

Prof. Dr. Fabien Morel Dr. Andrei Lavrenov, Oliver Hendrichs

Lineare Algebra I – Tutoriumsblatt 05

Aufgabe 1.

- 1. Prove that $\sum_{k=0}^{n} (-1)^k {n \choose k} = 0.$
- 2. Find $\sum_{k=0}^{n} \binom{n}{k}$.
- 3. Prove that $\sum_{k=0}^{n} (-1)^k \binom{2n}{2k} = 2^n \cos \frac{n\pi}{2}$.
- 4. Find $\sum_{k=1}^{n} (-1)^{k+1} {2n \choose 2k-1}$.

Aufgabe 2.

- Prove that for any a, b ∈ Z with the greatest common divisor d there exist x, y ∈ Z such that d = ax + by.
 Hint: Consider the minimal element d' of the set {ax + by | a, b ∈ Z} ∩ (N \ {0}) and divide a and b by d' with reminder.
- 2. Prove that $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{\overline{a} \mid (a, n) = 1\}.$
- 3. Prove that $\mathbb{Z}/n\mathbb{Z}$ is a field if and only if n is a prime number.

Aufgabe 3.

- 1. Let $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$, and prove that $\mathbb{Z}[i]$ is a subring of \mathbb{C} .
- 2. Find $\mathbb{Z}[i]^{\times}$. Hint: Use the complex norm.

Aufgabe 4.

Let K be a field such that \mathbb{R} is a subfield of K, and there exists an element $r \in K \setminus \mathbb{R}$ such that $K = \{a + br \mid a, b \in \mathbb{R}\}$. Prove that K is isomorphic to \mathbb{C} . Hint: You can use Aufgabe 1 from Übungsblatt 4.

Wintersemester 2024/25 15. November 2024