

MATHEMATISCHES INSTITUT



8. November 2024

Wintersemester 2024/25

Prof. Dr. Fabien Morel Dr. Andrei Lavrenov, Oliver Hendrichs

# Lineare Algebra I – Tutoriumsblatt04

## Aufgabe 1.

- 1. Let  $(G, \cdot)$  be a group. For  $g, h \in G$  denote  $g * h := h \cdot g$ . Prove that (G, \*) is a group isomorphic to  $(G, \cdot)$ .
- 2. Let  $G = (G, \cdot)$  be a group and assume that  $()^{-1} \colon G \to G$  is a group homomorphism. Prove that G is abelian.

#### Aufgabe 2.

Let U be a set. Prove that  $(\mathcal{P}(U), \Delta)$  is a group. You can use Aufgabe 1 from Tutoriumsblatt 1.

### Aufgabe 3.

- 1. Prove that the set of bijections  $\mathfrak{S}_X$  of a set X form a group with respect to composition.
- 2. For a subset  $Y \subset X$ , any  $g \in \mathfrak{S}_Y$  defines an element  $i(g) \in \mathfrak{S}_X$  as follows:

$$i(g)(x) = \begin{cases} g(x), & x \in Y; \\ x, & x \in X \setminus Y. \end{cases}$$

Prove that  $i: \mathfrak{S}_Y \to \mathfrak{S}_X$  is an injective group homomorphism.

3. Let  $f: X \to Y$  be a bijection. Prove that f induces a group isomorphism between  $\mathfrak{S}_X$  and  $\mathfrak{S}_Y$ .

## Aufgabe 4.

- 1. Let  $\mathfrak{S}_n$  denote the set of bijections  $\mathfrak{S}_X$  of a set  $X = \{0, 1, \dots, n-1\}$ . Prove that  $\mathfrak{S}_n$  is not commutative for  $n \geq 3$ .
- 2. Construct an injective group homomorphism  $\mathfrak{S}_n \times \mathfrak{S}_m \to \mathfrak{S}_{n+m}$ .