

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Wintersemester 2024/25

7. November 2024

Prof. Dr. Fabien Morel Dr. Andrei Lavrenov, Oliver Hendrichs

Lineare Algebra I – Lösungsskizzen zu Übungsblatt 02

Aufgabe 1.

Sei G eine Menge mit zwei Elementen. Beweisen Sie, dass G genau zwei Gruppenstrukturen zulässt

Hinweis: Beweisen Sie, dass die Wahl des neutralen Elements die Gruppenstruktur bestimmt.

Lösung.

Sei $\cdot: G \times G \to G$ eine Gruppenstruktur. Dann $\exists e \in G$, das neutrale Element von (G, \cdot) . Bezeichne mit g das zweite Element von G, also $G = \{e, g\}$.

Gemäß den Gruppenaxiomen gilt, $\exists g^{-1} \in G$. Falls $g^{-1} = e$, haben wir einen Widerspruch: $g = (g^{-1})^{-1} = e^{-1} = e$. Somit ist $g^{-1} = g$, d.h. $g \cdot g = e$. Aber $e \cdot g = g \cdot e = g$ und $e \cdot e = e$, da e ein neutrales Element ist. Wir haben für jedes Paar $(x,y) \in G \times G$ das Produkt $x \cdot y$ bestimmt.

Mit anderen Worten: $G = \{g_1, g_2\}$ lässt genau zwei Gruppenstrukturen $G \times G \to G$ zu: eine mit g_1 als neutralem Element:

$$(g_1, g_1) \mapsto g_1, \quad (g_1, g_2) \mapsto g_2, \quad (g_2, g_1) \mapsto g_2, \quad (g_2, g_2) \mapsto g_1,$$

und eine mit g_2 als neutralem Element:

$$(g_1, g_1) \mapsto g_2, \quad (g_1, g_2) \mapsto g_1, \quad (g_2, g_1) \mapsto g_1, \quad (g_2, g_2) \mapsto g_2.$$

Aufgabe 2.

Sei (G, \cdot) eine Gruppe und H eine Teilmenge von G. Wir definieren eine Relation

$$R = \{(x, y) \in G \times G \mid x \cdot y^{-1} \in H\}.$$

Beweisen Sie, dass R eine Äquivalenzrelation ist genau dann, wenn $H \neq \emptyset$ und das Folgende gilt:

$$\forall x, y \in H \ x \cdot y^{-1} \in H.$$

Hinweis: Beweisen Sie zuerst, dass $\forall x, y \in G \ (xy)^{-1} = y^{-1}x^{-1}$.

Lösung.

Zuerst beweisen wir, dass $\forall x, y \in G \ (xy)^{-1} = y^{-1}x^{-1}$. Wir haben

$$\begin{split} (xy)^{-1} &= 1 \cdot (xy)^{-1} = y^{-1}y(xy)^{-1} = y^{-1} \cdot 1 \cdot y(xy)^{-1} = \\ &= y^{-1}(x^{-1}x)y \cdot (xy)^{-1} = y^{-1}x^{-1} \cdot (xy) \cdot (xy)^{-1} = y^{-1}x^{-1} \cdot 1 = y^{-1}x^{-1}. \end{split}$$

Als Nächstes nehmen wir an, dass R eine Äquivalenzrelation ist. Da R reflexiv ist, ist $(1,1) \in R$, d.h. $1 = 1 \cdot 1^{-1} \in H$ (insbesondere $H \neq \emptyset$).

Für alle $x, y \in H$ gilt $x \cdot 1^{-1} = x \in H$, d.h. $(x, 1) \in R$ und analog $(y, 1) \in R$. Aber da R symmetrisch ist, folgt auch $(1, y) \in R$. Aus der Transitivität von R leiten wir ab $(x, y) \in R$, d.h. $x \cdot y^{-1} \in H$.

Umgekehrt nehmen wir an, dass $H \neq \emptyset$ und $\forall x, y \in H$ ist $x \cdot y^{-1} \in H$. Da $H \neq \emptyset$, gibt es $x \in H$ und deshalb ist auch $1 = x \cdot x^{-1} \in H$. Dann haben wir für alle $y \in G$ auch $y \cdot y^{-1} = 1 \in H$, d.h., R ist reflexiv.

