former possibility in the case at hand. We remark that Theorem
3.1 applies to products of symmetric spaces and Euclidean buildings,
and may be of independent interest.

In view of the results in this paper one may wonder whether suffi-
ciently large convex sets in symmetric spaces of noncompact type or in
spherical buildings (such as Tits boundaries of symmetric spaces) are
rigid.

Question 1.5. Suppose C' C B is a convex subset of a spherical build-
ing. If C' does not have circumradius < 7, must C itself be a spherical
building?

It is unclear what one should expect here. A. Balser and A. Lytchak
[BL] proved a partial result regarding convex subsets invariant under a
group action, namely if dim(C') < 2 and C is not a spherical building
then Isom(C') has a fixed point in C.

After the first version of this paper was written, Quint informed
the authors of very interesting related work [Qui04] on Zariski dense
subgroups of semi-simple groups. His paper addresses an alternate defi-
nition of convex cocompact groups which is equivalent to the usual def-
inition for rank 1 symmetric spaces but differs from ours in the higher
rank case; for this reason it is difficult to make a direct comparison
between the results of [Qui04] and the theorems above. We mention
that his main result also applies to discrete subgroups of semi-simple
p-adic groups.
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In the last section of the paper, we discuss a variant of Theorem 1.1
for quasiconvex subsets.

The authors proved slightly weaker versions of Theorems 1.1 and 1.3
in 1998, and spoke publicly about them in the subsequent year.

Acknowledgement. The authors would like to thank Andreas Balser
and the referee for helpful remarks and Gopal Prasad for bringing ref-
erence [BT71] to our attention.
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2. PRELIMINARIES

2.1. Hadamard spaces. We recommend [Bal95, BH99, KL97| as ref-
erences for Hadamard space facts.

The term Hadamard space is a synonym for a C'AT'(0)-space.

If X is a Hadamard space, we denote the geometric boundary by
0 X, the Tits boundary by dr X, and the Tits angle between &;,&; €
orX by 4T(§1,€2)-

Recall that the set underlying 0,,.X is the set of asymptote classes
of geodesic rays, and that this may be identified with the set of rays
leaving a given basepoint p € X. If x1,25 € X, Y C X is a subset,
y; € Y is a sequence with lim; ., d(y;, p) = oo, then the segments T1y;
converge to a ray z;:¢ iff the segments T57; converge to a ray z»¢. Thus
the set of rays which can be obtained as limits in this fashion, as {y;}
ranges over all such sequences, is a collection of asymptote classes and
therefore determines a subset of 0,,X, the limit set of Y, which we

denote by A(Y).
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Lemma 2.1. If C' C X s a closed conver subset, and p € C, then
every ray p is contained in C, for & € A(C).

Proof. This follows from the convexity of C' and the definition of the
limit set, since we are at liberty to select the basepoint. 0

Definition 2.2. A subset Y of a CAT(1) space Z is converif it contains
every segment of the form &£, where &1,& € YV and dz(&,&) < 7.

Lemma 2.3. Let X be a proper Hadamard space, and let C C X be
a closed convex subset. Then the limit set of C' in 0, X determines a
conver subset of OrX, which is isometric to the Tits boundary of C,
viewed as a Hadamard space.

Proof. The isometric embedding C' — X of Hadamard spaces induces
an isometric embedding 0rC' — 0rX of Tits boundaries. Since 0rC' is
a C'AT(1) space, the image of the embedding is convex. O

Lemma 2.4. If I' ~ X is a discrete, cocompact, isometric action on
a Hadamard space X, and T fixes a point & € OrX, then there is a
geodesic v C X such that & € Opy and the parallel set P(y) C X is
['-invariant.

Proof. We may assume that X contains no proper, closed, convex, I'-
invariant nonempty subset, by applying Zorn’s lemma.

Note that any element g € Z(I') is semi-simple and its minimum
displacement set, min(g) C X, is a closed, convex, and ['-invariant
subset; therefore by assumption we have min(g) = X. Thus elliptic
elements in Z(I') act trivially on X and nonelliptic elements act by
Clifford translations, i.e. they translate along the R-factor of a product
splitting X = R x Z. Hence X admits a product structure

(2.5) X=E'xY

where Z(I") acts cocompactly by translations on E"” and trivially on Y.

Pick a point p € X, and a finite generating set > C I'. Let C' :=
max,ex d(op,p). Note that the ray p§ C X lies in the closed convex
set

A:={ze X |ForaloekX dox,z)<C},

since for all ¢ € T and every € p, we have d(gz,z) < d(gp,p)
because pé and (gp)¢ are asymptotic rays. By a standard argument
the centralizer, Z(X) = Z(I'), of the set ¥ acts cocompactly on A,
which implies that pé is contained in a finite tubular neighborhood of
an n-flat E" x {y} of the product decomposition (2.5). Hence £ € 0rE",
and this implies the lemma. O
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2.2. Affine and concave functions on convex sets.

Lemma 2.6. Let Z be a geodesic metric space with extendible geodesics.
Then any concave function Z — [0,00) is constant.

Proof. Trivial. O

Lemma 2.7. Let Z be a CAT(-1)-space whose ideal boundary OsZ
consists of at least two points. Suppose that there is no proper closed
convex subset of Z whose ideal boundary equals O Z. Then any con-
tinuous concave function f : Z — [0,00) is constant.

