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Abstract. We apply the concept of asymptotic cone to distinguish quasi-isometry
classes of fundamental groups of 3-manifolds. We prove that the existence of a Seifert
component in a Haken manifold is a quasi-isometry invariant of its fundamental group.
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1 Introduction

Let T be a finitely generated group. A finite set of generators G of I' determines
a Cayley graph C(I',G). It is a metric space whose quasi-isometry class does not
depend on the chosen set of generators G. We are interested in geometric properties
of I, i.e. quasi-isometry invariants of its Cayley graph. Well-known examples of geo-
metric properties of finitely generated groups include: “finitely presentable”, “virtu-
ally nilpotent” (Gromov), “virtually abelian” (Gromov, Bridson and Gersten), “word
hyperbolic” (Gromov), “being a finite extension of a uniform lattice in SO(n,1)”
(Mostow, Tukia, Gabai), “being a finite extension of a nonuniform lattice in a rank 1
symmetric space” (Schwartz), cohomological dimension is a quasi-isometry invariant
for fundamental groups of finite aspherical complexes (Gersten).

Quasi-isometries ignore the local geometry. Looking for quasi-isometry invariants
we have to understand the large-scale geometry of metric spaces. One aspect of
it, namely the asymptotic geometry of finite subsets of distant points in a metric
space X is encoded in the geometry of the asymptotic cone of X. This concept has
been introduced by Van den Dries and Wilkie [DW] and Gromov [Gr2]. Bi-Lipschitz
topological invariants of the asymptotic cone of X are quasi-isometry invariants of
X. Papasoglu [Pa] proves that the asymptotic cone of a group satisfying a quadratic
isoperimetric inequality is simply connected. The asymptotic cone will be used in
[KIL] to prove quasiisometric rigidity of noncompact irreducible symmetric spaces of
higher rank.

We study the large-scale geometry of nonpositively curved spaces X. One observes
that flats in X are reproduced inside the asymptotic cone, whereas negatively curved
subspaces break up into trees. One may think of the asymptotic cone of X as a
higher-dimensional analogue of a metric tree. For instance, the asymptotic cone of
a higher-rank symmetric space is a generalized affine building [KIL]. We investigate
the pattern of flats in the asymptotic cone of certain nonpositively curved spaces of
geometric rank one (in the sense of Ballmann, Brin and Eberlein) and obtain non-
trivial quasi-isometry invariants.

Metrics of nonpositive curvature appear in abundance in 3-dimensional topology.
Thurston proved that atoroidal Haken manifolds are hyperbolic. It is shown in [L] that
Haken manifolds with incompressible tori generically admit metrics of nonpositive
curvature. In the subsequent paper [KaLl] we show that the fundamental group of
every Haken manifold (which is not a Nil- or Sol-manifold) is quasi-isometric to the
fundamental group of a 3-manifold of nonpositive curvature.

Due to the geometrization of 3-manifolds we can apply our results about asymp-
totic cones of nonpositively curved spaces to distinguish quasi-isometry types of fun-
damental groups of 3-dimensional Haken manifolds. In Theorem 5.1 we prove that
if a Haken manifold M; contains only hyperbolic components and M, is a nonposi-
tively curved manifold which contains a Seifert component with hyperbolic base then
71 (M) is not quasi-isometric to m;(M;). Combining this with results of N. Brady,
Gersten and Schwartz, one obtains a rough quasi-isometry classification of fundamen-
tal groups of Haken manifolds. It follows in particular that the existence of a Seifert
(as well as a hyperbolic) component in a Haken manifold is a quasi-isometry invariant
of its fundamental group.

The paper is organized as follows. In Section 2 we discuss basic properties of



nonpositively curved spaces. We describe a discrete analogon of ruled surfaces in
CAT(0)-spaces. In Section 3 we review the concept of ultralimits and asymptotic
cones of metric spaces. We use ultralimits to give yet another interpretation of the
compactification of representation varieties by actions of groups on trees [Mo], [Be],
[Pau|. In Section 4 we study large-scale geometric properties of certain nonposi-
tively curved spaces. We show that fat geodesic triangles in a CAT(0)-space X avoid
regions of strictly negative curvature. Assuming that X is negatively curved out-
side a disjoint union of flats, we deduce geometric and topological properties of the
asymptotic cone of X. In particular, distinct embedded 2-discs have at most one
point in common. This rules out the possibility that X contains a quasi-isometrically
embedded product of the real line and a non-abelian free group. Examples of such
CAT(0)-spaces X are given by universal covers of Haken manifolds obtained by gluing
hyperbolic components. Another class of examples are universal covers of nonposi-
tively curved manifolds arising from Thurston-Schroeder’s cusp-closing construction
[Schr|. In Section 5 we apply the results of Section 4 to distinguish quasi-isometry
classes of fundamental groups of Haken 3-manifolds.

Acknowledgements. We thank the Mathematical Institute at the University
of Bonn for its hospitality during the period when this paper was written. We are
grateful to Richard Schwartz and Martin Bridson for remarks concerning the original
manuscript of this paper.

2 Preliminaries

2.1 Elementary properties of CAT(0)-spaces

Let X be a complete metric space with metric d = dx. A geodesic in X is an
isometric embedding f : I — X of an interval. A complete geodesic in X is an
isometric embedding f : R — X. We denote by [zy] a geodesic segment joining
points x,y € X, and by |zy| the open segment. An n-dimensional flat is an isometric
embedding of R", n > 2. X is called a geodesic space if any two points can be
connected by a geodesic. A(z,y, z) will denote a geodesic triangle in X with vertices
x,y, z. It is the union of geodesic segments [zy], [yz] and [zz]. We define the inradius
IRx(A) of a triangle A in X to be the infimum of all numbers p so that there exists
a point in X with distance at most p from all sides of A.

There is a synthetic way of defining upper curvature bounds for geodesic spaces X
via distance comparison. We are only concerned with nonpositive bounds x < 0. X
is said to satisfy the CAT(k)-property, if geodesic triangles in X are not thicker than
triangles in the complete simply-connected Riemannian 2-manifold M? of sectional
curvature k. More precisely, let A(x,y, z) be a triangle in X and choose a triangle
A(z',y', 2') with the same side lengths in M?2. If p, g are points on A(z,y, z) and p/, ¢’
are points on A(z',y', 2'), which divide corresponding sides in the same ratio, then

d(p,q) < d@, ).