Ebenso für jedes $z \in H$ haben wir $z^{-1} = 1 \cdot z^{-1} \in H$. Folglich für alle $x, y \in G$ mit $x \cdot y^{-1} \in H$ gilt $(x \cdot y^{-1})^{-1} = y \cdot x^{-1} \in H$, d.h., R ist symmetrisch.

Zum Schluss für alle $x, y, z \in G$ so, dass $(x, y), (y, z) \in R$, haben wir auch $(z, y) \in R$, d.h. $x \cdot y^{-1} \in H$ und $z \cdot y^{-1} \in H$. Deshalb ist

$$x \cdot z^{-1} = (x \cdot y^{-1}) \cdot (y \cdot z^{-1}) = (x \cdot y^{-1}) \cdot (z \cdot y^{-1})^{-1} \in H.$$

Das zeigt, R ist transitiv.

Aufgabe 3.

- 1. Für $n \in \mathbb{N}$ definieren wir eine Relation $R_n = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid n \text{ dividiert } x y\}$. Beweisen Sie, dass R_n eine Äquivalenzrelation auf \mathbb{Z} ist.
- 2. Für $x \in \mathbb{Z}$ bezeichne \overline{x} das Bild von x unter der kanonischen Projektion $\mathbb{Z} \to \mathbb{Z}/R_n$. Beweisen Sie, dass $\mathbb{Z}/R_n = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$.

Lösung.

- 1. Für alle $x \in \mathbb{Z}$ dividiert n offenbar x x = 0, d.h., R_n ist reflexiv. Wir haben für alle $x, y \in \mathbb{Z}$, wenn n die Differenz (x - y) dividiert, dann dividiert n auch (y - x) = -(x - y). Daher ist R_n symmetrisch. Seien $x, y, z \in \mathbb{Z}$. Wenn n die Differenzen (x - y) und (y - z) dividiert, dann dividiert n auch (x - z) = (x - y) + (y - z), die Relation R_n ist also transitiv.
- 2. Für $x \in \mathbb{Z}$ dividieren wir x durch n mit Rest r, d.h., $\exists q, r \in \mathbb{Z}$ so, dass $0 \le r < n$ und $x = q \cdot n + r$. Dann dividiert n die Differenz (x r), d.h. $\overline{x} = \overline{r}$. Mit anderen Worten: $\mathbb{Z}/R_n = \{\overline{0}, \overline{1}, \ldots, \overline{n-1}\}.$

Beachten Sie auch, dass alle $\overline{0}, \overline{1}, \dots, \overline{n-1}$ paarweise verschieden sind, da für $0 \le i < j < n$ dividiert n auch (j-i) nicht.

Aufgabe 4.

Geben Sie eine Bijektion zwischen $\mathbb{N} \times \mathbb{N}$ und \mathbb{N} an.

Hinweis: Verwenden Sie, dass jede natürliche Zahl (ungleich 0) ein Produkt aus einer ungeraden Zahl und einer Zweierpotenz ist.

Lösung.

Für $(x,y) \in \mathbb{N} \times \mathbb{N}$ definieren wir $f(x,y) := 2^x(2y+1) \in \mathbb{N} \setminus 0$.

Offensichtlich ist jedes $n \in \mathbb{N} \setminus 0$ ein Produkt aus einer ungeraden Zahl und einer Potenz von 2. Daher ist $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \setminus 0$ surjektiv.

Wenn $2^x(2y+1) = 2^z(2w+1)$ für $x \le z$, dann ist $2^{x-z}(2y+1) = 2w+1$ ungerade, und deshalb muss gelten x = z und y = w. Somit ist f auch injektiv.

Dann ist $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N} \setminus 0$ bijektiv und, weil $g: \mathbb{N} \setminus 0 \to \mathbb{N}$, g(n) = n - 1, auch bijektiv ist, erhalten wir eine Bijektion $h = g \circ f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, $h(x, y) = 2^x(2y + 1) - 1$.