

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Wintersemester 2024/25

5. Juni 2025

Prof. Dr. Fabien Morel Dr. Andrei Lavrenov, Oliver Hendrichs, Katharina Novikov

Lineare Algebra II – Lösungsskizzen zu Übungsblatt 5

Aufgabe 1.

Sei K ein Körper, V ein 2-dimensionaler K-Vektorraum und $f:V\to V$ ein K-Endomorphismus. In Abhängigkeit des charakteristischen und des Minimalpolynoms von f beschreiben Sie alle f-invarianten Unterräume U von V, d.h. alle K-Unterräume, so dass $f(U)\subseteq U$.

Lösung.

Nehmen wir zuerst an, dass $\chi_f(X) = (X - a)(X - b)$ für $a \neq b$. Dann hat V eine Basis $\mathcal{B} = \{v_1, v_2\}$, die aus Eigenvektoren von f besteht, d.h. $A := [f]_{\mathcal{B}} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$.

Wenn U ein invarianter Unterraum von V ist und es $u = v_1 x + v_2 y = \begin{pmatrix} x \\ y \end{pmatrix} \in U$ gibt, so dass

 $x \neq 0$ und $y \neq 0$, schließen wir auch, dass $f(u) = \begin{pmatrix} ax \\ by \end{pmatrix} \in U$, da U invariant ist, und, dass ua, $ub \in U$, da U ein Unterraum ist. Deshalb haben wir $v_2 = \frac{1}{(b-a)y}(f(u) - ua) \in U$ und $v_1 = \frac{1}{(a-b)x}(f(u) - ub) \in U$, d.h. U = V.

Wenn U ein invarianter Unterraum von V ist und es kein $u = v_1x + v_2y \in U$ gibt, so dass $x \neq 0$ und $y \neq 0$, dann ist U entweder 0 oder U wird durch v_1 oder v_2 erzeugt. Alle diese 3 Unterräme sind invariant. Deshalb gibt es in diesem Fall nur 4 invariante Unterräme: $0, \langle v_1 \rangle, \langle v_2 \rangle, V$.

Nehmen wir zunächst an, dass $\chi_f(X) = (X - a)^2$. Dann entweder $\mu_f(X) = X - a$, oder $\mu_f(X) = (X - a)^2$. Im ersten Fall schließen wir, dass $f = a \cdot \mathrm{id}_V$, und deshalb sind alle Unterräume von V invariant. Insbesondere gibt es unedlich viel invariante Unterräumen.

Im zweiten Fall gibt es einen Eigenvektor v von f, d.h. f(v) = av, und sei $w \in V$ ein Vektor, der linear unabhängig von v ist. Dann ist $\mathcal{B} = \{v, w\}$ ein Basis von V und $A := [f]_{\mathcal{B}} = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ für $b, c \in K$. Da $\chi_A(X) = (X-a)(X-c) = (X-a)^2$, schließen wir, dass c = a. Außerdem ist $b \neq 0$, da $\mu_{a\cdot \mathrm{id}_V}(X) = X - a$. Sei U ein invarianter Unterraum von V, so dass es $u = vx + wy \in U$ gibt mit $y \neq 0$. Dann $\frac{1}{by}(f(u) - au) = v \in U$ und $w = \frac{1}{y}(u - vx) \in U$, so dass U = V. Wenn es kein $u = vx + wy \in U$ gibt mit $y \neq 0$, dann entweder U = 0 oder $U = \langle v \rangle$. Diese zwei Unterräume sind invariant. Deshalb gibt es $u = vx + vy \in U$ und $u = vx + vy \in U$ gibt mit

Zum Schluß nehmen wir an, dass $\chi_f(X)$ irreduzibel ist. Dann hat f keine Eigenvektoren. Insbesondere, wenn $U \leq V$ invariant ist und $u \in U \setminus 0$, dann $f(u) \not\in \langle u \rangle$, d.h., u und f(u) sind linear unabhängig und $U \supseteq \langle u, f(u) \rangle = V$. Deshalb gibt es 2 invariante Unterrämen in diesem Fall: 0 und V.

Aufgabe 2.

Sei K ein Körper, V ein K-Vektorraum und $f: V \to V$ ein K-Endomorphismus. Nehmen Sie an, dass V keinen nicht-trivialen f-invarianten Unterraum hat. Beweisen Sie, dass V zyklisch

ist, und, dass das charakteristische Polynom von f irreduzibel ist.

Hinweis: Sie dürfen Aufgabe 1, 2 und 4 von Tutoriumsblatt 3 benutzen.

Lösung.

Sei $v \in V \setminus 0$ und betrachten wir $U := \langle v, f(v), f^2(v), \ldots \rangle \leq V$. Es ist klar, dass U invariant ist und $U \ni v \neq 0$. Dann nach Annahme U = V und nach Aufgaben 1 und 2 aus Tutoriumsblatt 3 schließen wir, dass $V \cong K[X]/P(X)$ als K[X]-Modul, wo $P(X) = \chi_f(X) = \mu_f(X)$.