Proof. We first observe that f is constant along each complete geodesic.
Furthermore, f is non-decreasing along each geodesic ray, and the re-
striction of f to a compact geodesic segment assumes its minimum at
one of the endpoints.

Note that, by assumption, Z contains at least one complete geodesic.
Let [ be a complete geodesic and z € Z be an arbitrary point. Denote
by p1,p2 : [0,00) — Z the rays emanating from z and asymptotic to
the two ends of . Then f is > f(z) along each segment connecting
p1(t) to po(t) for t > 0. Since Z is CAT(-1) these segments converge to
the line [. The continuity of f then implies that f(I) > f(z). Thus f
assumes on [ its maximum which we denote by m.

It follows that f equals m on the union H; of all lines in Z. Con-
sider the ascending sequence of subsets H,, C Z defined inductively
by requiring that H,; is the union of all segments with endpoints in
H,,. Then the sequence of suprema sup( f|y, ) is non-decreasing. Hence
m = sup(flg,) <sup(f|g,) < mand f = m on the closure of U,enH,,-
This closure is a closed convex subset of Z with the same ideal bound-
ary and, by assumption, equals Z. U

By an affine function on a geodesic metric space we mean a function
whose restriction to each geodesic segment is an affine function.

Lemma 2.8. Let Z be a CAT(-1)-space whose ideal boundary OsZ
consists of at least three points. Then any affine continuous function
f:Z — R is constant.

Proof. We first observe that the slope of f along a geodesic ray depends
only on the ideal point represented by it. Indeed, let py, ps : [0.00) — Z
be two rays parametrized by unit speed. Since the geodesic segments
connecting p1(0) with py(t) converge to the ray p; it follows using con-
tinuity that the slope of f along p; equals its slope along ps.

Since any two ideal points in 0,,Z may be connected by a complete
geodesic in Z it follows that the slopes of f at any two ideal points have
opposite sign. Since 0,,Z contains at least three points the slopes of f
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must be zero at all ideal points, i.e. f is constant along every geodesic
ray.

The same reasoning as in the proof of Lemma 2.7 above shows that
for any point z and any complete geodesic [ in Z we have f(z) = f(I).
Thus f is constant. O

The following observation is a special case of the main result in
[Inn82] (which applies to complete Riemannian manifolds without any
curvature assumption).

Lemma 2.9. Let Z be a symmetric space of noncompact type and
higher rank without Euclidean de Rham factor. Then any affine con-
tinuous function f : Z — R is constant.

Proof. We may apply Lemma 2.8 to (nonflat) totally geodesic subspaces
of rank one and get that f is constant on any such subspace.

Let F' be a maximal flat. Then f|p is affine. The previous remark
implies that the gradient of f|r at a point z € F must be tangent to
every singular hyperplane H through z because the lines in F' perpen-
dicular to H lie in a rank one subspace. Since Z has no Euclidean
factor the intersection of all these hyperplanes H is just the point z.
We conclude that f is constant along every maximal flat; since any two
points lie in a maximal flat, this implies that f is constant on Z. [

2.3. Asymptotic slopes of convex functions. Let Z be a Hadamard
space and f : Z — R a continuous convex function. For a unit speed

geodesic ray p : [0,00) — Z we define the asymptotic slope of f along

p as slope;(p) = lim; w € RU{oo}.

Lemma 2.10. For any two asymptotic unit speed rays p; and pa,
slope;(p1) = slope;(p2).

Proof. Since the segments connecting p2(0) with p;(¢) Hausdorff con-
verge to py one estimates using the continuity of f that f(ps(t)) <
C +slope;(py) -t for t > 0 and hence slope;(p2) < slope;(p1). Symme-
try implies equality. U

Thus we may speak of the asymptotic slope, slope f(f), at an ideal
point £ € 0,.Z.

Lemma 2.11. slope; : 0cZ — RU{oo} is lower semicontinuous with
respect to the cone topology.

Proof. Consider a sequence of unit speed rays p, with same initial
point which Hausdorff converges to the ray p. Since slope;(p,) >
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Hen@)=Fen(®) {01+ > () we obtain
t p—

lim inf slope;(p,) > fe®) = 1(p(0)) 9 slope;(p).

n—00 t

O
As a consequence, slope; attains a minimum if Z is locally compact.

Proposition 2.12. If slope; : 0.2 — R U {occ} assumes negative
values then it has a unique minimum.

Proof. Let &1,& € 057 be ideal points with slope;(§;) < —a < 0 and
Zr(&1,&) > € > 0. Let p; be unit speed rays emanating from the same
point 0 € Z and asymptotic to the ideal points &;. For the midpoints
m(t) of the segments p;(t)p2(t) holds
d(o,m(t)) (51752)

lim sup — < cos < cos

t—o0 2

()

On the other hand, f(m(t)) — f(o) < —at for t > 0. Using the
continuity of f in o, there exists 6 > 0 such that f > f(0) — 1 on the
ball Bs(0). By convexity, we have f(m(t)) — f(o) > —3d(o,m(t)) and
so d(o,m(t)) > dat. This implies that

d(o, m(t))
t

lim inf >0

t—o00
and hence Zr(&1,&) < m. The segments om( ) Hausdorff converge to
a ray asymptotic to the midpoint u of &€&, which therefore satisfies
slope (1) < —a(cos §)71.