In fact, it suffices to check this property only in the case when ¢ is a vertex. We say
that X has local upper curvature bound k at a subset A if there is a convex subset
containing A which satisfies the CAT(k)-property.



X is a metric tree if it satisfies the CAT (k)-property for arbitrary negative values of
k. In this case all geodesic triangles degenerate to tripods. One can also characterize
metric trees as geodesic spaces where any two points can be connected by a unique
simple arc (see Lemma 4.7).

We collect a few facts about CAT(0)-spaces, see e.g. [GBS] and [Ba] for details.
The CAT(0)-property implies that the distance function is convex. Hence, any two
points can be connected by a unique geodesic. In particular, CAT(0)-spaces are
contractible. If Y is a convex subset in a CAT(0)-space X, then the nearest-point-
projection my : X — Y is well-defined and distance-nonincreasing. Two complete
geodesic rays 71,79 : [0,00) — X are called asymptotic, if the distance function
t — d(r1(t), r2(t)) remains bounded. The set 0, X of equivalence classes of asymptotic
rays is called the ideal boundary of X.

Let  be a point in the CAT(0)-space X and 71,79 : [0,€) — X be geodesic rays
emanating from z. The angle Z,(r1,72) = « between r; and ry is defined by the

formula: dr (s .
QSin(g) = lim d(n (), (1))
2 t—0+ t
This limit exists, because the function ¢ +— d(ry(t),72(t)) is convex. The definition
coincides with the usual one in the case of Riemannian manifolds.

Lemma 2.1 Let r1,7r9,73 be rays emanating from x. Then the angles between them
satisfy the inequality:

Lo(r1,1m9) + Ly(ro,1m3) > Ly(r1,73)

Lemma 2.2 If the union of the geodesic rays r1 and ro emanating from x is a geodesic
with x as interior point, then the angle between r1 and ro equals .

Distance comparison in the presence of an upper curvature bound yields angle
comparison:

Lemma 2.3 The angles of a geodesic triangle in a CAT(k)-space are not greater
than the corresponding angles of a comparison triangle in the model space M?2.

For a geodesic triangle 7 in X with angles «, 3, y, we define the angle deficit by:
deficit(7) :=m—a— 8 —7v

Let z,y,z be three points in the CAT(0)-space X. There is a unique geodesic
triangle A(z,y, z). Define points z',y', 2’ by [zz'] := [zy] N [zz], [yy'] := [yz] N [yz]
and [z2'] := [zx] N [zy]. The triangle A(z',y', 2) is called the open triangle spanned
by z,y,z. A(z,y,z) itself is called open, if it coincides with A(z', v/, 2').

We shall need the following property of CAT(0)-spaces.

Lemma 2.4 Let v = [zy] U [yz] U [zw] be a broken geodesic in a CAT(0)-space X
such that [zy] U [yz] and [yz] U [zw] are geodesics. Then 7y is a geodesic as well.

Proof: Suppose that there are points a € [zy]| and b € [zw] such that d(a, b) < d(a,y)+
d(y,b). Consider the comparison triangle A(a',y’,') in the Euclidean plane and the
point 2’ € [y'V'] with d(v',2") = d(y, z). Then d(d,2") < d(d',y") + d(y', 2'), on the
other hand the comparison property implies that d(a’, z') > d(a, z) = d(a,y)+d(y, z).
This contradiction proves the assertion. a



2.2 Nonpositively curved metrics on 3-manifolds

Let M be a compact smooth 3-manifold. A closed smooth surface S C M is called
incompressible if it is 2-sided, has infinite fundamental group and the inclusion § C
M induces a monomorphism of fundamental groups. A manifold M is said to be
irreducible if any smooth 2-sphere in the universal cover of M bounds a ball. If M
is irreducible and contains a closed incompressible surface then it is called Haken.
Note that if the boundary of a Haken manifold has zero Euler characteristic then it
is incompressible.

Remark 2.5 Our definition of Haken manifolds is slightly more restrictive than the
classical one (see [JS], [J]). However it will suffice for the purposes of this paper.

Let M be a Haken 3-manifold with boundary of zero Euler characteristic. Accord-
ing to [J],[JS] and [Th] there is a unique finite union 7" of disjoint incompressible 2-tori
and Klein bottles which split M into a collection of hyperbolic and maximal Seifert
components. We recall the following results concerning the existence of nonpositively
curved metrics on M.

Theorem 2.6 ([L],[LS]) If M admits a Riemannian metric of nonpositive sectional
curvature with totally—geodesic boundary, then T can be isotoped so that T U OM is
totally—geodesic.

Remark 2.7 Theorem 2.6 implies that for each component M; of M \ T the uni-
versal cover of M; is convex in the universal cover of M. Hence m (M;) is quasi—
isometrically embedded into 7w (M).

Theorem 2.8 ([L]) Suppose that either OM is nonempty or M \'T has a hyperbolic
component. Then M admits a smooth Riemannian metric of nonpositive sectional
curvature with totally—geodesic boundary such that T s totally geodesic and the sec-
tional curvature is strictly negative on each hyperbolic component of M\ T.

2.3 Straight Fillings

We recall that a ruled surface in a smooth Riemannian manifold is a smooth family
of geodesics. It is a classical fact that the intrinsic curvature of a ruled surface is not
greater than the curvature of the ambient manifold. The goal of this section is to
construct a discrete analogue of filling in geodesic triangles by ruled surfaces.

Let A be a non-degenerate triangle in Euclidean plane.

We define a triangulation of A to be a decomposition of A into a finite collection
K of Eulidean 2-simplices with disjoint interiors so that the closure of their union
equals A. Note that our definition differs from the standard one: we allow interior
vertices on edges of triangles in K.

For a triangulation S of A, we denote by S° the i-skeleton of S. A triangulation
T of A is called special if it can be constructed from the trivial triangulation by
the following inductive procedure. There exists a finite sequence of triangulations
A=T,,...,T, =T of A, such that the triangulation 7T}, is obtained from T} by
adding a segment oy satisfying the properties:



e At least one endpoint of oy, is contained in T}.
e The intersection of the interior of oy with T} is empty.

