

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Wintersemester 2024/25

23. Januar 2025

Prof. Dr. Fabien Morel Dr. Andrei Lavrenov, Oliver Hendrichs

Lineare Algebra I – Lösungsskizzen zu Übungsblatt 11

Aufgabe 1.

Lösen Sie das folgende lineare Gleichungssystem mittels der Cramerschen Regel:

$$\begin{cases} 2x_1 + 2x_2 + 4x_3 = 1\\ 2x_1 - 3x_2 + 2x_3 = 0\\ 5x_1 + 4x_2 + 3x_3 = 1. \end{cases}$$

Setzen Sie die erhaltene Lösung in die Gleichung ein, um sie zu überprüfen.

Lösung.

Erinnern wir uns daran, dass ein Gleichunssystem AX = B mit $\det(A) \neq 0$ eine eindeutige Lösung $X = A^{-1}B$ hat. Sind A_1, \ldots, A_n die Spalten von A, so ist die i-te Komponente von X durch

$$x_i = \frac{\det(A_1, \dots, A_{i-1}, B, A_{i+1}, \dots, A_n)}{\det(A)}$$

gegeben. Diese Formel ist als Cramersche Regel bekannt.

In unserem Fall haben wir

$$A = \begin{pmatrix} 2 & 2 & 4 \\ 2 & -3 & 2 \\ 5 & 4 & 3 \end{pmatrix} \quad \text{und} \quad B = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

Nach Sarrusscher Regel ist

$$\det(A) = -18 + 32 + 20 - (-60) - 16 - 12 = 66 \neq 0.$$

Dann

$$\det(B, A_2, A_3) = \det\begin{pmatrix} 1 & 2 & 4 \\ 0 & -3 & 2 \\ 1 & 4 & 3 \end{pmatrix} = -9 + 4 + 12 - 8 = -1$$

und ähnnlich

$$\det(A_1, B, A_3) = \det\begin{pmatrix} 2 & 1 & 4 \\ 2 & 0 & 2 \\ 5 & 1 & 3 \end{pmatrix} = 8 + 10 - 4 - 6 = 8$$

sowie

$$\det(A_1, A_2, B) = \det\begin{pmatrix} 2 & 2 & 1 \\ 2 & -3 & 0 \\ 5 & 4 & 1 \end{pmatrix} = -6 + 8 + 15 - 4 = 13.$$

Nach der Cramerschen Regel haben wir somit

$$x_1 = \frac{\det(B, A_2, A_3)}{\det(A)} = -\frac{1}{66}, \quad x_2 = \frac{\det(A_1, B, A_3)}{\det(A)} = \frac{4}{33}, \quad x_3 = \frac{\det(A_1, A_2, B)}{\det(A)} = \frac{13}{66}.$$

Überprüfen wir diese Lösung. In der Tat

$$2\frac{-1}{66} + 2\frac{8}{66} + 4\frac{13}{66} = \frac{-2 + 16 + 52}{66} = 1, \quad 2\frac{-1}{66} - 3\frac{8}{66} + 2\frac{13}{66} = \frac{-2 - 24 + 26}{66} = 0,$$
$$5\frac{-1}{66} + 4\frac{8}{66} + 3\frac{13}{66} = \frac{-5 + 32 + 39}{66} = 1.$$

Aufgabe 2.

Finden Sie die Determinante und die Inverse der folgenden Matrix:

$$A = \begin{pmatrix} 2 & 0 & -1 & 0 \\ 5 & 0 & -2 & 0 \\ 0 & -7 & 0 & 3 \\ 0 & -2 & 0 & 1 \end{pmatrix}.$$

Hinweis: Erinnern Sie sich, dass Vertauschen der Spalten der Multiplikation mit Elementarmatrizen von rechts entspricht.

Lösung.

