

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Wintersemester 2024/25

Prof. Dr. Fabien Morel Dr. Andrei Lavrenov, Oliver Hendrichs, Katharina Novikov

1. Juli 2025

Lineare Algebra II – Lösungsskizzen zu Übungsblatt 8

Aufgabe 1.

Bestimmen Sie die Jordan-Normalform und eine Jordan-Basis der Matrix

$$A = \begin{pmatrix} -2 & 3 & 1 & 2 & 1\\ 0 & -2 & -4 & 1 & 1\\ 0 & 0 & -2 & 1 & -1\\ 0 & 0 & 0 & 0 & -2\\ 0 & 0 & 0 & 2 & -4 \end{pmatrix} \in \mathcal{M}_5(\mathbb{C}).$$

Lösung.

Erinnern wir uns daran, dass $\det \begin{pmatrix} A & B \\ 0 & C \end{pmatrix} = \det(A) \cdot \det(C)$, insbesondere

$$\chi_A(X) = -\begin{vmatrix}
-2 - X & 3 & 1 & 2 & 1 \\
0 & -2 - X & -4 & 1 & 1 \\
0 & 0 & -2 - X & 1 & -1 \\
0 & 0 & 0 & -X & -2 \\
0 & 0 & 0 & 2 & -4 - X
\end{vmatrix} = (X + 2)^3 (X^2 + 4X + 4) = (X + 2)^5.$$

Jetzt bestimmen wir die Jordan-Normalform N von A. Erinnern wir uns auch daran, dass $\dim \operatorname{Ker}(A+2E) = \dim \operatorname{Ker}(N+2E)$ gleich der Anzahl der Jordan-Blöcke ist. Aber

$$A + 2E = \begin{pmatrix} 0 & 3 & 1 & 2 & 1 \\ 0 & 0 & -4 & 1 & 1 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 2 & -2 \\ 0 & 0 & 0 & 2 & -2 \end{pmatrix}$$

und die Lösungsmenge des Gleichungssystem (A + 2E)X = 0 ist

$$\left\{ \begin{pmatrix} x \\ -7y/6 \\ y/2 \\ y \\ y \end{pmatrix}, \ x, y \in \mathbb{C} \right\}$$

und hat Dimension 2. Deshalb kann N entweder

$$N_{1} = \begin{pmatrix} -2 & 1 & 0 & 0 & 0 \\ 0 & -2 & 1 & 0 & 0 \\ 0 & 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & -2 \end{pmatrix} \quad \text{oder} \quad N_{2} = \begin{pmatrix} -2 & 1 & 0 & 0 & 0 \\ 0 & -2 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & 0 & -2 \end{pmatrix}$$

sein. Bemerken wir aber, dass

und dim $Ker(N_1 + 2E)^2 = 5 - rk(N_1 + 2E)^2 = 3$, aber

und dim $Ker(N_2 + 2E)^2 = 4$. Folglich, um zu entscheiden, ob $N = N_1$ oder $N = N_2$, können wir dim $Ker(A + 2E)^2 = \dim Ker(N + 2E)^2$ berechnen. Aber

und somit $N = N_2$.

Jetzt müssen wir eine Basis $\mathcal{B} = \{v_1, \dots, v_5\}$ finden, so dass $[A]_{\mathcal{B}} = N$, d.h. $Av_1 = -2v_1$, $Av_2 = -2v_2 + v_1$, $Av_3 = -2v_3 + v_2$, $Av_4 = -2v_4$, $Av_5 = -2v_5 + v_4$.

Nehmen wir zuerst einen Vektor $v_3 \in \mathbb{C}^5 \setminus \text{Ker}(A+2E)^2$, zum Beispiel, $v_3 = e_3$. Dann $v_2 = (A+2E)v_3 = e_1 - 4e_2$ und $v_1 = (A+2E)^2v_3 = -12e_1$.

Jetzt nehmen wir als v_5 einen Vektor aus $\operatorname{Ker}(A+2E)^2 \setminus \operatorname{Ker}(A+2E)$, der von v_1, v_2, v_3 linear unabhängig ist, zum Beispiel, $v_5 = 2e_4 + 5e_5$. Dann $v_4 = (A+2E)v_5 = (9,7,-3,-6,-6)^t$.

