

LUDWIG-MAXIMILIANS UNIVERSITÄT

MATHEMATISCHES INSTITUT

Prof. Dr. Fabien Morel

Dr. Andrei Lavrenov, Oliver Hendrichs, Katharina Novikov

Wintersemester 2024/2527. Mai 2025

Lineare Algebra II – Lösungsskizzen zu Übungsblatt 4

Aufgabe 1.

Sei $V=\mathbb{R}[X]_{\leq n}$ der endlich dimensionale Vektorraum aller Polynome $P(X)\in\mathbb{R}[X]$ vom Grad $\deg P(X) \leq n$. Sei $f = \frac{\mathrm{d}}{\mathrm{d}X} \colon V \to V$ der Endomorphism von V, der P(X) auf $\frac{\mathrm{d}P(X)}{\mathrm{d}X}$ abbildet. Finden Sie das charakteristische Polynom $\chi_f(X)$ und das Minimalpolynom $\mu_f(X)$.

Lösung.

Betrachten wir die Basis $1, X, X^2, \dots, X^n$ von V und bestimmen wir die darstellende Matrix A von f bezüglich dieser Basis. Da $f(X^i) = i \cdot X^{i-1}$, schließen wir, dass

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 2 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & n \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}.$$

Das charakteristische Polynom von A ist dann gleich $\chi_A(X) = X^{n+1}$ und $\chi_A(X)$ ist durch das Minimalpolynom $\mu_A(X)$ teilbar, deshalb $\mu_A(X) = X^i$ für $i \leq n+1$.

Da $\mu_A(f) = 0$, schließen wir, dass $\frac{\mathrm{d}^i P(X)}{\mathrm{d} X^i} = 0$ für jedes $P(X) \in V$, insbesondere $\frac{\mathrm{d}^i X^n}{\mathrm{d} X^i} = 0$. Das ist nur möglich, wenn i = n + 1, d.h. $\mu_A(X) = X^{n+1}$

Aufgabe 2.

Sei K ein Körper und $P(X) \in K[X]$ ein Polynom. Geben Sie für jedes Paar natürlicher Zahlen $0 < i \leq n$ ein Beispiel eines $K\text{-Vektorraums}\ V$ und eines $K\text{-Endomorphismus}\ f\colon V \to V$ an, so dass $\chi_f(X) = P(X)^n$ und $\mu_f(X) = P(X)^i$.

Hinweis: Sie dürfen von Tutoriumsblatt 3 Aufgabe 2 benutzen, dass für V:=K[X]/P(X)und f induziert durch die Multiplikation mit X gilt $\chi_f(X) = \mu_f(X) = P(X)$.

Lösung.

Lösung. Bezeichnen wir mit $U := K[X]/P(X), \ U' := K[X]/P(X)^i$ und $V := \underbrace{U \oplus \ldots \oplus U}_{n-i} \oplus U'$. Be-

trachten wir den Endomorphismus $g\colon U\to U,$ der durch Multiplikation mit X induziert wird, und ähnlich den Endomorphismus $g' \colon U' \to U'$, der durch Multiplikation mit X induziert wird, und bezeichnen wir $f := g \oplus \ldots \oplus g \oplus g' \colon V \to V$.

Wenn wir eine Basis $\{b_i\}$ von U und eine Basis $\{b'_i\}$ von U' wählen und A und A' seien die darstellenden Matritzen von g und g' in diesen Basen, dann ist

$$\{(b_i, 0, \ldots, 0)\} \cup \ldots \cup \{(0, \ldots, b_i, 0)\} \cup \{(0, \ldots, 0, b_i')\}$$

eine Basis von V und f hat die darstellende block-diagonale Matrix diag (A, \ldots, A, A') in dieser Basis.

Deshalb schließen wir, dass

$$\chi_f(X) = \chi_A(X) \cdot \ldots \cdot \chi_A(X) \cdot \chi_{A'}(X) = P(X) \cdot \ldots \cdot P(X) \cdot P(X)^i = P(X)^n.$$

Auf der anderen Seite gilt $Q(f) = (Q(g), \dots, Q(g), Q(g'))$ für jedes $Q(X) \in K[X]$, insbesondere gilt Q(f) = 0, wenn und nur wenn Q(g) = 0 = Q(g'). Aber Q(g) = 0 gilt, wenn und nur wenn Q(X) durch $\mu_g(X) = P(X)$ geteilt wird, und Q(g') = 0 gilt, wenn und nur wenn Q(X) durch $\mu_{g'}(X) = P(X)^i$ geteilt wird. Mit anderen Worten gilt Q(f) = 0, wenn und nur wenn $P(X)^i$ das Polynom Q(X) teilt und das Polynom minimalen Grades mit dieser Eigenschaft ist $P(X)^i$.