It follows that any sequence (&) in 0sZ with slope(&,) “\ inf slope;
is a Cauchy sequence with respect to the Tits metric. Hence slope; has
a unique minimum on 0., Z. U

2.4. Spherical buildings. We refer the reader to [KL97, Ron89, Tit74]
for further discussion of the material here.

We will be using the geometric definition of spherical buildings from
[KL97], which we now recall.

Let (S, W) be a spherical Coxeter complex, so S is a Euclidean sphere
and W is a finite group generated by reflections acting on S. A spher-
ical building modelled on (S, W) is a C AT (1)-space B together with a
collection A of isometric embeddings ¢ : S — B, called charts, which
satisfies properties SB1-2 described below and which is closed under
precomposition with isometries in W. An apartment in B is the image
of a chart ¢ : S — B; ¢ is a chart of the apartment ¢(5).

SB1: Plenty of apartments. Any two points in B are contained in
a common apartment.
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Let ta,, ta, be charts for apartments A;, Ay, and let C' = A; N As,
C' =1,41(C) C S. The charts 14, are W-compatible if 1! o1, v 18 the
restriction of an isometry in W.

SB2: Compatible apartments. The charts are W-compatible.

2.5. Root groups. If B is a spherical building, and a C B is a root,
then the root group of a is the collection U, of building automorphisms
of B which fix a pointwise, as well as any chamber ¢ C B such that
o Na is a panel m which is not contained in the wall da. The building
B is Moufang if for every root a C B, the group U, acts transitively
on the set of roots opposite a.

Properties of root groups:

e When all the join factors of B have dimension at least 1, then U,
acts freely on the collection of roots opposite a.

e When X is a symmetric space of noncompact type and B := 0r.X,
then B is a Moufang building and G := Isom,(X) acts effectively on
B by building automorphisms, so we may view G as a subgroup of
Aut(B). Each root group of B is contained in G, and is a unipotent
subgroup [Tit74, pp. 77-78]. Furthermore, G is generated by the root
groups of B.

2.6. Groups acting on symmetric spaces. Let X be a symmetric
space of noncompact type, and let G := Isom,(X). We will require the
following well known facts [Mosb5, BT71]:

e A subgroup H C G is Zariski dense if and only if H neither fixes
a point in dr X nor preserves a proper symmetric subspace.

e A proper subgroup H C G with finitely many connected com-
ponents is not Zariski dense; in particular H must either fix a
point in OrX or preserve a proper symmetric subspace.

Remark 2.13. If a Zariski dense subgroup of a real simple group is not
dense in the usual topology, then it must be discrete.

Lemma 2.14. Let F C X be a maximal flat, and suppose K C G is a
subgroup firing O F pointwise, and acting transitively on F. Then

e The fized point set of K in 0, X is precisely Ox F.

o If £ € 0.X, & € OpF is antipodal to &, and € € OpF is the
antipode of £, then the closure of the K-orbit K(§) contains é.

Proof. The first assertion is implied by the second.

First assume that ¢ is regular. Then there is a geodesic v with
Osoy = {&, €'}, and hence if g € K translates F' in the direction £, we
get that ¢F¢ converges to é in the topology of 0, X.
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In the general case, if 0 C 0rX is a chamber containing &, then there
is a chamber o/ C OrF containing & opposite to o, and ¢’ is opposite a
chamber ¢ C OrF'. By the regular case, the K-orbit of o accumulates
on &, which implies that the K-orbit of £ accumulates on f . 0

3. TOP DIMENSIONAL SUBBUILDINGS IN THE BOUNDARY OF A
SYMMETRIC SPACE

In this section we prove:

Theorem 3.1. Suppose
(32) X:Xlx...xXk

1s a product of irreducible symmetric spaces of noncompact type, irre-
ducible Euclidean buildings with discrete affine Weyl groups, and Eu-
clidean spaces. Let B C OpX be a top dimensional subbuilding which is
closed with respect to the topology of the geometric boundary 0s X, and
which s not contained in the boundary of any proper subspace Y C X
of the form'Y =Y x...x Yy, whereY; C X, is either a totally geodesic
subspace or a subbuilding, according to the type of X;. Then there is a
join decomposition
B=Bjo...0B,;

where B; := BN OrX;, such that B; = 071 X; unless X; is an irreducible
rank 1 symmetric space of noncompact type.

We begin the proof by observing that if there is more than one factor
in the product decomposition (3.2), then by [KL97, Prop. 3.3.1], B and
OrX will admit corresponding compatible join decompositions

B:BIO...OBk, 8TX:3TX10...08TXk,

and hence it is sufficient to prove the theorem for the irreducible factors
X, separately. So henceforth we will assume that X is irreducible. If
X is FEuclidean, then 0rX is the only top dimensional subbuilding of
Or X, and so this case is trivial.

3.1. The case when X is a Euclidean building. Let Y C X be
the union of the collection of apartments A C X such that 0rA C B.
By a chamber in X we mean a top-dimensional simplex with respect
to the natural structure of the irreducible discrete Euclidean building
X as a simplicial complex.