Aufgabe 2.

1. Sei $A \in M_2(\mathbb{R})$, so dass $\chi_A(X) \in \mathbb{R}[X]$ irreduzibel ist. Beweisen Sie, dass es eine Basis \mathcal{B} von \mathbb{R}^2 gibt, so dass A eine Matrix der Form $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ in dieser Basis hat, für $a \in \mathbb{R}$, $b \in \mathbb{R} \setminus 0$.

Hinweis: Betrachten Sie A als eine komplexe Matrix.

2. Sei V ein endlich dimensionaler \mathbb{R} -Vektorraum und $f: V \to V$ ein halbeinfacher Endomorphismus. Beweisen Sie, dass es eine Basis \mathcal{B} von V gibt, so dass $[f]_{\mathcal{B}}$ blockdiagonale Gestalt hat, die aus 1×1 Blöcken und 2×2 Blöcken der Form $\begin{pmatrix} a_i & -b_i \\ b_i & a_i \end{pmatrix}$ für $a_i \in \mathbb{R}$, $b_i \in \mathbb{R} \setminus 0$, $i \in \mathbb{N}$, besteht.

Lösung.

1. Da $\chi_A(X) \in \mathbb{R}[X]$ irreduzibel ist, hat es zwei komplexe Nullstellen $\lambda \in \mathbb{C} \setminus \mathbb{R}$ und $\overline{\lambda} \neq \lambda$. Sei $v \in \mathbb{C}^2$ ein Eigenvektor von A zum Eigenwert λ . Dann $A\overline{v} = \overline{Av} = \overline{\lambda v}$. Deshalb ist \overline{v} ein Eigenvektor von A, der zu $\overline{\lambda}$ gehört, und $\mathcal{B} = \{v, \overline{v}\}$ ist eine Basis

von \mathbb{C}^2 , so dass $[A]_{\mathcal{B}} = \operatorname{diag}(\lambda, \overline{\lambda})$. Schreiben wir $v_1 := (v - \overline{v})/2i = \operatorname{Im}(v) \in \mathbb{R}^2$ und $v_2 := (v + \overline{v})/2 = \operatorname{Re}(v) \in \mathbb{R}^2$, sowie $\lambda = a + bi$. Dann

$$Av_1 = \frac{1}{2i}(Av - A\overline{v}) = \frac{1}{2i}(\lambda v - \overline{\lambda}\overline{v}) = \operatorname{Im}(\lambda v) = a \cdot \operatorname{Im}(v) + b \cdot \operatorname{Re}(v) = av_1 + bv_2,$$

und ähnlich

$$Av_2 = \frac{1}{2}(Av + A\overline{v}) = \frac{1}{2}(\lambda v + \overline{\lambda}\overline{v}) = \operatorname{Re}(\lambda v) = a \cdot \operatorname{Re}(v) - b \cdot \operatorname{Im}(v) = -bv_1 + av_2.$$

Mit anderen Worten A hat die Matrix $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ in der Basis v_1, v_2 von \mathbb{R}^2 .

2. Erinnern wir uns daran, dass $f \colon V \to V$ halbeinfach ist, wenn und nur wenn das Minimalpolynom von f quadratfrei ist. Schreiben wir $\mu_f(X) = \prod_{i=1}^m P_i(X)$ als Produkt verschiedener irreduzibler $P_i(X) \in \mathbb{R}[X]$. Dann ist $V = \bigoplus_{i=1}^m \operatorname{Ker} P_i(f)$ und es genügt zu zeigen, dass alle $\operatorname{Ker} P_i(f)$ Basen haben, so dass die $f|_{\operatorname{Ker} P_i(f)}$ die gewünschte Form in diesen Basen haben. Mit anderen Worten können wir annehmen, dass $\mu_f(X) \in \mathbb{R}[X]$ irreduzibel ist.

Dann hat $\mu_f(X)$ entweder Grad 1 oder Grad 2. Wenn $\mu_f(X)$ Grad 1 hat, d.h. $\mu_f(X) = X - \lambda$ für $\lambda \in \mathbb{R}$, dann $f = \lambda$ id und f ist diagonal in jeder Basis.

