

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. Dr. Fabien Morel Dr. Andrei Lavrenov, Oliver Hendrichs, Katharina Novikov

Lineare Algebra II – Tutoriumsblatt 12

Aufgabe 1.

Consider a rotation $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \in SO_2(\mathbb{R})$. Decompose it as a product of two reflections.

Aufgabe 2.

1. Prove that the matrix $A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$ is diagonalize and give a basis of \mathbb{R}^3

consisting of eigenvectors of A.

 ${\it Remark:}$ Conclude that A admits a square root.

2. Denote $\langle u, v \rangle_A := u^t A v$ the corresponding symmetric bilinear form. Prove that this form is positive-definite and find a basis v_1, v_2, v_3 such that the Gram matrix of this form $G(v_1, v_2, v_3) = (\langle v_i, v_j \rangle_A)_{ij}$ is diagonal.

Aufgabe 3.

Let $G(v_1, \ldots, v_n)$ denote the Gram matrix of the vectors $v_1, \ldots, v_n \in \mathbb{R}^n$, and $\sigma \in \mathfrak{S}_n$. Prove that det $G(v_{\sigma(1)}, \ldots, v_{\sigma(n)}) = \det G(v_1, \ldots, v_n)$.

Aufgabe 4.

Let $f: V \to V$ be an isometry.

- 1. For an f-invariant subspace $U \leq V$ prove that U^{\perp} is also f-invariant.
- 2. Prove that there exists a subspace $U \leq V$ such that V can be decomposed as an *ortho*gonal direct sum of U and the eigenspaces $V_1(f)$ and $V_{-1}(f)$.

Sommersemester 2025 14. Juli 2025