Lemma 3.3. Any two chambers 1,09 C Y lie in an apartment A C X
which is entirely contained in'Y .
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Proof. By the definition of Y, for : = 1,2 there exists an apartment
A; C X such that 0rA; € B and 0; C A;. For ¢« = 1,2, choose an
interior point p; € o;, and consider the geodesic segment p;p; C X.
By perturbing p, slightly, if necessary, we may assume that the A,,,q4-
direction of pyps is regular. We may prolong p1ps to a complete regular
geodesic v C X by concatenating it with rays p1& C Ay, pa&s C As.
Since Ory = {&,&} where & € OrA; C B are regular, there is a
unique apartment 0rA C O0pX containing 0.7y, and it is contained
in B. Then by the definition of ¥ we have A C Y, and since v is
regular and Ory C OrA, we get v C A. This implies that o; C A, since
o, NAD{pi} # 0 is a subcomplex of X. O

The lemma implies that Y is a subbuilding of X with Tits boundary
B. By assumption we must therefore have B = 0rX, which proves
Theorem 3.1 in this case.

3.2. X is an irreducible symmetric space of noncompact type.
We will assume that X has rank at least two, since otherwise there is
nothing to prove. The strategy of the proof is to use B to produce a
subgroup H C G which has no fixed point in 9r X, which can be used
to tie B closely with X. When B is irreducible, H is generated using
“restricted” root groups, and when B is reducible H is generated by
transvections, and decomposes as a product.

We let W denote the Weyl group of X. Thus 0rX is a spherical
building modelled on a spherical Coxeter complex (S, W). We let Wy C
W denote the sub-Coxeter group defining a thick building structure on
B, see [KL97, sec. 3.7]; thus each W-wall in B lies in at least 3 roots
(or half-apartments) of B.

Case 1. The subbuilding B is irreducible. Our first step is to show
that the Moufang property restricts to top dimensional irreducible sub-
buildings. Let a C B be a Wg-root in B. Let U, C Aut(97X) denote
the root group of a (see section 2.5).

Definition 3.4. The restricted root group of a is defined to be the
subgroup UP C U, which preserves the subbuilding B C dpX.

Lemma 3.5. UP acts transitively on the collection of roots in B op-
posite to a.

Proof. Pick two Wpg-roots ay,as C B opposite a. Since 0pX is Mo-
ufang, there is a unique g € U, such that g(a;) = ay. Let B’ :=
BN g Y(B). Note that B' C B is a convex subset (see Definition 2.2)
containing the apartment a U ay; therefore by [KL97, Prop. 3.10.3], B
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is a top dimensional subbuilding of B. Let 0 C a be a W-chamber dis-
joint from the boundary da, and for i = 1,2 let o; C a; be the chamber
in a; opposite o; likewise, let 7 C o be a panel (a codimension 1 face)
of o, and for i« = 1,2 let m; C o0; be the opposite panel in a;. Now for
each chamber ¢’ C B incident to o along m, for each i = 1,2 there is
a unique chamber ¢/ incident to o; along m;, which corresponds to o’
under the correspondence of [KL97, Prop. 3.6.4]; clearly g(o1) = oo,
and hence g(o]) = o). This implies that ¢f C B’. Now we may argue
as in the proof of [KL97, Prop. 3.12.2] to see that B’ = B, and there-
fore g(B) C Bj; applying the same reasoning to g~* we conclude that
g(B) = B. Thus we have shown that U acts transitively on the roots
in B opposite a. U

Now pick a Wg-wall w C B, and let 9r X (w) C 07X be the subbuild-
ing consisting of the union of the apartments containing w; similarly,
let B(w) be the subbuilding of B determined by w. Thus if FF C X
is a singular flat with OrF = w, then the parallel set P(F") has Tits
boundary 07X (w), the product splitting P(F) = F' x Y induces a join
decomposition Or X (w) =wo OrY, and Y C X is a rank 1 symmetric
subspace of dimension > 1. This join decomposition induces a join
decomposition B(w) = w o A, where A := 0rY N B.

Lemma 3.6. A is a compact connected manifold of positive dimension,
and each restricted root group UB, when viewed as a subset of G =
Isom,(X), is connected.

Proof. We observe that for each root a C drX with da = w, the root
group U, acts freely transitively by homeomorphisms on 0, \ {¢},
where a = w o £. Thus if we choose £ € 0rY \ {{} and let @' :=wo &,
then the map ¢ : U, — 0,.Y \{{} defined by ¢(g) := g&' is a continuous
bijection between manifolds, and is therefore a homeomorphism. Now
suppose &, & € A, so that a,a’ C B. The restricted root group U? C U,
acts simply transitively on A\ {£}, so ¢ restricts to a homeomorphism
UB — A\ {¢}. Thus UZ is a closed subgroup of U,, and is therefore
a manifold, which means that A\ {{} is also a manifold. Note that
|A| > 3, since A is in bijection with the roots of B containing w. Since
¢ € A was chosen arbitrarily, it follows that the group generated by
the collection of restricted root groups {UP | a =wo &, £ € A}, acts
transitively on A. Thus A is a compact manifold.

Since U, is unipotent, every g € UP \ {e} has infinite order. This
implies that A is an infinite set; being a compact manifold, it must
have positive dimension.
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If ¢ € Aand a:=wo&, then UP acts transitively on A\ {£} while
preserving the connected component of A containing &. It follows that
A is connected.

For any Wp root a = wof, the restricted root group UZ is homeomor-
phic to A\ {£}; since A is a compact connected manifold of dimension
> 1, this is obviously connected. U

Let H, C G be the subgroup generated by the restricted root groups
UB where da = w. Since each UP is connected, so is H,. As each

a ?

restricted root group is unipotent, H,, acts trivially on the flat factor
Fof P(F)=F xY.

