

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT



Prof. Dr. Fabien Morel Dr. Andrei Lavrenov, Oliver Hendrichs, Katharina Novikov

## Lineare Algebra II – Tutoriumsblatt 7

## Aufgabe 1.

Let A be a finitely generated abelian group.

- 1. For  $x_1, \ldots, x_k \in A$  generating A and  $c_1, \ldots, c_k \in \mathbb{N}$  with g.c.d. $(c_1, \ldots, c_k) = 1$  there exist generators  $y_1, \ldots, y_k$  of A with  $y_1 = c_1 x_1 + \ldots + c_k x_k$ . *Hint:* Argue by induction on  $s := c_1 + \ldots + c_k$ . In the induction step consider the generating set  $x_1, x_2 + x_1, x_3, \ldots, x_k$  and the set of natural numbers  $c_1 - c_2, c_2, c_3, \ldots, c_k$ .
- 2. Prove that A is a (finite) direct sum of cyclic subgroups. *Hint:* Argue by induction on the minimal number of generators k of A. Among the generating sets  $x_1, \ldots, x_k$  choose the set with minimal possible order of  $x_1$  and prove that  $A = \langle x_1 \rangle \oplus \langle x_2, \ldots, x_k \rangle$ . To get the latter, assume that there is a "relation"  $m_1 x_1 + \ldots + m_k x_k = 0$  in A for  $m_i \in \mathbb{N}$  and  $m_1 < \operatorname{ord}(x_1)$ , consider  $d := \operatorname{g.c.d.}(m_1, \ldots, m_k)$  and  $c_i := m_i/d$ , and apply "1." to get a contradiction with the choice of  $x_i$ .
- 3. Prove that A is isomorphic to  $\mathbb{Z}^r \oplus \bigoplus_{i=1}^n \mathbb{Z}/p_i^{m_i}$  for some  $r, n, m_i \in \mathbb{N}$  and  $p_i$  primes (not necessarily distinct).
- 4. Prove that A is isomorphic to  $\mathbb{Z}^r \oplus \bigoplus_{i=1}^t \mathbb{Z}/d_i$  for some  $r, t, d_i \in \mathbb{N}$  such that  $d_1 | d_2 | \dots | d_t$ . *Remark:* Observe that for a finite A one has  $\exp(A) = d_t$  and  $|A| = \prod_{i=1}^t d_i$ .
- 5. Find  $d_i$  for  $A \cong \mathbb{Z}/48 \oplus \mathbb{Z}/36$ .

## Aufgabe 2.

Let K be a field, V a finite-dimensional vector space of dimension n, and  $f: V \to V$  an endomorphism. Assume that f is *unipotent*, i.e., that  $f - id_V$  is nilpotent. Prove that  $\chi_f(X) = (X-1)^n$ .

## Aufgabe 3.

Let K be a field, V a finite-dimensional vector space, and  $f: V \to V$  an endomorphism.

- 1. Prove that  $\chi_{f^{\vee}}(X) = \chi_f(X)$ . Hint: You can use Aufgabe 4 from Tutoriumsblatt 9 of Lineare Algebra I.
- 2. Assume that  $\chi_f(X) = \mu_f(X)$ . Prove that (V, f) is a cyclic space, i.e.,  $V \cong K[X]/P(X)$  in such a way that f corresponds to the endomorphism induced by multiplication by X.
- Assume that V = K[X]/P(X) is a cyclic space. Prove that (V<sup>∨</sup>, f<sup>∨</sup>) is cyclic and (V, f) is isomorphic to (V<sup>∨</sup>, f<sup>∨</sup>).
  *Hint:* You can use Aubgabe 1 und 2 from Tutoriumsblatt 3 and Aufgabe 2 from Übungsblatt 6.
- 4. Using the classification of K[X]-modules, prove that (V, f) is isomorphic to  $(V^{\vee}, f^{\vee})$  for any finite-dimensional vector space (i.e., without an assumption that (V, f) is cyclic).

Let K be a field, V a finite-dimensional vector space and  $f: V \to V$  an endomorphism. Let  $\lambda$  be an eigenvalue of f, and consider the sequence of subspaces

$$\operatorname{Ker}(f - \lambda \cdot \operatorname{id}) \subseteq \operatorname{Ker}(f - \lambda \cdot \operatorname{id})^2 \subseteq \operatorname{Ker}(f - \lambda \cdot \operatorname{id})^3 \subseteq \dots$$

Let  $m \in \mathbb{N}$  be the minimal number such that  $\operatorname{Ker}(f - \lambda \cdot \operatorname{id})^m = \operatorname{Ker}(f - \lambda \cdot \operatorname{id})^{m+1}$ . Prove that  $\mu_f(X) = (X - \lambda)^m \cdot P(X)$  for some  $P(X) \in K[X]$  coprime to  $(X - \lambda)$ .