Take now a geodesic triangle A(z,y, z) in a CAT(0)-space X. We define a canon-
ical map
f:T' =X

by mapping A to A(z,y, z) and requiring that the restriction of f to every segment
o is an affine map. We call such a map f a straight filling. We say that a filling is
e-fine if the image under f of each triangle in 7" has diameter at most e.

For each triangle ¢ in T2, let (&) be the curvature of X at f(95). We put a
Riemannian metric of constant curvature () on 0 so that it has geodesic sides and
the restriction of f to every side is an isometry. This induces a path metric on A
which we denote by dy.

Lemma 2.9 The map f: (T, ds|;n) — X does not increase distances.

Proof: Suppose that p and ¢ are two points on the boundary of the same triangle ¢
in 72. Then the distance comparison inequality implies:

ds(p,q) > d(f(p), f(q))

The global statement follows immediately. O
We define the angle deficit of the filling f as the sum

deficit(f) := ) deficit(d)

6€T?

Lemma 2.10 The deficit of the straight filling f is not greater than the angle deficit
of the triangle A(x,y, z).

Proof: The angles of the triangles ¢ are not smaller than the angles of f(J) and the
sum of angle deficits is sub-additive with respect to triangulations:

deficit(f) := ) deficit(d) < > deficit(f(9)) < deficit(A(z, y, 2))

6€T? 6eT?

O

Lemma 2.11 For every interior vertex p in T, the sum of the angles adjacent to p
is at least 2w. For every vertexr p, which is an interior point of a side of A, the sum
of the angles adjacent to p is at least 7.

Proof: Consider an interior vertex p. There is exactly one segment o, which contains

p as an interior point. Let ¢; and ¢, be the sums of angles in (A, d;) adjacent to p

from two different sides of 0. Denote by v; the sums of corresponding angles in X.

For each angle o adjacent to p in (A, dy), the corresponding angle in X adjacent to

f(p) is not greater than «. Therefore, ¢; > 1;. By Lemma 2.1 and Lemma 2.2, we

conclude that ¢; > m. The argument for vertices on the boundary is analogous. O
We now compare local curvature bounds of the spaces X and (A, dy).
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Proposition 2.12 Suppose that the filling f : T* — X is e-fine. Let p be a point in
T' so that the ball B(f(p)) satisfies the CAT(k)-property with k < 0. Then the local
curvature of (A, dy) at the point p is bounded from above by k.

Proof: The arguments of the proof of Theorem 15 in [Ba] remain valid for singular
spaces with piecewise constant curvature. The link condition for (A, d;) is satisfied
according to Lemma 2.11. O

Corollary 2.13 The geodesic space (A, dy) satisfies the CAT(0)-property.

Proof: According to Theorem 7 in [Ba] it suffices to verify that any two points in
(A, dy) are connected by a unique geodesic. Suppose that p,q are points which are
connected by two distinct geodesics 7, and .. Without loss of generality, we may
assume that the interiors of ga; and 7, are disjoint. Then ~; U v, bounds a n-gon P
which is triangulated by triangles of nonpositive curvature. Using the Gaufl-Bonnet
formula and Lemma 2.11, we conclude that the sum of angles in P is less than (n—2).
On the other hand, P has n — 2 angles greater or equal to 7 by Lemma 2.2. O

2.4 Quasi-isometries of metric spaces

Let (Xj,d;) (j = 1,2) be a pair of metric spaces. We recall that a map f : (X;,d;) —
(X2, ds) is a quasi-isometric embedding if there are two constants K > 0 and C such
that

K_ldl(xa y) -C < dZ(f(x)a f(y)) < Kdl(xa y) +C

for each z,y € X;. A map f; : (X1,d1) — (Xo,dy) is a quasi-isometry if there are
two constants C, Cy and another map f, : (Xo,ds) — (X1,d;) such that both fi, fo
are quasi-isometric embeddings and

di(fafi(z),x) < Cr da(fifo(y),y) < Co

for every x € X1,y € Xs. Such spaces X, X, are called quasi-isometric. For example,
two geodesic metric spaces which admit cocompact discrete actions by isometries of
the same group are quasi-isometric.

A finitely generated group I' with a fixed finite set of generators carries a canonical
metric which is called the word metric. The quasi-isometry class of the word metric
does not depend on the generating set.

2.5 Bi-Lipschitz embeddings of Euclidean planes

Lemma 2.14 Let T be a metric tree and f : R2 — T X R be a bi-Lipschitz embedding.
Then the image of f is a flat in T X R.

Proof: The map f is closed because it is bi-Lipschitz. Consider the projection P
of f(®?) in the tree T. The set P is a subtree in T. Let w € P be any point
which separates P. Then the line {w} x R separates f(R?) and therefore f—'((7\
{w}) x R) is not connected. We denote the intersection f(R?) N {w} x R by L.
The preimage f (L) is closed in R*. The compact subset f (L) U {oo} in the

7



one-point compactification S? = R* U {oo} is homeomorphic to the subset L U {oo}
in the one-point compactification of the real line {w} x R. Hence by Alexander
duality H' (L U {o0},2) = Hy(R* — f~'(L),z) # 0, where we use Alexander-Spanier
cohomology. Thus L = {w} x R. It follows furthermore that w separates P in exactly
two components. Hence P is homeomorphic to an interval. Since f is closed, f(R?) =
P x R. P is a complete geodesic in T" because f is closed and is a homeomorphism
onto its image. a

Corollary 2.15 The product of a metric tree and R is not bi-Lipschitz homeomorphic
to the product of two metric trees with nontrivial branching.

Proof: The product of two metric trees with at least 3 ends contains three flats which
have exactly one common point. O

3 Ultralimits of metric spaces

Let (X;) be a sequence of metric spaces which is not precompact in the Gromov-
Hausdorff topology. One can describe the limiting behavior of the sequence (Xj;)
by studying limits of precompact sequences of subspaces Y; C X;. Ultrafilters are
an efficient technical device for simultaneously taking limits of all such sequences of
subspaces and putting them together to form one object, namely an ultralimit of
(X;). We discuss this concept following Gromov [Gr2].