Wir setzen

$$T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Dann

$$AT = \begin{pmatrix} 2 & 0 & -1 & 0 \\ 5 & 0 & -2 & 0 \\ 0 & -7 & 0 & 3 \\ 0 & -2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 0 & 0 \\ 5 & -2 & 0 & 0 \\ 0 & 0 & -7 & 3 \\ 0 & 0 & -2 & 1 \end{pmatrix} =: C.$$

Wir wissen aus der Vorlesung,

$$\det \begin{pmatrix} X & 0_{m,n} \\ 0_{n,m} & Y \end{pmatrix} = \det(X) \cdot \det(Y)$$

für $X \in M_m(K)$, $Y \in M_n(K)$, insbesondere ist $\begin{pmatrix} X & 0_{m,n} \\ 0_{n,m} & Y \end{pmatrix}$ invertierbar, wenn und nur wenn X und Y invertierbar sind. In diesem Fall haben wir auch

$$\begin{pmatrix} X & 0_{m,n} \\ 0_{n,m} & Y \end{pmatrix}^{-1} = \begin{pmatrix} X^{-1} & 0_{m,n} \\ 0_{n,m} & Y^{-1} \end{pmatrix}.$$

In unserem Fall sind $X = \begin{pmatrix} 2 & -1 \\ 5 & -2 \end{pmatrix}$, $Y = \begin{pmatrix} -7 & 3 \\ -2 & 1 \end{pmatrix}$ und $C = \begin{pmatrix} X & 0_{2,2} \\ 0_{2,2} & Y \end{pmatrix}$. Jetzt können wir Determinanten und Inversen von X und Y finden.

Erinnern wir uns, dass für $Z = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(K)$ mit $\det(Z) = ad - bc \neq 0$ gilt

$$Z^{-1} = \frac{1}{\det(Z)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

In unserem Fall det(X) = -4 + 5 = 1, det(Y) = -7 + 6 = -1, sowie

$$X^{-1} = \begin{pmatrix} -2 & 1 \\ -5 & 2 \end{pmatrix}$$
 und $Y^{-1} = -\begin{pmatrix} 1 & -3 \\ 2 & -7 \end{pmatrix} = \begin{pmatrix} -1 & 3 \\ -2 & 7 \end{pmatrix}$.

Dann haben wir $det(C) = 1 \cdot (-1) = -1$ und

$$C^{-1} = \begin{pmatrix} -2 & 1 & 0 & 0 \\ -5 & 2 & 0 & 0 \\ 0 & 0 & -1 & 3 \\ 0 & 0 & -2 & 7 \end{pmatrix}.$$

Erinnern wir uns, dass det(T) = -1 und $T^{-1} = T$. Deshalb haben wir

$$\det(A) = \det(CT) = \det(C) \cdot \det(T) = 1,$$

und

$$A^{-1} = (CT)^{-1} = T^{-1}C^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -2 & 1 & 0 & 0 \\ -5 & 2 & 0 & 0 \\ 0 & 0 & -1 & 3 \\ 0 & 0 & -2 & 7 \end{pmatrix} = \begin{pmatrix} -2 & 1 & 0 & 0 \\ 0 & 0 & -1 & 3 \\ -5 & 2 & 0 & 0 \\ 0 & 0 & -2 & 7 \end{pmatrix}.$$

Aufgabe 3.

Sei K ein Körper, $a \in K$. Finden Sie die folgende Determinante:

$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ a & a-1 & a-2 & \cdots & a-n \\ a^2 & (a-1)^2 & (a-2)^2 & \cdots & (a-n)^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a^n & (a-1)^n & (a-2)^n & \cdots & (a-n)^n \end{vmatrix},$$

und beweisen Sie, dass sie nicht von a abhängig ist.

Hinweis: Sie dürfen Aufgabe 4 aus Übungsblatt 10 benutzen.

Lösung.