Aufgabe 3.

Erinnern Sie sich daran, dass ein Element $m \in M$ eines R-Moduls M über einer Intergritätsbereich R Torsionselement heißt, wenn es $r \in R \setminus 0$ gibt, so dass rm = 0. Erinnern Sie sich auch daran, dass ein R-Modul M ein Torsionsmodul heißt, wenn jedes Element von M ein Torsionselement ist.

Sei K ein Körper, V ein K-Vektorraum, f ein K-Endomorphismus von V und betrachten Sie die induzierte K[X]-Modul Struktur auf V.

- 1. Beweisen Sie, dass V ein Torsionsmodul ist, wenn und nur wenn für jedes $v \in V$ der Vektorraum, der mit der Menge $\{v, f(v), f^2(v), \ldots\}$ erzeugt wird, endlich dimensional ist.
- 2. Beweisen Sie, dass V endlich dimensional über K ist, wenn und nur wenn V ein Torsionsmodul ist, der als K[X]-Modul endlich erzeugt wird.

Lösung.

1. Nehmen wir zuerst an, dass V ein Torsionsmodul ist. Sei $v \in V$ und bezeichnen wir mit U den Vektorraum, der durch die Menge $\{v, f(v), \ldots\}$ erzeugt wird. Nach Annahme gibt es ein Polynom $P(X) = \sum_{i=0}^{n} a_i X^i \in K[X], \ a_n \neq 0$, so dass $P(X) \cdot v = P(f)(v) = 0$. Beweisen wir durch Induktion, dass U eigentlich durch $\{v, f(v), \ldots, f^{n-1}(v)\}$ erzeugt wird.

Sei $f^i(v) \in U$ für alle i < m und betrachten wir $f^m(v)$ für ein $m \ge n$. Da $a_n f^n(v) = -\sum_{i=0}^{n-1} a_i f^i(v)$, schließen wir auch, dass $f^m(v) = -\frac{1}{a_n} \sum_{i=0}^{n-1} a_i f^{m-n+i}(v) \in U$.

Nehmen wir zunächst an, dass für jedes $v \in V$ der Vektorraum U, der durch die Menge $\{v, f(v), f^2(v), \ldots\}$ erzeugt wird, endlich dimensional ist. Aus jedem Erzeugendensystem kann man eine Basis auswählen, insbesondere, gibt es endlich viele Vektoren $v, f(v), \ldots, f^{n-1}(v)$, die U erzeugen. Dann für $f^n(v) \in U$ gibt es $a_i \in K$, so dass $f^n(u) = \sum_{i=0}^{n-1} a_i f^i(v)$. Bezeichnen wir mit $P(X) = X^n - \sum_{i=1}^{n-1} a_i X^i$. Somit P(f)(v) = 0, d.h., v ist ein Torsionselement. Da v beliebig war, schließen wir, dass V ein Torsionsmodul ist.

2. Wenn V endlich-dimensional ist, ist auch jeder Unterraum von V endlich-dimensional und deshalb ist V ein Torsionsmodul nach "1." Außerdem ist eine K-basis von V auch eine Erzeugendenmenge von V als K[X]-Modul.

Nehmen wir jetzt an, dass V ein endlich erzeugter Torsionsmodul ist. Nehmen wir $v_1, \ldots, v_n \in V$, die V als K[X]-Modul erzeugen, und bezeichnen wir mit U_i den Unterraum von V, der von v_i erzeut wird. Nach "1." schießen wir, dass alle U_i endlichdimensional über K sind. Aber $V \subseteq U_1 + \ldots + U_n$, und deshalb ist V auch endlich-

dimensional.

Aufgabe 4.

Sei K ein Körper, $P(X) \in K[X]$ ein irreduzibles Polynom, und V ein endlich-dimensionaler K-Vektorraum. Betrachten Sie einen K-Endomorphismus $f \colon V \to V$, so dass $P(f)^m = 0$ für ein $m \in \mathbb{N}$. Beweisen Sie, dass $\chi_f(X) = P(X)^n$ für ein $n \in \mathbb{N}$.

Lösung.

Da P(X) durch $\mu_f(X)$ teilbar ist und P(X) irreduzibel ist, schließen wir, dass $\mu_f(X) = P(X)^i$ für ein $i \leq m$.

Wie Sie schon aus der Vorlesung wissen, haben das charakteristische Polynom $\chi_f(X)$ und das Minimalpolynom $\mu_f(X)$ die gleichen irreduziblen Teiler. Aber P(X) ist der einzige irreduzible Teiler von $\mu_f(X)$ und deshalb $\chi_f(X) = P(X)^n$ für ein $n \ge i$.