Nehmen wir jetzt an, dass $\mu_f(X)$ Grad 2 hat, und A eine Matrix von f in einer beliebigen Basis ist. Dann hat A zwei komplexe Nullstellen $\lambda \in \mathbb{C} \setminus \mathbb{R}$ und $\overline{\lambda} \neq \lambda$, und muss über \mathbb{C} somit diagonalisierbar sein.

Da $\mu_A(X)$ und $\chi_A(X)$ die gleichen irreduziblen Teiler haben, schließen wir, dass $\chi_A(X) = \mu_A(X)^k$, und über $\mathbb C$ muss eine Basis existieren, so dass die Matrix von A in dieser Basis diag $(\underbrace{\lambda,\ldots,\lambda}_k,\overline{\lambda},\ldots,\overline{\lambda}_k)$ ist. Nehnmen wir k linear unabhängige komplexe Eigen-

vektoren v_1, \ldots, v_k von A. Dann sind $\overline{v}_1, \ldots, \overline{v}_k$ auch linear unabhängig und deshalb ist $v_1, \ldots, v_k, \overline{v}_1, \ldots, \overline{v}_k$ eine Basis von Eigenvektoren. Offensichtlich ist dann

$$\operatorname{Im}(v_1), \operatorname{Re}(v_1), \ldots, \operatorname{Im}(v_k), \operatorname{Re}(v_k)$$

auch eine Basis und nach "1." hat A in dieser Basis die gewünschte Forme.

Aufgabe 3.

Sei K ein Körper, V ein K-Vektorraum der Dimension n und $f:V\to V$ ein nilpotenter Endomorphismus. Betrachten Sie die Folge verallgemeinerter Eigenräume für f:

$$0 \neq \operatorname{Ker}(f) \subseteq \operatorname{Ker}(f^2) \subseteq \ldots \subseteq \operatorname{Ker}(f^{m-1}) \subseteq \operatorname{Ker}(f^m) = V$$

(vgl. Aufgabe 4 von Tutoriumsblatt 7) und setzen wir $k_i := \dim \operatorname{Ker}(f^i)$. Beweisen Sie, dass $2k_i \ge k_{i+1} + k_{i-1}$.

Beispiel: Für n=3, m=2 impliziert die obige Ungleichung, dass dim Ker(f)=2.

Lösung.

Betrachten wir $U_{i+1} \leq \operatorname{Ker}(f^{i+1})$, so dass $U_{i+1} \oplus \operatorname{Ker}(f^i) = \operatorname{Ker}(f^{i+1})$, und eine Basis $v_1, \ldots, v_{\alpha_{i+1}}$ von U_{i+1} , wobei $\alpha_{i+1} = k_{i+1} - k_i$. Dann sind $f(v_1), \ldots, f(v_{\alpha_{i+1}})$ auch linear unabhängige Vektoren aus $\operatorname{Ker}(f^i) \setminus \operatorname{Ker}(f^{i-1})$. Außerdem, wenn eine Linearkombination $\sum_{j=1}^{\alpha_{i+1}} a_j \cdot f(v_j) \in \operatorname{Ker}(f^{i-1})$, dann $\sum_{j=1}^{\alpha_{i+1}} a_j \cdot v_j \in \operatorname{Ker}(f^i) \cap U_{i+1} = 0$ und deshalb $a_j = 0 \ \forall j$. Dann ist die Summe von $\operatorname{Ker}(f^{i-1})$ und $\langle f(v_1), \ldots, f(v_{\alpha_{i+1}}) \rangle$ direkt von Dimension $k_{i-1} + \alpha_{i+1} \leq k_i$. Mit anderen Worten

$$k_i \ge k_{i-1} + \alpha_{i+1} = k_{i-1} + k_{i+1} - k_i$$
.

Aufgabe 4.

Sei K ein Körper, V ein K-Vektorraum der Dimension n und f_1, \ldots, f_n paarweise kommutierende nilpotente Endomorphismen von V. Beweisen Sie, dass $f_1 \circ \ldots \circ f_n = 0$.

Hinweis: Beweisen Sie zuerst, dass f_i gleichzeitig trigonalisierbar sind.

Lösung.

Beweisen wir zuerst über Induktion nach k, dass k paarweise kommutierende nilpotente Endomorphismen f_1, \ldots, f_k von V einen gleichzeitigen Eigenvektor $v \in V$ haben.

