

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Wintersemester 2024/25

26. Oktober 2024

Prof. Dr. Fabien Morel Dr. Andrei Lavrenov, Oliver Hendrichs

Lineare Algebra I – Tutoriumsblatt02

Aufgabe 1.

Let $f: A \to B$ be a (set-theoretic) map.

- 1. Assume that f is injective. Prove that f defines a bijection between A and f(A).
- 2. Prove that for a subset $C \subseteq B$ the following are equivalent:
 - $f^{-1}(C) = A;$
 - $f(A) \subseteq C$.

Aufgabe 2.

Consider maps $f: A \to B$ and $g: B \to C$.

- 1. Assume that f and g are injective (resp., surjective). Prove that $g \circ f$ is injective (resp., surjective).
- 2. Assume that $g \circ f$ is injective (resp., surjective). Prove that f is injective (resp., g is surjective).

Aufgabe 3.

A partition ρ of a set X is a set of non-empty subsets of X such that every element x in X is in exactly one of these subsets (i.e., the subsets are nonempty mutually disjoint sets). The sets in ρ are called its blocks (or parts, or cells).

The intersection $\rho \cap \rho'$ of two partitions ρ , ρ' of X is the set of all intersections of a block of ρ with a block of ρ' , except for the empty sets.

Prove that the intersection of two partitions is again a partition.

Aufgabe 4. For finite sets *A*, *B* prove that

$$|A \cup B| = |A| + |B| - |A \cap B|.$$