Sei P(X) reduzibel und zerlegen wir $P(X) = \prod_{i=1}^n Q_i(X)^{n_i}$ in $Q_i(X)$ irreduzible paarweise koprime Polynome. Wenn n > 1, sei $P_1(X) := Q_1(X)^{n_1}$ und $P_2(X) := \prod_{i=2}^n Q_i(X)^{n_i}$. Dann sind $P_1(X)$ und $P_2(X)$ koprim und $V = \operatorname{Ker} P_1(f) \oplus \operatorname{Ker} P_2(f)$. Beachten Sie, dass $V \neq \operatorname{Ker} P_i(f)$, weil P(X) sonst kein Minimalpolynom wäre, und $\operatorname{Ker} P_i(f)$ invariant ist. Dann hat V einen nicht-trivialen invarianten Unterraum.

Somit n=1 und $P(X)=Q_1(X)^{n_1}$. Beachten Sie, dass, wenn $\operatorname{Ker} Q_1(f)=0$, gilt auch $\operatorname{Ker} Q_1(f)^i=0$ für jedes i. In der Tat, wenn $0=Q_1(f)^i(v)=Q_1(f)\left(Q_1^{i-1}(f)(v)\right)$ für $v\in V$, schließen wir $Q_1^{i-1}(f)(v)=0$ und nach Induktion, v=0. Aber $\operatorname{Ker} Q_1(f)^{n_1}=V$. Wegen $V\neq 0$ ist es unmöglich, dass $\operatorname{Ker} Q_1(f)=0$. Aber $\operatorname{Ker} Q_1(f)$ ist ein invarianter Unterraum und deshalb $\operatorname{Ker} Q_1(f)=V$. Aber, da P(X) ein Minimalpolynom ist, schließen wir, dass $n_1=1$.

Aufgabe 3.

Sei K ein Körper, V ein K-Vektorraum und $f: V \to V$ ein K-Endomorphismus. Für einen f-invarianten Unterraum $U \subseteq V$ bezeichnen wir $g:=f|_U: U \to U$.

- 1. Beweisen Sie, wenn f diagonalisierbar ist, ist auch g diagonalisierbar.
- 2. Beweisen Sie, wenn f triagonalisierbar ist, ist auch g triagonalisierbar.

Lösung.

- 1. Wie Sie aus der Vorlesung wissen, ist f diagonalisierbar, wenn und nur wenn $\mu_f(X)$ ein Produkt Grad 1 Faktoren ist und quadratfrei ist. Aber $\mu_g(X) \mid \mu_f(X)$ und deshalb muss $\mu_g(X)$ auch ein Produkt von Grad 1 Faktoren und quadratfrei sein. Daraus schließen wir, dass g diagonalisierbar ist.
- 2. Wie Sie aus der Vorlesung wissen, ist f triagonalisierbar, wenn und nur wenn $\mu_f(X)$ ein Produkt Grad 1 Faktoren ist. Aber $\mu_g(X) \mid \mu_f(X)$ und deshalb muss $\mu_g(X)$ auch ein Produkt Grad 1 Faktoren sein. Daraus schließen wir, dass g triagonalisierbar ist.

Aufgabe 4.

Sei K ein Körper, V ein K-Vektorraum und $f: V \to V$ ein K-Endomorphismus. Für einen f-invarianten Unterraum $U \subseteq V$ bezeichnen wir $g:=f|_U: U \to U, W:=V/U$ und $h: W \to W$ den Endomorpismus von W, der durch f induziert wird.

- Beweisen Sie, dass $\mu_h(X) \mid \mu_f(X)$.
- Geben Sie ein Beispiel von V, f und U an, so dass $\mu_h(X) = \mu_f(X)$ bzw. $\mu_h(X) \neq \mu_f(X)$.

Bemerkung: Erinnern Sie sich, dass $\chi_f(X) = \chi_g(X) \cdot \chi_h(X)$ nach Aufgabe 4 von Tutoriumsblatt 12 aus Lineare Algebra I.

Lösung.

- 1. Da $\mu_f(f) = 0$, schließen wir, dass auch $\mu_f(h) = 0$, und deshalb $\mu_f(X) \mid \mu_f(X)$.
- 2. Betrachten wir $V = K \oplus K$, $U = K \oplus 0$ und $f = \mathrm{id}_V$. Dann $\mu_h(X) = \mu_f(X) = X 1$. Betrachten wir als Nächstes $V = K \oplus K$, $U = K \oplus 0$ und $f = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Dann $\mu_f(X) = (X - 1)^2$, aber $U \cong K$ und $\mu_h(X)$ hat Grad 1.