Lemma 3.7. There is an H,-invariant symmetric subspace Z C 'Y
such that OrZ = A, and the image of H, in Isom(Z) is the identity
component of Isom(Z). Moreover, if £1,6 € A, and v C Y is the
geodesic asymptotic to {&1,&}, then there is a 1-parameter subgroup of
H,, which acts on F x 7 by translating in the ~y-direction.

Proof. First observe that H,, has no fixed points in 0,.Y: if £ € A and
a:=wof, then UP is a unipotent group whose only fixed point in 0., Y
is €.

Let Z C X be a minimal H-invariant symmetric subspace of Y.
Clearly Z cannot be a single point, because it is invariant under the
unipotent groups UZ. Since H, has a connected image H,, in Isom(Z),
and no fixed points in 0,7, it follows that dim Z > 1, and hence by
section 2.6, H,, is the entire identity component of Isom(Z).

If€ €A a:=wof, and g € UP\ {e}, then every orbit of {¢g°} in 0,V
accumulates on &; since 0,7 is closed and H -invariant, it follows that
¢ € 0Z. Both A and 0,7 are H,-orbits, so A = 0,,Z as claimed.

The last statement follows immediately from the fact that A = 0,7,
and Isom(Z) contains the transvection along the geodesic . U

Let H C G be the subgroup generated by the restricted root groups
UB . where a ranges over all Wp-roots in B. H is a connected subgroup
of the Lie group G since it is generated by connected subgroups.

For a maximal flat ' C X with 0rF C B let Hr C H be the sub-
group of H which fixes OpF pointwise. Thus each g € Hp acts by a
translation on F'. By the previous lemma, for each Wg-wall w C 07 F,
there is a 1-parameter subgroup of Hr which translates in the direc-
tion orthogonal to w; as B is irreducible, these 1-parameter subgroups
generate a subgroup of Hp which acts on F' as the full translation
group. Lemma 2.14 then implies that the fixed point set of H in 0 X
is contained in the intersection of the apartments of B, which is empty.
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If H preserves a symmetric subspace ¥ C X, then 0rY C 0rX
is a proper H-invariant subbuilding which defines a closed subset of
OxX. Each £ € B is opposite to some £ € 9rY, and hence by Lemma,
2.14, any antipode of ¢ in B belongs to drY. Thus B C drY, forcing
Y =X.

Thus H is a connected subgroup of G which neither fixes a point
in 0rX nor preserves a proper symmetric subspace of X, and so we
conclude that H = G, see section 2.6. Therefore B = 0rX.

Case 2. The subbuilding B is reducible.
Lemma 3.8. B cannot have a nontrivial spherical join factor.

Proof. Let S C B be a maximal spherical join factor of B, and let
F C X be a flat with OrF = S. Then the boundary of the parallel set
P(F) contains B. By our assumption we may conclude that X = P(F).
However, X is an irreducible symmetric space of noncompact type, so
this is a contradiction. U

Let

B = Bl 0...0 Bl
be the unique join decomposition of B into irreducible nonspherical
join factors. By case 1 above we are done if there is only one factor, so
we assume that [ > 1.

For each i, we let H; C G be the closure of the subgroup generated by
transvections along geodesics whose ideal endpoints lie in B;. Note that
H; is connected. Since transvections along parallel geodesics coincide,
and transvections along geodesics lying in a single flat commute, it
follows that H; commutes with H; when ¢ # j. Let H := H; x...x Hj.

Lemma 3.9. (i) H does not fiz any point in OrX.
(i) H preserves no proper symmetric subspace of X.

Proof. (i) Pick a maximal flat /' C X such that OpF C B. As H
contains the full transvection group of F', Lemma 2.14 implies that the
fixed point set of H on 07X is contained in OrF'. This means that the
fixed point set is contained in the intersection of the apartments of B;
this intersection is empty since B has no spherical join factor.

(ii) Suppose that H preserves a symmetric subspace Y C X. For an
apartment A in B consider the maximal flat F' in X with OpF = A.
Since the whole group of transvections along F' belongs to H the flat
F has finite Hausdorff distance from Y and A C 97Y. Hence B C 07Y
and our assumption on B implies that Y = X. [

We must therefore have H = Hy x ... X H, = G, see section 2.6.
This contradicts the fact that G is a simple Lie group.
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4. CONVEX SETS PRESERVED BY ZARISKI DENSE GROUPS

Theorem 4.1. Let X be a symmetric space of noncompact type with
de Rham decomposition X = X1 X ... X Xy, let m; : X — X, be the
projection map, and G = Isom,(X) be the associated connected semi-
stmple Lie group. We denote by X =Y, X Yso the decomposition of X
into (the product of the) rank 1 and the higher rank factors. Suppose
I' C G is a Zariski dense subgroup which preserves a closed convex
subset C' C X. Then C' is of the form

(4.2) C1 X Yso,

where Cy C Yy is closed convex. Furthermore, for each de Rham factor
X; of Y1, there is a I'-invariant subset C; C X; such that

e C; is the closed convex hull of its limit set.
i |8ooéz| = 0,

o él = Hzél C Cl.

[ ] 8ooél = 800(]1.