3.1 Ultrafilters

Let I be an infinite set. A filter on I is a nonempty family w of subsets of I with the
properties:

o ) ¢ w.
o If Acwand A C B, then B € w.

° IfAl,...,AHEw, then A N...NA, € w.

Subsets A C I which belong to a filter w are called w-large. We say that a property
(P) holds for w-all i, if (P) is satisfied for all 7 in some w-large set. An ultrafilter is a
maximal filter. The maximality condition can be rephrased as: for every decomposi-
tion I = Ay U...UA, of I into finitely many disjoint subsets, the ultrafilter contains
exactly one of these subsets.

For example, for every 7 € I, we have the principal ultrafilter §; defined as
d; = {A C I | i€ A}. An ultrafilter is principal if and only if it contains a fi-
nite subset. The interesting ultrafilters are of course the non-principal ones. They
cannot be described explicitly but exist by Zorn’s lemma: every filter is contained
in an ultrafilter. Let Z be the Zariski filter which consists of complements to finite
subsets in I. An ultrafilter is a nonprincipal ultrafilter, if and only if it contains Z.
For us is not important how ultrafilters look like, but rather how they work: An



ultrafilter w on I assigns a “limit” to every function f : I — Y with values in a
compact space Y. Namely,

w-lim f = w-lim f(i) € Y

is defined to be the unique point y € Y with the property that for every neighborhood
U of y the preimage f U is “w-large”. To see the existence of a limit, assume that
there is no point y € Y with this property. Then each point z € Y possesses a
neighborhood U, such that f~'U, € w. By compactness, we can cover Y with finitely
many of these neighborhoods. It follows that I ¢ w. This contradicts the definition
of a filter. Uniqueness of the point y follows, because Y is Hausdorff. Note that if y
is an accumulation point of { f(7)},cs then there is a non-principal ultrafilter w with
w-lim f = y, namely an ultrafilter containing the pullback of the neighborhood basis
of y.

3.2 Ultralimits of metric spaces

Let (X;)icr be a family of metric spaces parametrized by an infinite set I. For an
ultrafilter w on I we define the ultralimit

X, =w-limX;

as follows. Let Seq be the space of sequences (z;);cr with z; € X;. The distance
between two points (z;), (y;) € Seq is given by

do((2:), () = w-lim(i = dx; (z:, 9:))

where we take the ultralimit of the function i — dx, (z;, y;) with values in the compact
set [0, 00]. The function d, is a pseudo-distance on Seq with values in [0, co]. Set

(Xy,dy) := (Seq,d,)/ ~
where we identify points with zero d,-distance.

Example 3.1 Let X; = Y for all i, where Y is a compact metric space. Then
X, 2Y for all ultrafilters w.

The concept of ultralimits extends the notion of Gromov-Hausdorff limits:

Proposition 3.2 Let (X;);en be a sequence of compact metric spaces converging in
the Gromov-Hausdorff topology to a compact metric space X. Then X, = X for all
non-principal ultrafilters w.

Proof: Realize the Gromov-Hausdorff convergence in an ambient compact metric
space Y, i.e. embed the X; and X isometrically into Y such that the X; converge to
X with respect to the Hausdorff distance. Then there is a natural isometric embedding

X, =w-limX; - w-limY 2 Y



Since w is non-principal, the w-limit is independent of any finite collection of X;’s and
we get:

L(Xw)gﬂUXi:X

19 £>1%0
On the other hand X C «(X,,), because ¢((x;)) = z if (z;) is a sequence with z; € X;
converging in Y to z € X. Hence +(X,) = X which proves the claim. O

If the spaces X; do not have uniformly bounded diameter, then the ultralimit X,
decomposes into (generically uncountably many) components consisting of points of
mutually finite distance. We can pick out one of these components if the spaces X;
have basepoints . The sequence (z?); defines a basepoint z° in X, and we set

X0 = {z, € X, | dy(z,,2°) < 00}
Define the based ultralimit as

wrrw

w—%im(Xi,x?) = (X°,20)
Example 3.3 For every locally compact space Y with a basepoint yy, we have:
w—fjm(Y, Yo) = (Y, %0)
We observe that some geometric properties pass to ultralimits:

Proposition 3.4 Let (X;,10);cr be a sequence of based geodesic spaces and let w be
an ultrafilter. Then X2 is a geodesic space.

If the X; are CAT(k)-spaces for some k < 0 then X° has the same upper curvature
bound k.

Proof: The ultralimit of geodesic segments in X; is a geodesic segment in X2. There-
fore X is a geodesic space. It remains to prove that any pair of points z,, = (z;) and
Yo = (y;) in X2 can be joined by a unique geodesic. Suppose that d,,(z,,v,) = s+t
where s,t > 0. There are points z; on the geodesic segments [z;y;] such that for
si = di(x;, %) and t; = d;i(2;,y;) we have w-lims; = s and w-lim¢; = ¢. Hence
2 = (2;) satisfies d,,(z,, 2,) = s and d, (2, y,) = t. Suppose that u, = (u;) is an-
other point with the same property. Consider in the model space M? comparison tri-
angles A(z}, u}, y!) with the same sidelengths as A(x;, u;, y;). Let 2 be a division point
on [z}y!] corresponding to z; on [x;y;]. Since w-lim(d;(x;, u;)+d;(ui, yi)—di(yi, x;)) = 0,
!

we have w-lim d;(u;, ;) < w-limdp2(uf, 2;) = 0 and therefore u, = z,. Thus there is

a unique point z, € X, with d,(z,, z,) = s and d,(z,, y.) = t. O

Corollary 3.5 Let (X;)ien be a sequence of geodesic spaces with upper curvature
bounds k; tending to —oo. Then for every non-principal ultrafilter w the ultralimit
X, 1s a metric forest, i.e. every component is a metric tree.

