

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Wintersemester 2024/25 30. Januar 2025

Prof. Dr. Fabien Morel Dr. Andrei Lavrenov, Oliver Hendrichs

Lineare Algebra I – Übungsblatt 13

Aufgabe 1.

Berechnen Sie das charakteristische Polynom sowie die Eigenwerte und Eigenvektoren der Matrix

$$A = \begin{pmatrix} -5 & 0 & 7 \\ 6 & 2 & -6 \\ -4 & 0 & 6 \end{pmatrix}.$$

Aufgabe 2.

Bestimmen Sie, für welche $a \in \mathbb{R}$ die Matrix

$$M_a = \begin{pmatrix} 1 & 1 & a \\ a & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

über \mathbb{R} diagonalisierbar ist.

Aufgabe 3.

Sei $a \in \mathbb{R}$. Sei $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^3$ die \mathbb{R} -lineare Abbildung, so dass die darstellende Matrix von φ bezüglich der kanonischen Basis $\mathcal{B} = \{e_1, e_2, e_3\}$ gegeben sei durch:

$$M := M_{\mathcal{B}}(\varphi) = \begin{pmatrix} 2 & 1 & 0 \\ a & 2 & 1 \\ 0 & a & 2 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

- 1. Zeigen Sie, 2 ist ein Eigenwert von φ .
- 2. Geben Sie einen Basis von $V_2(\varphi)$ an.
- 3. Bestimmen Sie das charakteristische Polynom $\chi_{\varphi}(\lambda) = \det(\lambda \cdot E_3 M)$.
- 4. Zeigen Sie, dass, wenn $a \leq 0$, 2 der einzige Eigenwert von φ ist.
- 5. Zeigen Sie, dass, wenn a > 0, φ genau drei verschiedene Eigenwerte hat.
- 6. Bestimmen Sie in Abhängigkeit von $a \in \mathbb{R}$, wann φ diagonalisierbar ist.
- 7. Sei nun $a \in \mathbb{Q}$. Wir betrachten M als Element in $M_3(\mathbb{Q})$ und bezeichnen mit $\Phi \colon \mathbb{Q}^3 \to \mathbb{Q}^3$ die \mathbb{Q} -lineare Abbildung, so dass die darstellende Matrix von Φ bezüglich der kanonischen Basis des \mathbb{Q}^3 die Matrix M ist. Bestimmen Sie in Abhängigkeit von $a \in \mathbb{Q}$, wann Φ diagonalisierbar ist.