Proof. By Lemma 2.3, the limit set A(C) = 0,,C is a (cone topology)
closed convex subset containing the limit set of I". By Benoist [Ben97],
the limit set of I" contains an open neighborhood (with respect to the
topology of 07X) of a pair of antipodal regular points &, ¢ € orX.
Hence 0rC' contains an apartment in 0,,X. By [KL97, Prop. 3.10.3]
it follows that 0rC' is a top dimensional subbuilding of d7X.

Suppose drC' C OrY for some proper symmetric subspace Y C X.
For every apartment A C 0pC, there is a unique maximal flat F C X
with OrF = A, and so F' C Y; likewise, we have F' C gY forall g € T’
which implies that I C NgergY. Since A was chosen arbitrarily, we
conclude that NyergY C X is a I-invariant proper symmetric subspace,
which contradicts the Zariski density of I'.

Theorem 3.1 applies, so the Tits boundary 0rC' splits as a join 0pC =
Bio...o By, where B; = 0rX; when X, has rank at least two, and
| B;| = oo for each i, by the Zariski density of I

Applying Lemma 2.1, it follows that C' splits as in (4.2).

Define C; C X, to be the closed convex hull of B;; when Rank(X) > 2
then C; = X;. Applying Lemma 2.1, it follows that Cy = IL C; C
Ci. O
5. INVARIANT CONVEX SUBSETS IN SYMMETRIC SPACES WITH

EUCLIDEAN DERHAM FACTORS

Theorem 5.1. LetY be a symmetric space of noncompact type without
FEuclidean de Rham factor, and suppose I' C Isom(Y') x Isom(E") is a
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subgroup whose projection wy (I') C Isom(Y') is Zariski dense in the
identity component Isom,(Y). If C C X =Y x E" is a I'-invariant
closed conver set, then either C = mwy(C) x E™ or there is a proper
[-invariant affine subspace A C E"™ (i.e. A is preserved by the induced
action of T' on E™).

Proof. We denote by Sh := my(C) the shadow of C' in Y. For every
point y € Sh we consider the slice ({y} x E") N C =: C}. Since C is
closed, the boundary at infinity 0,C), does not depend on y and it is
a closed convex subset D of the round (n — 1)-sphere 0rE™. We may
assume that it is a proper subset because otherwise C' = Sh xE" and
we are done.

If the C, split off an RF-factor, 1 < k < n, then C itself splits
off an RF-factor. If £/ C E" is the maximal Euclidean factor and
E™ = E' x E” a splitting then this splitting is preserved by I'. We can
therefore reduce to the case that the C), have no Euclidean factor.

Case 1: The slices C, are unbounded. The set D C OpE" has diam-
eter < m and hence a well-defined center ¢ which must be fixed by I
Let b; denote the Busemann function on X associated to ¢. For every
v € I the difference b¢(y-) — bc equals a constant p(v) and the map
p:I' = R is a group homomorphism.

The restriction of b, to C, is bounded above and proper because
drC, is contained in the open ball Bz (¢). We may therefore assign to
each y € Sh the bottom height of the slice C} in the direction ¢ defined
as h(y) := min(—b¢|c,). The function A : Sh — R is convex. We
consider the asymptotic slope function slope;, : dr Sh — R U {00}, see
section 2.3. It is I'-invariant. If the homomorphism p is nontrivial then
slope;, assumes also negative values, and by Proposition 2.12 it has a
unique minimum. This minimum must be fixed by I', a contradiction
to the Zariski density of 7y (I') in Isom(Y"). Therefore p must be trivial,
and the level sets of b¢ yield I'-invariant hyperplanes in E".

Case 2: The slices C,, are bounded. We pick an ideal point ( € drE".
As above, measuring the height in the direction of (, we can consider
the convex function bot : Sh — R given by bot(y) := min(—b¢|¢,) and
the concave function top : Sh — R given by top(y) := max(—b¢|c, ).
both functions are continuous because C' is closed.

We now use the structure Theorem 4.1 for convex sets invariant under
a Zariski dense group. It implies that Or Sh splits as the spherical join
of the boundaries of the higher rank factors and of infinite subsets in
the boundaries of the rank one factors. In particular, d, Sh has a
well-defined and therefore 7y (I')-invariant convex hull CH(O Sh) in
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Y which is the product of the higher rank factors of Y with the closed
convex hulls of the subsets in the boundaries of the rank one factors.

Lemma 2.6 applied to the higher rank factors and Lemma 2.7 applied
to the rank one factors imply that the continuous concave function
top —bot : Sh — [0,00) is constant on CH(0w Sh). It follows that
the restrictions of top and bot to CH(0 Sh) are affine . According to
Lemmas 2.9 and 2.8 both functions are constant on CH(Ox Sh).

Since the values of top(y) (or bot(y)) for all directions ¢ determine
the slice C,, it follows that the slices C, equal the same compact set B C
E™ for all y in the 7y (I')-invariant subset CH (0w Sh). In particular, the
action of I' on [E"” has bounded orbits and therefore a fixed point. [

6. THE CONVEX COCOMPACT CASE

In this section we prove:

Lemma 6.1. Let X = E" x Y, where Y 1is a symmetric space of
noncompact type. If T' C Isom(X) is a discrete convex cocompact group
which does not preserve any proper symmetric subspace of X, then the
fized point set of I in OpX is contained in the Tits boundary of the
FEuclidean factor E™.

Proof. Let C' be a I'-invariant closed convex set on which I' acts co-
compactly. Suppose I' fixes a point £ € 0 X \ OxE™. The I'-action
respects the join structure of 9y X, so we may assume without loss of
generality that £ € 0,.Y.