Nach Aufgabe 4 aus Übungsblatt 10 wissen wir, dass für ein (n+1)-Tupel $(x_1, x_2, \ldots, x_{n+1})$ aus Elementen x_i in einem Körper K

$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_1 & x_2 & x_3 & \cdots & x_{n+1} \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_{n+1}^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1^n & x_2^n & x_3^n & \cdots & x_{n+1}^n \end{vmatrix} = \prod_{1 \le i < j \le n+1} (x_j - x_i).$$

Sei $x_i := a + 1 - i$. Dann haben wir

$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ a & a-1 & a-2 & \cdots & a-n \\ a^2 & (a-1)^2 & (a-2)^2 & \cdots & (a-n)^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a^n & (a-1)^n & (a-2)^n & \cdots & (a-n)^n \end{vmatrix} = \prod_{1 \le i < j \le n+1} \left((a+1-j)) - (a+1-i) \right) = \prod_{1 \le i < j \le n+1} \left(i-j \right)$$

und insbesondere hängt es nicht von a ab. Offensichtlich

$$\prod_{1 \le i < j \le n+1} (i-j) = \prod_{\substack{1 \le j \le n+1 \\ 1 \le i \le j-1}} (i-j) = \prod_{1 \le j \le n+1} (-1)^{j-1} (j-1)! = (-1)^{\frac{n(n+1)}{2}} 0! \cdot 1! \cdot \dots \cdot n!.$$

Aufgabe 4.

1. Sei K ein Körper. Beweisen Sie, dass für $b=\pm a\in K$ die Matrix

$$A_{n} = \begin{pmatrix} a & 0 & 0 & \dots & 0 & 0 & b \\ 0 & a & 0 & \dots & 0 & b & 0 \\ 0 & 0 & a & \dots & b & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & b & \dots & a & 0 & 0 \\ 0 & b & 0 & \dots & 0 & a & 0 \\ b & 0 & 0 & \dots & 0 & 0 & a \end{pmatrix} \in \mathcal{M}_{2n}(K)$$

triviale Determinante hat.

2. Finden Sie $det(A_n)$ für allgemeine $a, b \in K$ per Induktion über n.

Lösung.

- 1. Für b=a können wir die erste Zeile von der letzten subtrahieren. Die resultierende Matrix hat eine Nullzeile und deshalb ist $\det(A_n)=0$. Ähnnlich für b=-a können wir die erste Zeile zur letzten addieren und die resultierende Matrix hat wieder eine Nullzeile.
- 2. Mit dem Laplaceschen Entwicklungssatz kann man die Determinante einer $n \times n$ -Matrix A nach der ersten Zeile entwickeln:

$$\det(A) = \sum_{j=1}^{n} (-1)^{1+j} \cdot a_{1j} \cdot \det A_{1j},$$

wobei A_{1j} die $(n-1) \times (n-1)$ -Untermatrix von A ist, die durch Streichen der ersten Zeile und j-ten Spalte entsteht.

In unserem Fall $A = A_n$ ist $a_{1j} = 0$ für $j \neq 1, n$ und

$$A_{11} = \begin{pmatrix} A_{n-1} & 0 \\ 0 & a \end{pmatrix}, \qquad A_{1n} = \begin{pmatrix} 0 & A_{n-1} \\ b & 0 \end{pmatrix}.$$

Man kann die Determinante von A_{11} und A_{1n} der letzten Zeile entwickeln:

$$\det(A_{11}) = (-1)^{(2n-1)+(2n-1)} a \cdot \det(A_{n-1}) = a \det(A_{n-1}),$$

$$\det(A_{1n}) = (-1)^{(2n-1)+1} b \cdot \det(A_{n-1}) = b \det(A_{n-1}).$$

Dann ist

$$\det(A_n) = (-1)^{1+1}a \cdot \det(A_{11}) + (-1)^{1+2n}b \cdot \det(A_{1n}) = (a^2 - b^2)\det(A_{n-1}).$$

Offensichtlich $det(A_1) = a^2 - b^2$. Nach Induktion haben wir, dass

$$\det(A_n) = (a^2 - b^2)^n.$$