

IS-T MATHEMATISCHES INSTITUT



Prof. Dr. Fabien Morel Dr. Andrei Lavrenov, Oliver Hendrichs

# Lineare Algebra I – Tutoriumsblatt 06

## Aufgabe 1.

- 1. Let X be a set, let K be a field and let V := Abb(X, K) denote the set of all (settheoretic) maps from X to K. Prove that the field structure on K induces a structure of a K-vector space on V.
- 2. Assume that |X| = n. Construct a bijective linear map from V to  $K^n$ .
- 3. Prove that the functions 1,  $\cos x$ ,  $\cos(2x)$ , ...,  $\cos(nx)$  are linearly independent over  $\mathbb{R}$  as elements of  $V = \text{Abb}(\mathbb{R}, \mathbb{R})$ .

#### Aufgabe 2.

Prove that  $\mathbb{R}$  has a natural structure of a  $\mathbb{Q}$ -vector space, and that 1,  $\sqrt{2}$ ,  $\sqrt{3}$  are linearly independent over  $\mathbb{Q}$ .

### Aufgabe 3.

- 1. Let V be a vector space over a field K, and let  $u, v \in V \setminus \{0\}$  be linearly dependent. Prove that  $\exists \lambda \in K$  such that  $u = \lambda v$ .
- 2. Prove that for vectors  $v_1, v_2 \in V$  and scalars  $\alpha_1, \alpha_2 \in K$  such that  $\alpha_1 v_1 + \alpha_2 v_2 = \alpha_1 v_2 + \alpha_2 v_1$ , either  $v_1 = v_2$ , or  $\alpha_1 = \alpha_2$ .
- 3. Let V be a vector space over a field K, and let  $u_1, \ldots, u_n, u_{n+1} \in V$  be vectors such that  $u_{n+1}$  is a linear combination of  $u_1, \ldots, u_n$ . Prove that a subspace of V generated by  $u_1, \ldots, u_n$  coincides with a subspace of V generated by  $u_1, \ldots, u_{n+1}$ .
- 4. Assume that  $u_1, \ldots, u_n \in V$  are linearly independent, and  $u_{n+1} \in V$  such that  $u_1, \ldots, u_{n+1}$  are linearly dependent. Prove that  $u_{n+1}$  is a linear combination of  $u_1, \ldots, u_n$ .

## Aufgabe 4.

- 1. Prove that  $(\mathbb{Z}, +)$  does not admit a structure of a vector space over any field K.
- 2. Prove that an abelian group A admits a structure of  $\mathbb{Z}/p\mathbb{Z}$ -vector space for a prime p if and only if  $\forall a \in A$  one has pa = 0.

Wintersemester 2024/25 22. November 2024