Recall that since I fixes £, the ['-translates of the Busemann function
be differ by a constant, and the map I' 5 g — g.(be) — be defines a
homomorphism p: I' — R.

Suppose first that the homomorphism p is trivial, i.e. b¢ is I-invariant.
Then b¢|c is bounded and attains a minimum. The minimum set of
be|c is a convex subset C; C C' lying in a horosphere. By triangle
comparison one concludes that if p;, ps € C4, then the ideal geodesic
triangle £p; U Pipz U po€ bounds a flat half-strip. Thus C} is contained
in the parallel set P(+y) of a geodesic v C E™ x Y which is parallel to the
Y factor. Since (' is [-invariant it follows that I' preserves a proper
symmetric subspace of X, which is a contradiction. Therefore p is a
nontrivial homomorphism and b¢(C) = R.

Consider a group element ¢ € I' which translates the Busemann
function be. We may assume that be(gz) = be(z) —a for all x € X with
a > 0. As the action is discrete, I' acts on C' by semi-simple isometries,
and so ¢ is an axial isometry. Pick a point 2o € C' and let r : [0,00) —
X be the unit speed ray starting in xy and asymptotic to £&. Then for
T, = g"xo holds be(x,) = be(r(na)). We obtain that d(x,,r(na)) <
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nd(ri,r(a)) and Zy(na) (75, 79) > 5. Triangle comparison implies for

the forward ideal endpoint of the g-axes & := lim,, ., x, that

d(wy,7(a))

tan Zp(&1,€) < .

and thus AT(flaf) < %

Since {1 € 0xC we have Z7(§,0,,C) < 7 there is a unique 7 € 9,,C
at minimum Tits distance from &, and so 7 is fixed by I'. As Zp(n,§) <
5, it follows that 1 does not lie in drE".

We now apply Lemma 2.4 to the convex set C. We obtain that the
convex set C' contains a I'-invariant parallel set (with respect to C)
Z :=P(v) C C, where 07y  n. Therefore I" preserves the parallel set
of v in X, which is a contradiction. 0

7. THE PROOF OF THEOREMS 1.1 AND 1.3

Proof of Theorem 1.1. This follows immediately from Theorem 5.1
and Theorem 4.1.

Proof of Theorem 1.3. By Lemma 6.1 and the fact that X contains
no proper I'-invariant symmetric subspace, the fixed point set of I is
contained in E™. Therefore the projection of I' to Isom(Y') is Zariski
dense in Isom,(Y), since otherwise it would preserve a proper symmet-
ric subspace Y/ C Y, contradicting our assumption on X. The theorem
then follows from Theorem 1.1. O

8. QUASICONVEX SETS AND THEIR STABILIZERS

Definition 8.1. A subset () of a Hadamard space X is K -quasiconvex
if for every pair of points x1,z9 € X, the segment T1x5 is contained in
the closed tubular neighborhood N (Q). We say that @ is quasiconvex
if it is K-quasiconvex for some K < oc.

Lemma 8.2. Let () be a K-quasiconvex subset of a Hadamard space
X.

1. For allr > 0, the closed r-neighborhood N,(C) is K -quasiconver.

2. For allp € Q, £ € A(Q), the ray pé is contained in N (Q).

3. The limit set A(Q) C 0X is a closed subset with respect to the
topology of 0., X which defines a convexr subset of Or X .

Proof. 1 and 2 follow immediately from triangle comparison. To see 3,
pick p € @, &1,& € A(Q) with L1 (&1, &) < m, and note that if n € Op X
lies on the segment &;&, C 97X, then the ray 77 may be constructed as
a limit of geodesic segments pz; C X, where x; € Nyx(Q); this clearly
implies that n € A(Q). O
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Using this lemma, we may adapt Theorem 4.1 to the quasiconvex
case:

Theorem 8.3. Let X be a symmetric space of noncompact type with de
Rham decomposition X = X1 X ... x Xy, let m; : X — X, be the projec-
tion map, and G = Isom,(X) be the associated connected semi-simple
Lie group. We denote by X =Y xY>q the decomposition of X into (the
product of the) rank 1 and the higher rank factors. Suppose I' C G is a
Zariski dense subgroup which preserves a closed K -quasiconvex subset
Q C X. Then

(8.4) Q1 X Ysy C Nk(Q),
where Q1 := 7y, (Q). Furthermore, for each de Rham factor X; of Y1,
there is a I'-invariant subset C; C X, such that

e C; is the closed convex hull of its limit set.

o [0,.C| = o0,

o () = IL C; c Ng:(Q1), where K' depends only on K and X.
e 9,01 = A(Qy).

Proof. The proof is almost identical to the proof of Theorem 4.1, so we
simply note the necessary changes. First, one uses Lemma 8.2 instead
of Lemma 2.3 to see that A(Q) defines a convex subset of OrX. In the
second to last paragraph of the proof, one invokes Lemma 8.2 again
to obtain (8.4). In the last paragraph, one uses Lemma 8.2, together
with the fact that every point in C; lies within a uniformly bounded
distance of a geodesic with ideal endpoints in 95 Ci. U

Next, we adapt Theorem 5.1 to quasiconvex sets.