10



3.3 The asymptotic cone of a metric space

Let X be a metric space and w be a non-principal ultrafilter on N. The asymptotic
cone Cone,( X) of X is defined as the based ultralimit of rescaled copies of X:

1
Cone, ( X) := X2, where (X2, 2°) = w-lim(= - X, 2°)
i
The limit is independent of the chosen basepoint z° € X. The discussion in the
previous section implies:

Proposition 3.6 1. Cone,(X xY) = Coney( X) x Cone,(Y).
2. Cone,R" = R".
3. The asymptotic cone of a geodesic space is a geodesic space.
4. The asymptotic cone of a CAT(0)-space is CAT(0).
5

. The asymptotic cone of a space with a negative upper curvature bound is a metric
tree by Corollary 3.5.

Remark 3.7 For any metric space X the asymptotic cone Cone,(X) is complete
[DW].

Remark 3.8 Suppose that X admits a cocompact discrete action by a group of isome-
tries. The problem of dependence of the topological type of Cone,X on the ultrafilter
w is open (see [Gr2]).

To get an idea of the size of the asymptotic cone, note that in the most inter-

esting cases it is homogeneous. We call a metric space X quasi- homogeneous if
diam(X/Isom(X)) is finite.

Proposition 3.9 Let X be a quasi- homogeneous metric space.
Then Cone,( X) is a homogeneous metric space for every non-principal ultrafilter w.

Proof: The group of sequences of isometries Isom(X)N acts transitively on the ultra-
limit w-lim; (% - X) which contains Cone,,(X) as a component. O

Lemma 3.10 Let X be a quasi-homogeneous CAT(-1)-space with uncountable num-
ber of ideal boundary points. Then for every nonprincipal ultrafilter w the asymptotic
cone Cone,(X) is a tree with uncountable branching. Every open set in Cone,( X)
contains an uncountable discrete subset.

Proof: Let 2° € X be a basepoint and y, 2 € 0,,X. Denote by 7 the geodesic in X
with the ideal endpoints z,y. Then Cone,,([z°, y[) and Cone,,([2°, z[) are geodesic rays
in Cone,( X) emanating from x°. Their union is equal to the geodesic Cone,y. This
produces uncountably many rays in Cone,( X) so that any two of them have precisely
the basepoint in common. The homogeneity of Cone,( X) implies the assertion. O

11



Corollary 3.11 Let Z be a compact Seifert manifold with hyperbolic base orbifold.
Then the space Cone,(m(Z)) is the product of R and a tree with uncountable branch-
g at every point.

Proof: Let I' be the fundamental group of the base orbifold of Z. If Z has non-empty
boundary, then 7 (Z) virtually splits as the product of Z and a non-abelian free group.
In the case 0Z = () it was proven independently by Epstein, Gersten and Mess, that
m1(Z) is quasi-isometric to Z x I, see [R]. The assertion follows from Lemma 3.10. O

Applications of the asymptotic cone as a quasi-isometry invaraint are based on
the following

Proposition 3.12 Suppose that f : X — Y is a quasi-isometric embedding. Then
for each non-principal ultrafilter w, f induces a bi-Lipschitz embedding Cone,( f) :
Cone,(X) — Cone,(Y).

If f is a quasi-isometry then Cone,( f) : Cone,(X) — Cone,(Y) is a bi-Lipschitz
homeomorphism.

We illustrate this property in the following simple case:

Proposition 3.13 Let X,Y, Z be CAT(—1) spaces which have at least 3 ideal bound-
ary points. Then R X X s not quasi-isometric to Y X Z.

Proof: The spaces Cone,(X), Cone,(Y) and Cone,(Z) are metric trees with at
least 3 ends. Therefore by Corollary 2.15, the spaces Cone,(Y) x Cone,(Z) and
Cone,( X) x R are not bi-Lipschitz homeomorphic. O

Example 3.14 HP x H! is not quasi-isometric to HPT9 1 x R, where p,q > 2.

3.4 Limits of isometric actions on CAT(0)-spaces

In [Mo], Morgan compactifies the space of representations of a finitely generated
group I' into SO(n,1). The ideal points of the compactification are isometric actions
of I' on metric trees. A geometric version of this construction was given in [Be] and
[Pau|. In this paragraph, we rephrase their argument in the context of ultralimits
and generalize it to the setting of nonpositive curvature.

Let X, be a sequence of CAT(0)-spaces and p, : [' — Isom(X,) be a sequence
of representations. Choose a finite generating set G of the group I'. For z € X,
we denote by D, (z) the diameter of the set p,(G)(x). Set D, := infycx, Dy(z). We
assume that the sequence (p,) diverges in the sense that lim, ,,, D, = oo. Choose
points z, € X, such that D,(z,) < D, + 1/n. For any non-principal ultrafilter w,
there exists a natural isometric action p, of I' on the ultralimit of rescaled spaces

(Xor ) = wlim(D, " - Xy, 2,).

X, is a CAT(0)-space and the action p, has no global fixed point. If the spaces
X,, are CAT(-1), then the limit space X, is a metric tree. The tree constructed in
[Be] and [Pau] is the minimal invariant subtree. Assume also that the spaces X,
are Hadamard manifolds of uniformly bounded dimension with sectional curvature
bounded between two negative constants —a?, —1 and that the representations p,, are
discrete and faithful. Then the Margulis lemma implies that the action p,, is small.
This means that the stabilizer of any non-degenerate segment in X, is virtually
nilpotent.
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4 The large-scale geometry of certain CAT(0)-spa-
ces

4.1 Fat triangles in CAT(0)-spaces

Consider a Haken 3-manifold M equipped with a metric of nonpositive curvature as
in Theorem 2.8. In this section we will assume that M has at least one hyperbolic
component. Let € > 0 be such that the components of T'U OM are 7e-separated.
Denote by N the 3e-neighborhood of the union of TU&M and all Seifert components
of M. Then there is a negative constant x such that on every 2e-ball with center
outside N the sectional curvature is bounded from above by k. The lift N of N to
the universal cover M consists of e-separated convex sets N;. After rescaling, we can
assume that K = —1.

