

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. Dr. Fabien Morel Dr. Andrei Lavrenov, Oliver Hendrichs, Katharina Novikov

Lineare Algebra II – Tutoriumsblatt 6

Aufgabe 1.

- 1. Recall that for a finite abelian group (A, +) one defines the *order* of an element $a \in A$ as $\operatorname{ord}(a) := \min\{k \in \mathbb{N} \mid ka = 0\}$. Prove that for $n \in \mathbb{N}$ one has $na = 0 \Leftrightarrow \operatorname{ord}(a) \mid n$.
- 2. Recall that for a finite abelian group (A, +) one defines the *order* of A as its cardinality |A|. For $a \in A$ prove that ord(a) coincides with the order of the group $\langle a \rangle = \{ka \mid k \in \mathbb{Z}\}.$
- 3. For a finite abelian group (A, +) of order n and $a \in A$ prove that na = 0. *Hint:* Prove that $+a: A \to A$ is a bijection and consider a sum of all elements in A.
- 4. For a finite abelian group (A, +) one defines the *exponent* of A as $\exp(A) := \min\{k \in \mathbb{N} \mid \forall a \in A \ ka = 0\}$. Prove that $\exp(A)$ divides the order of A.

Aufgabe 2.

- 1. (Fermat's Little Theorem) For a prime p and $a \neq 0 \mod p$, prove that $a^{p-1} \equiv 1 \mod p$.
- 2. (Euler's Theorem) For $n \in \mathbb{N}$ define Euler's totient function $\varphi(n) := |\{1 \leq k \leq n \mid g.c.d.(k,n) = 1\}|$. For an integer a coprime to n prove that $a^{\varphi(n)} \equiv 1 \mod n$.

Aufgabe 3.

Let A, B be finite abelian groups, and $C := A \times B$.

- 1. For $(a,b) \in C$ prove that $\operatorname{ord}(a,b) = \operatorname{l.c.r.}(\operatorname{ord}(a), \operatorname{ord}(b))$.
- 2. Prove that $|C| = |A| \cdot |B|$ and $\exp(C) = \text{l.c.r.}(\exp(A), \exp(B))$.

Remark: compare with Aufgabe 2 from Tutoriumsblatt 4.

Aufgabe 4.

- 1. For a finite abelian group (A, +) prove that $\exp(A) = \text{l.c.r.} \{ \operatorname{ord}(a) \mid a \in A \}.$
- 2. Recall that for a finite dimensional vector space V over a field K with an endomorphism $f: V \to V$, and $v \in V$ one defines $\langle v \rangle_f = \langle v, f(v), f^2(v), \ldots \rangle =: U$ and $\mu_v := \mu_{f|_U}$. Prove that $\mu_f = \text{l.c.r.} \{\mu_v \mid v \in V\}$.