Theorem 8.5. LetY be a symmetric space of noncompact type without
FEuclidean de Rham factor, and suppose I' C Isom(Y') x Isom(E") is a
subgroup whose projection my (I') C Isom(Y') is Zariski dense in the
identity component Isom,(Y). If Q C X :=Y x E" is a I'-invariant
closed K -quasiconvex set, then either my(Q) x E* C Ng(Q) or there
is a proper I'-invariant affine subspace A C E™.

Proof. We assume that there exists no proper I'-invariant affine sub-
space A C E". By Lemma 8.2, it suffices to show that A(Q) contains
the subset 0,,E" of 0,,X. The argument is very similar to the proof of
Theorem 5.1.

As before, we define the shadow of @ as Sh := 7y (Q). It is a K-
quasiconvex subset of Y. For R > 0 and a point y € N(Sh) we define
the slice Qf := Npx(Q) N7my'(y). It has limit set A(Q) N O E™
independent of y and R.
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Case 1: The slices QL are unbounded, i.e. A(Q)Ndx E™ # . We may
assume that A(Q)N0, E™ has diameter < 7 because otherwise we could
reduce the dimension of the Euclidean factor E*. Hence A(Q) N0 E™
has a well-defined center (. The height function A(y) := min(—b¢|qx)

defined on N (Sh) is merely quasiconvex in the sense that its super-
graph is 2K-quasiconvex. Thus the limit set of the supergraph is a
convex subset of Or(Y x R) by Lemma 8.2 and we can use it to define
the asymptotic slope function slope, on A(Sh). As before we conclude
that the homomorphism p must be trivial and obtain a contradiction.

Case 2: The slices Qf are bounded, i.e. A(Q)NDx E™ = (). We rework
the argument from the convex case in a different language. Observe
first that for 4,7, € Ng(Sh) and a point y € Fi7; every segment 7,73
connecting points xz; € ij must intersect ij“( . This has the following
implications. If p : [0,00) — Y is a ray asymptotic to A(Sh) with initial
point p(0) € Nz(Sh) — and is therefore contained in N4 x(Sh) — then
for every t > 0 there is an isometric embedding

(8.6) Quio) = Q)

induced by a translation. Here we regard the slices as subsets of E" via
the projection mg». In particular, for a complete geodesic ¢ : R — Y
moving in N p(Sh) every Q¥ embeds into every QIFf . It follows that
diam(Qf(t)) is bounded uniformly in ¢. Furthermore, for t; < 0 < t
and z;, € Qf(tl) the cone consisting of all rays initiating in x;, and
intersecting Qig)K contains Qﬁ(tz). Letting t{ — —o0 and t; — 0o we
deduce that the limit lim;, ,_ o x4, in Or X exists. Analogously, for any
choice of points z;, € QitQ), ty > 0, the limit limy, o 24, exists.

Note that each point 7 € A(Sh) has antipodes in A(Sh), cf. Theorem
8.3, and thus is the ideal endpoint of a geodesic ¢ running in some
neighborhood Ng(Sh). Our previous consideration yields more gener-
ally that for any n € A(Sh), any sequence of points y, € Ng(Sh) with
Yn — 1 and points z,, € in the limit lim,, o, x, =: £(n) exists and is
an interior point of the hemisphere 1o OrE". Hence A(Q) is the image
of the “section” & : A(Sh) — 0rX — OrE™. We observe that £ maps
antipodes to antipodes. The arguments used to proving Lemmas 2.8
and 2.9 together with the convexity of A(Q) show that A(Q) must be
horizontal, that is, A(Q) C drY, where we regard 0rY as a subset of
orX.

The embeddings of slices (8.6) are now induced by the identity, i.e.

WEn(Qf(O)) - WEn(QpR(;K). For a geodesic ¢ in Ng(Sh) we have that

Qf(t) C sz;)K for all t,t' € R. If p is a ray strongly asymptotic to
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¢, i.e. limy_o, d(p(t),c(t + a)) = 0 for some a € R, one obtains that
Qf(o) C Qij)ﬂ( for all t.

Invoking our structural result Theorem 8.3 and arguing in the spirit
of Lemmas 2.6 and 2.7 we conclude that for sufficiently large R the
union of slices Uy601XY227TEn(Q5) is a bounded subset of E". It follows
that the action of I' on E™ preserves a bounded subset, namely the set
UVGFWEn(QﬁyO) with yo € C x Y>,, and hence fixes a point. This is a
contradiction and concludes the proof of the Theorem. O

Combining Theorems 8.3 and 8.5, we obtain:

Theorem 8.7. Let X = E" x Y, where Y is a symmetric space of
noncompact type, and let X = E" X Y; X Y>o denote the decompo-
sition of X into the Fuclidean factor, the product of the irreducible
rank 1 factors, the product of the higher rank factors. Suppose I' C
Isom(X) = Isom(E") x Isom(Y) is a subgroup whose projection to
Isom(Y') is Zariski dense in the identity component Isom,(Y), and
whose projection to Isom(E"™) does not preserve a proper affine subspace
of E". If Q C X :=FE" x Y s a I'-invariant closed K -quasiconver set
and Q, = 7y, (Q), then E™ x Q, x Yso» C Ng(Q). Furthermore, for
each de Rham factor X; of Y1, there is a I'-invariant subset C’l C X;
such that

o C; is the closed convex hull of its limit set.

hd |aooéz| = 00,

o () = IL C; c Ng/(Q1), where K' depends only on K and X .
e 0,,C1 = A Q).
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