Betrachten wir $U := \operatorname{Ker}(f_k)$, dann $f_i(U) \subseteq U$. In der Tat für $u \in U$ haben wir $f_k(f_i(u)) = f_i(f_k(u)) = f_i(0) = 0$, mit anderen Worten $f_i(u) \in U$. Dann haben nach Induktionsannahme $f_1|_U, \ldots, f_{k-1}|_U$ einen gleichzeitigen Eigenvektor $v \in U \setminus 0$, aber alle nicht-trivialen Vektoren aus U sind Eigenvektoren für f_k .

Beweisen wir jetzt über Induktion nach $n = \dim V$, dass k paarweise kommutierende nilpotente Endomorphismen f_1, \ldots, f_k von V gleichzeitig triagonalisierbar sind.

Betrachten wir ein gleichzeitigen Eigenvektor $v_1 \in V$ für f_1, \ldots, f_k , und $U := \langle v_1 \rangle$. Da $f_i(U) = 0 \subseteq U$ für alle i, induzieren die f_i wohldefinierte Endomorphismen $g_i \colon V/U \to V/U$. Nach Induktion gibt es eine Basis w_2, \ldots, w_n , so dass alle g_i in dieser Basis Dreiecksmatrizen haben. Betrachten wir beliebige Urbilder $v_i \in V$ von w_i für $1 \le i \le n$. Dann ist $1 \le i \le n$. Dann ist $1 \le i \le n$ basis von $1 \le i \le n$. In der Tat, da $1 \le i \le n$ basis von $1 \le i \le n$ basis Dreiecksmatrizen. In der Tat, da $1 \le i \le n$ basis von $1 \le i \le n$ basis Dreiecksmatrizen. In der Tat, da $1 \le i \le n$ basis von $1 \le i \le n$ basis Dreiecksmatrizen. In der Tat, da $1 \le i \le n$ basis von $1 \le i \le n$ basis Dreiecksmatrizen. In der Tat, da $1 \le i \le n$ basis von $1 \le i \le n$ basis Dreiecksmatrizen. In der Tat, da $1 \le i \le n$ basis von $1 \le i \le n$ basis Dreiecksmatrizen. In der Tat, da $1 \le i \le n$ basis von $1 \le i \le n$ basis Dreiecksmatrizen.

$$f_i(v_j) - \sum_{t=2}^{j} v_t a_{tj} \in U = \langle v_1 \rangle.$$

Mit anderen Worten $f_i(v_j) - \sum_{t=1}^j v_t a_{tj}$ für $a_{1j} \in K$. Das bedeutet, dass f_i in der Basis v_1, \ldots, v_n eine Dreieckmatrix hat.

Betrachten wir jetzt eine Basis \mathcal{B} von V, so dass alle f_i Dreiecksmatritzen A_i in dieser Basis haben. Da die f_i nilpotent sind, sind die A_i strikte Dreiecksmatritzen, d.h., ihre Diagonalelemete sind 0.

Sei jetzt A eine strikte Dreiecksmatrix und B eine strikte Dreiecksmatrix, die auch k Nulldiagonalen oberhalb der Hauptdiagonale hat. Beweisen wir, dass AB eine strikte Dreiecksmatrix ist, die k+1 Nulldiagonalen oberhalb der Hauptdiagonale hat.

In der Tat schreiben wir $A = (a_{ij})$, $B = (b_{ij})$ und $AB = (c_{ij})$. Dann $a_{ij} = 0$ für $i \geq j$ und $b_{ij} = 0$ für $i + k \geq j$. Nehmen wir an, dass $i + k + 1 \geq j$. Dann

$$c_{ij} = \sum_{t=1}^{n} a_{it} b_{tj} = \sum_{t \ge j-k} a_{it} b_{tj} + \sum_{t \le j-k-1} a_{it} b_{tj},$$

aber $i \geq j - k - 1$ nach Ahnnahme und deshalb sind beide Summen gleich 0.

Jetzt bekommen wir nach Induktion, dass $A_1 \cdot \ldots \cdot A_k$ eine strikte Dreiecksmatrix ist, die k-1 Nulldiagonalen oberhalb der Hauptdiagonale hat, deshalb $A_1 \cdot \ldots \cdot A_n = 0$.