More generally, we consider a CAT(0)-space X equipped with a collection of
disjoint open convex sets /NV; which satisfy the property:

(%) There exists € > 0 such that each ball of radius 2¢ centered at a point z outside

Denote by H the complement of N in X. Consider a geodesic triangle A(vq, v, v3)
in X and choose an e-fine straight filling f : 7' — X of this triangle. We denote by
¥ the CAT(0)-space (A, dy) constructed in section 2.3. Put R = R(e) := 4e™' + 2e.
Define C* to be the set of all points in ¥ which have distance not greater than R
from two different sides of A. The reader may think of C* as the union of corners of
the triangle X.

C*

C* c

Figure 1

Lemma 4.1 The set f((X\ C*)NT?!) is contained in N.

Proof: Suppose that z is a point in (X\C*)NT"'. Consider the concentric metric circles
v, in X centered at x with radii ke for all odd numbers & so that ke < R — €. There
are L := [R/(2¢)] such circles. These circles meet at most one side of A. Suppose
that each circle v, contains a point z, € f'(H) C T*. The discs D(z;) C ¥ of
radius € centered at zj are disjoint. Since the filling f is e-fine, every disc D.(xy)
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is covered by triangles ¢; which are contained in Dy (z)). According to Lemma 2.9,
every triangle f(00;) is contained in the ball By (f(zr)). By construction of ¥ and
by the property (x), the curvature (é;) of the interior of each triangle d; is at most
—1. For a measurable subset Y C ¥, we define the integral

/ (—Ky)dvol := 3 / ))dvol
deT®
Using the Gaufl-Bonnet formula, we estimate:

deficit(f) = / (— K)dvol > Z / ~ Ky)dvol >

Lre? - (R — 2¢)me?
2 4e
Here we use the fact that D.(zx) contains a half-disc and hence its area is at least

half the area of the Euclidean disc of radius €. On the other hand, it follows from
Lemma 2.10 that

~Z T

deficit(f) < deficit(A(vy,ve,v3)) < 7.

This contradiction implies that for at least one circle 7, the intersection vy, N T is
entirely contained in f~!(N). Any point on v, is at distance at most €/2 from a point
in v, NT". Therefore consecutive points of v, N T' are at most € apart. Since the
convex subsets N; are e-separated, f(v, NT!) lies in one component N;.

We conclude the proof by showing that the convexity of N; and the straightness
of the filling f imply:

f(De(x)NT") C N;
We abbreviate D := Dy (x). The intersection of vy, with OX is either empty or consists
of the endpoints of a subsegment 7 of a side of A. f(7) is contained in N;, because NV;
is convex. Recall that the triangulation T is obtained by successively adding segments
01, see Section 2.3. We proceed by induction on I. Suppose that 7;' ;N D C f~'(N;).
Then
d(oND)C(TL,ND)U(nnTY) C fHN).

The convexity of N; implies that o; N D is contained in f~'(2V;). O

We say that the triangle 7 in X is r-fat if its inradius is strictly greater than r.
For every vertex v; of 7, we define the r-corner C,.(v;) at v; to be the set of points on
7 whose distance from both sides adjacent to v; is at most r. Note that if 7 is r-fat,
then the r-corners at its vertices are disjoint. We define the r-fat part ®,(7) of 7 to
be 7\ U;C,(v;). Recall that R = R(e) = 4! + 2e.

Proposition 4.2 Suppose that the triangle A(vy,ve,v3) is R = R(e)-fat. Then the
fat part ®r(A(v1,ve,v3)) is contained in a single component Nj.

Proof: Let f : T' — X be an e-straight filling of A(vq,v9,v3). Denote by Ck(v;) the
set of points on 3 whose distance in X to both sides [v;v;_1] and [v;v;51] is at most
R. Then f(Cj(v;) N 0%X) C Cg(v;). The Cj(v;) are convex subsets of ¥ and since
A(vy, v9,v3) is R-fat by assumption, they are disjoint and intersect at most two sides
of 0X. Thus, their complement F' := ¥\ U;Cx(v;) in ¥ is connected. By Lemma 4.1,
FNT!'is contained in f~'(NN). The components N; are e-separated and the connected
set F' lies in a €/2-neighborhood of 7. We conclude that @ (A (vy, va, v3)) C f(FNT?)
is contained in a single component N;. a
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4.2 Asymptotic cones of certain CAT(0)-spaces

We keep the notations and assumptions of Section 4.1. In addition, we require that
the sets NN; are 3e-neighborhoods of flats F; in X.

Pick a non-principal ultrafilter w. We define F to be the family of all flats in
Cone, ( X) which arise as ultralimits of sequences (i~ - Fj; )ien of flats in the rescaled

spaces i - X.

Proposition 4.3 The asymptotic cone Cone,( X) satisfies the properties:
e (F1) Every open triangle is contained in a flat F € F.

e (F2) Any two flats in F have at most one point in common.

Proof: Let A = A(z,y, z) be an open triangle in Cone, ( X). Then A is the ultralimit
of a sequence of triangles 11+ A;, where A; = A(x;, y;, 2;) are triangles in the original
space X. For w-every ¢ the triangle A; is R-fat, where R is chosen as in Section 4.1.
Otherwise, the ultralimit A would not be open. By Proposition 4.2, the fat part
®r(A;) is contained in a set N;(;). Each point w on the side |zy[ of A corresponds to
a sequence of points w; on |x;y;[. Since A is open, we have:

0 < du(u, [£2] U [zy]) = wrlim - - d(w;, ] U [z

Hence for w-every 7, w; does not belong to any R-corner of A;. Therefore, w; belongs
to Nj) and its distance from the flat Fj;) is at most 3e. We conclude that w lies
in the flat ' € F which arises as the ultralimit of the sequence (i~' - Fj). This
concludes the proof of property (F1).

