

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN MATHEMATISCHES INSTITUT

Prof. Dr. Fabien Morel

Dr. Andrei Lavrenov, Oliver Hendrichs, Katharina Novikov

Lineare Algebra II – Tutoriumsblatt 5

Aufgabe 1.

Recall that the polynomial ring in n variables $R[X_1, \ldots, X_n]$ over the commutative ring R is defined inductively as a polynomial ring in one variable $(R[X_1, \ldots, X_{n-1}])[X_n]$ over the ring $R[X_1, \ldots, X_{n-1}]$.

Prove that for a commutative ring R, the map

 $\Phi \colon \operatorname{Hom}_{\operatorname{Ring}}(\mathbb{Z}[X_1,\ldots,X_n], R) \to R^n$

that sends a ring homomorphism f to the *n*-tuple $(f(X_1), \ldots, f(X_n)) \in \mathbb{R}^n$ is in fact a bijection.

Aufgabe 2.

Consider a polynomial ring $S = \mathbb{Z}[X_{ij}, Y_{ij}]_{1 \le i,j \le n}$ in $2n^2$ variables. Define the "universal" matrices $A := (X_{ij}) \in M_n(S)$ and $B := (Y_{ij}) \in M_n(S)$.

- 1. Prove that $det(A \cdot B) = det(A) \cdot det(B)$. Hint: Consider A and B as matrices over some field.
- 2. Prove that for any commutative ring R and M, $N \in M_n(R)$ one has $det(M \cdot N) = det(M) \cdot det(N)$.

Hint: Using Aufgabe 1, reduce the claim to the case of universal matrices A and B.

Aufgabe 3.

For a commutative ring R and $M \in M_n(R)$ one defines the minor $M_{ij} \in R$ of M as the determinants of matrix obtained by deleting the *i*-th row and the *j*-th coloumns of M, and the co-factors $C_{ij} := (-1)^{i+j} M_{ij}$ (similarly to the case, where R = K is a field).

Consider the co-factor matrix $\widetilde{M} = (C_{ij})$, and prove that $M \cdot \widetilde{M}^t = \det(M) \cdot E$. *Hint:* Use the same strategy as in Aufgabe 2.

Aufgabe 4.

Let K be a field and $P(X) = \sum_{i=0}^{n} a_i X^i \in K[X]$. Recall that one can define a (formal) derivative $P'(X) := \sum_{i=1}^{n} i \cdot a_i X^{i-1} \in K[X]$.

- 1. Prove that the formal derivative satisfies the Leibnitz rule: $(P \cdot Q)' = P' \cdot Q + P \cdot Q'$.
- 2. Let $P(X) \in K[X]$ a Polynomial, such that P(X) and P'(X) are co-prime. Prove that all roots of P(X) are simple, that is, $(X \lambda)^k \not| P(X)$ for $k > 1, \lambda \in K$.
- 3. Let P(X) be an irreducible Polynomial over a field K of characteristic 0, and assume that K is a subfield of a field E. Prove that P(X) as a polynomial over E can only have simple roots.
- 4. Are $P(X) := X^p 1 \in (\mathbb{Z}/p)[X]$ and P'(X) co-prime?