To verify property (F2), let F and F' be flats in F which have two distinct
points z and y in common. We will show that F/ C F. Choose a point 2’ in
F' so that the triangle A(z,y,2') is non-degenerate and pick points u and w on
Jzy[ and Jz2'[. There is a sequence of flats (Fj()) in X which corresponds to the
flat F'. Select points z;,y; € Fjuy, 2z € X, u; €|z, y;[ and w; €|y, 2 so that
(@i), (vi), (), (u;), (w;) represent the points z,y, 2’, u, w. For w-all i, u;, w; belong to
the fat part ®g(A(z;,y;, 2;)). According to Proposition 4.2, the points u;, w; belong
to the same component Ny ;). Since u; lies on Fj;), Ny coincides with Nj;). Hence,
w lies on F. We conclude that 2’ € F, since w was an arbitrary point of |z2'|. O

4.3 Special CAT(0)-spaces

In the previous section, we established geometric properties for the asymptotic cone
of a CAT(0)-space with isolated flats. The asymptotic cone is a CAT(0)-space itself
and now we shall study geometric and topological properties of CAT(0)-spaces Y
satisfying the conclusion of Proposition 4.3.

Consider a flat F' € F and denote by mp : ¥ — F' the nearest-point-projection
onto F'.

Lemma 4.4 Let v : I — Y be a curve in the complement of F'. Then mg o7y is
constant.
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Proof: Assume that 7z oy is non-constant. Then there exist nearby points p; and py
on 7 with distinct projections ¢; := mp(p;) in F:

d(pi, F) = d(pi, ¢;) > d(p1,p2)  (i=1,2)

The geodesic [p1po] cannot meet F' and therefore the piecewise geodesic path [p1g1qapo]
is not locally minimizing at ¢; or ¢o, say at ¢; (see Lemma 2.4). Since [p1q:1]N[q1¢2] =
{¢1}, the triangle A(p1,q1,¢2) spans a non-degenerate open triangle A(r, ¢, s). By
property (F1), A(r, ¢, s) liesin a flat F'. Since FNF" contains the non-trivial segment
[q15], F and F' must coincide according to (F2). Thus [p1¢:]NF contains a non-trivial
segment [¢;r]. This contradicts that ¢; = 7r(p1). O

Lemma 4.5 Every embedded closed curve v C'Y is contained in a flat F' € F.

Proof: Consider the geodesic segment ¢ joining two distinct points x and y on . Since
~v is a closed curve, the projection 7, maps at least two points of v to an interior point
u of 0. Hence there exists a point z on v\ ¢ with 7,(2) = u. Consider a maximal
subarc a C 7 containing z with 7,(a) = {u}. At least one of the endpoints of « is
different from u, i.e. does not lie on o. Denote it by z;. There is a nearby point w on
v whose projection 7,(w) =: v is different from u and which satisfies

d(w,z1) < d(u,z1) = d(o, 1)

As in the proof of Lemma 4.4, we find a flat F' € F which contains a non-degenerate
segment o' C 0.

We proceed by proving that 7r(z) # 7r(y). The intersection F' N o is a non-
degenerate segment [z'y], so that 2’ lies between z and y'. Consider z" = 7p(z)
and suppose that z” # z'. Then the piecewise geodesic path zz'z" is not locally
minimizing at z’. Since [zz'|N[z'z"] = {2}, A(z, 2',2") spans a non-degenerate open
triangle with vertex z’. As in the proof of Lemma 4.4 we obtain a contradiction.
Therefore mr(z) = 2’ and similarly 7r(y) = ¢'. Thus 7 o 7y is non-constant.

Suppose now that v ¢ F. Choose a maximal open subarc f C < in the com-
plement of F. By Lemma 4.4, 7p(f) is a point p € F. By maximality of 5 and
continuity we conclude that every endpoint of § must coincide with p. Therefore g
has at most one endpoint and 7g(y) = {p}. This contradicts np(x) # 7r(y). We
conclude that ~ is contained in F. O

Corollary 4.6 Every embedded disc in 'Y of dimension at least 2 is contained in a
flat F € F. In particular, there are no other flats in 'Y besides the flats F € F.

We can use arguments similar to the proof of Lemma 4.4 to show:

Lemma 4.7 Suppose that T is a metric tree. Then T s a topological tree, i.e. any
two points are connected by a unique topologically embedded arc.

We conclude from Lemma 4.5:

Corollary 4.8 Suppose thatY is a CAT(0)-space satisfying the conclusion of Propo-
sition 4.8 and all flats in 'Y have dimension 2. Let T be a tree with nontrivial branch-
ing. Then there is no topological embedding ¢ : T X R — Y.
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Corollary 4.9 LetY be a CAT(0)-space satisfying the conclusion of Proposition 4.3.
Suppose that T is a metric tree which contains an uncountable discrete subset. Then
there is no bi-Lipschitz embedding ¢ : T X R — Y.

Proof: Suppose that there is such an embedding ¢. Lemma 4.5 and property (F2)
imply that the image of ¢ is contained in a flat F' € F. We obtain a contradiction,
since a flat does not contain uncountable discrete subsets. O

5 Distinction of quasi-isometry classes of 3-mani-
fold groups

The goal of this section is to distinguish quasi-isometry classes of fundamental groups
of certain 3-manifolds. Recall that any Haken manifold of zero Euler characteristic can
be obtained in a unique way by gluing hyperbolic and maximal Seifert components.
In this section we consider only such Haken manifolds.

Theorem 5.1 Let My be a non-positively curved Haken manifold which has at least
one Seifert component with hyperbolic base. Assume that Ms is a Haken manifold
which contains only hyperbolic components. Then the fundamental groups mi(M;)
and m (Ms) are not quasi-isometric.

Remark 5.2 As we shall prove in [KaLl], the condition in Theorem 5.1 that M,
admits a metric of non-positive curvature is actually obsolete. Namely, we prove that
fundamental group of any Haken manifold which is neither Sol nor Nil, is quasi-
wsometric to the fundamental group of a 3-manifold of nonpositive curvature.

Proof: The manifold M; contains a Seifert component Z. The universal cover Z
of Z is a convex subset in the universal cover M, according to 2.6. Therefore, the
asymptotic cone Cone,( Z ) is isometrically embedded in Cone,, ( M 1)- The asymptotic
cone Cone,( Z) is isometric to the product of the real line and a metric tree 7" with
nontrivial branching, see Corollary 3.11. Suppose that there exists a quasi-isometry
M; — M,. Tt induces a homeomorphism Cone,, M;) — Cone,(M,). Hence, R x T
topologically embeds into Cone,( Mg). The manifold M, carries a metric of nonpos-
itive curvature (Theorem 2.8). By Theorem 4.3, Cone,( M,) satisfies the properties
(F1) and (F2), see the discussion in the beginning of section 4.1. This contradicts
Corollary 4.8. O

Theorem 5.3 Let M be a nonpositively curved Haken 3-manifold with totally-geodesic
flat boundary. Assume that M is not flat, not Seifert and not homeomorphic to a
closed hyperbolic manifold. Then the asymptotic cone of the universal cover of M
contains two flats which have exactly one point in common.

Proof: Suppose that M contains a hyperbolic comp~onent N. By Theorem 2.6, the
universal cover N is convex in M. Hence, Cone,( N) is isometrically embedded in
Cone,( M). Pick two flats F; and F, in ON. Then Cone,( F;) and Cone,(F,) are
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flats in Cone,( V) which both contain the base point. According to Proposition 4.3
they have exactly one common point.

We are left with the case that M is a graph-manifold. We can find in the uni-
versal cover M two convex subsets A; and A, which are universal covers of Seifert
components and whose intersection is a flat F. The sets A; split off Riemannian
factors [; isometric to the real line. Since M is not Seifert, we may assume that the
one-dimensional factors are not parallel in F'. Choose flats F; in A; different from
F and consider the associated flats Cone,( F}) in Cone,(M). The intersection of
Cone, ( F;) with Cone,( F) is a line Cone,(l;). The lines Cone,(/;) intersect in a
single point. Since the intersection of the sets Cone,( 4;) is precisely Cone,( F), the
flats Cone,( F;) have exactly one point in common. O

Theorem 5.1 combined with results of Gromov, Gersten, N. Brady,

Schwartz and ourselves leads to a rough classification of quasi-isometry types of fun-
damental groups of Haken manifolds. We divide Haken 3-manifolds with flat incom-
pressible boundary into the following classes.

1. H : closed hyperbolic 3-manifolds.
2. CH : open hyperbolic 3-manifolds of finite volume.

3. HH : manifolds not contained in ‘H, CH which are obtained by gluing hyperbolic
components only.

4. § : Seifert manifolds with hyperbolic base-orbifolds.

5. 8§ : graph-manifolds. They are obtained by gluing Seifert manifolds with
hyperbolic base and they are not Seifert.

6. HS : manifolds with at least one hyperbolic and Seifert component (with hy-
perbolic base).

7. Closed Nil-manifolds.
8. Closed Sol-manifolds.
9. Flat manifolds.

Theorem 5.4 If two 3-manifolds belong to different classes (1-9) then their funda-
mental groups are not quasi-isometric.

Proof: The fundamental groups of Nil- and flat manifolds have polynomial growth of
degree 4 in the nilpotent and of degree at most 3 in the flat case. Therefore they are
not quasi-isometric to each other and to the fundamental groups of all other classes.

The property to be word-hyperbolic is a quasi-isometry invariant [GdH]. There-
fore, the fundamental groups of closed hyperbolic manifolds are not quasi-isometric to
the fundamental groups of manifolds of all other classes.

Let M be a manifold of the class CH and I" be a finitely generated torsion—free
group which is quasi-isometric to m1(M). Corollary 4 in the paper of R. Schwartz
[Schw2] implies that I" must be isomorphic to a lattice in SO(3,1) which is commen-
surable with 71 (M). Therefore, if such a group I is the fundamental group of a Haken
3-manifold, then I" belongs to the class CH.
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Theorem 5.1 and Remark 5.2 imply that the fundamental groups of the class HH
have different quasi-isometry type from the classes HS, SS and S.

Gersten introduced in [Gel] a quasi-isometry invariant notion of divergence of
geodesics which measures the rate of growth of diameters of spheres. Using [Br],
Gersten [Ge2] shows that fundamental groups of manifolds in the classes HS and HH
have exponential divergence. In [Ge2] Gersten proves that the fundamental groups
of all graph-manifolds fibered over the circle have at most quadratic divergence. On
the other hand, [Kal.1] implies that the fundamental group of any graph-manifold is
quasi-isometric to the fundamental group of a graph-manifold fibered over the circle.
This distinguishes the classes HS and SS. Note that Gersten characterizes closed
graph-manifolds as those Haken manifolds whose fundamental groups have precisely
quadratic divergence.

To distinguish the fundamental groups of Seifert manifolds and manifolds in
HH,HS,SS up to quasi-isometry we observe that their asymptotic cones have dif-
ferent topological properties. Namely, the asymptotic cone of the fundamental group
of a Seifert manifold with hyperbolic base splits as a metric product 7" x R where T'
is a tree with nontrivial branching, see Corollary 3.11. Hence the intersection of bi-
Lipschitz embedded Euclidean planes is either empty or contains a line, according to
Lemma 2.14. On the other hand, by Theorem 5.3, the asymptotic cones of manifolds
in the classes HH,HS,SS contain flats which have precisely one point in common.

To sever the class of Sol-manifolds one can use the fact that amenability is a quasi-
isometry invariant. The only Haken manifolds with amenable fundamental groups are
Sol-, Nil- and flat manifolds. One may also argue as follows on the level of asymptotic
cones. It was shown in [Gr2] that the asymptotic cone of the Lie group Sol is not
simply-connected. On the other hand, if M is a manifold of nonpositive curvature,
then the asymptotic cone of the universal cover M is contractible (see 3.4). O

Remark 5.5 A theorem of Rieffel [R] distinguishes quasi-isometry classes of funda-
mental groups of closed Seifert manifolds with hyperbolic base from the fundamental
groups of all other 3-manifolds.

Remark 5.6 Fundamental groups of open and closed aspherical 3-manifolds cannot
be quasi-isometric, because they have different cohomological dimension [Ge3].

Remark 5.7 The question how to distinguish quasi-isometry types of fundamental
groups inside the classes HS,8S and HH remains open. Considerable progress in
this direction was achieved by Schwartz [Schw1] who proves that fundamental groups
of two open hyperbolic manifolds of finite volume are quasi-isometric iff they are
commensurable. We discuss in our consecutive paper [KaL2] the quasi-isometry in-
variance of the canonical decomposition for (universal covers of ) Haken manifolds of
zero Euler characteristic.
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