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Abstract. These are lecture notes for my lecture “Topology V” which I taught in the winter
term 2025/26 at LMU Munich.
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1. Recollection/Prerequisites

There will be a biweekly exercise session where we discuss further examples and questions.
There will be no formal exercise sheets. If you want to get credits for this course, you can do
so under WP13 or WP16 for 3 ECTS. The examination will be an oral exam at the end of
the term.

This course will build on the lectures Topology I (WS 23/24), Topology II (SS 24), Topology
III (WS 24/25), and Topology IV (SS 25) taught at LMU. We briefly recall the main topics
that were covered, so a reader has an impression what will be the assumed background
knowledge.

(1) Point-set topology
(2) Homotopy theory: homotopy groups, CW complexes, applications of cellular approx-

imation, cofibrations, Seifert-van Kampen’s theorem
(3) Covering theory; Fundamental theorem of covering theory
(4) Singular Homology; Definition, Properties, Applications.
(5) Singular Cohomology; Cup product, Universal coefficient theorems, Künneth theorem
(6) Topological Manifolds: Orientability and Poincaré duality, Applications
(7) Homotopy theory: Fibrations, long exact homotopy sequence, Whitehead’s theorem,

cellular approximation theorem, homotopy excision theorem, Freudenthal
(8) Hurewicz theorems
(9) Eilenberg–Mac Lane spaces and representability of cohomology

(10) Principal G-bundles
(11) Obstruction theory
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(12) Steenrod operations
(13) The Leray–Hirsch theorem
(14) Thom isomorphism for spherical fibrations,
(15) Stiefel–Whitney and Wu classes, Chern classes, Pontryagin classes, the cohomology

of BO, BU, remarks on BTop and BG,
(16) Poincare duality complexes and Wu’s formulas
(17) A survey on manifolds, tangent bundles, Pontryagin–Thom constructions.

Parts (1)–(4) were covered in Topology I [Lan23], parts (5)–(7) were covered in Topology
II [Win24], parts (8)–(13) were covered in Topology III [Lan24], and parts (14)–(17) were
covered in [Lan25]. The lecture notes for these courses are available on the course webpage.

Topic (16) is not relevant for this course (in particular all the higher categorical things we
used to define Poincaré duality complexes) and Topic (17) will only be used in a minimalistic
way. The rough plan for this term is to cover the following, (6) below only if time permits
(which it almost surely will not);

(1) Spectral sequences and the Serre spectral sequence
(2) Rational homotopy theory
(3) Some stable homotopy groups of spheres, cohomology of EM spaces
(4) Computation of the rational oriented bordism ring, the signature theorem
(5) Construction of exotic spheres.
(6) Further applications to manifolds; geometric interpretation of cup product, existence

of manifolds with certain cell structures, spinC-structures + intersection form on
4-manifolds, (obstructions to the) existence of submanifolds representing homology
classes, Rokhlin’s theorem

2. Spectral sequences

2.1. Definition A strongly convergent spectral sequence consists of the following data satis-
fying the following axioms:

(1) a complete and separated filtration F on a graded abelian groupM called the abutment
of the spectral sequence. That is, M = {Mn}n∈Z is a graded abelian group and F•Mn

is a exhaustive1 and separated2 filtration on Mn for every n ∈ Z.
(2) for each r ≥ 1 a bigraded abelian group Er

p,q equipped with a differential drp,q : E
r
p,q →

Er
p−r,q+r−1, that is (d

r)2 = 0.

(3) An isomorphism between the homology H∗(E
r, dr) of (Er, dr) and Er+1.

(4) For every pair (p, q), there is an N(p, q) such that for all r ≥ N(p, q), dr : Er
p,q →

Er
p−r,q+r−1 and dr : Er

p+r,q+r−1 → Er
p,q vanish. It follows that E

N(p,q)
p,q

∼= E
N(p,q)+s
p,q for

all s ≥ 0, so we call this common term E∞
p,q.

3

(5) An isomorphism between the associated graded gr(F•M) of the abutment (which is a
bigraded abelian group) and E∞ (which is also a bigraded abelian group). Explicitly,
an isomorphism Fk(Mn)/Fk−1(Mn) ∼= E∞

... .

1That is colimn Mn = Mn
2That is limn Mn = 0
3Sometimes it is appropriate to relax these conditions and to assume only that for all r ≥ N(p, q), dr : Er

p,q →
Er

p−r,q+r−1 vanishes. Then one obtains surjections Er
p,q → Er+1

p,q for all such r, and the colimit along these

maps again deserves the name E∞
p,q.
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A spectral sequence as above is called multiplicative if F•M is a filtered graded commutative
ring, all bigraded abelian groups Er

∗,∗ are bigraded commutative rings and the differential
satisfies the Leibniz rule

dr(x · y) = dr(x) · y + (−1)|x|x · dr(y)
and the isomorphism gr(F•M) ∼= E∞ is one of bigraded commutative rings.

2.2. Warning Just like exact sequences, a spectral sequence is not itself capable of computing
the graded abelian group M , only the associated graded with respect to some filtration on it
which is part of the spectral sequence. Concretely, this means that in order to compute M
itself, possible extension problems have to be solved. This is something one can then try to
do by hand, but the spectral sequence is not a priori of any help in this task.

One way to obtain a spectral sequence is through filtered chain complexes. I recommend
reading the relevant part of Weibel’s book on the topic [Wei94] or Hatcher’s account on
spectral sequences [Hat04] or McCleary’s book [McC01]. In particular, the main example of
a spectral sequence we will use in this course, the Serre spectral sequence, can be constructed
from a filtered chain complex. An elegant construction using bisimplicial sets was found by
Dress [Dre67].

However, not all spectral sequences that arise in practice arise naturally in this fashion, but
they do arise naturally as the spectral sequence associated to a filtered spectrum. We briefly
explain how a filtered spectrum gives rise to a spectral sequence now, see [Lur17] for details,
but beware of the different indexing convention: We will have to make a choice whether a Z-
indexed filtration lowers or raises degree. To the best of my knowledge, either choice becomes
annoying at some point, so we stick to the one that is closer to what we obtain from the
examples that we shall consider, but which differs from the one appearing in [Lur17].

2.3. Definition A filtered spectrum is an object of Fun((Z,≥),Sp) =: Fil(Sp), where we view
(Z,≥) as a poset. This poset is in fact canonically a symmetric monoidal category under
the sum of integers. Hence, Fil(Sp) is naturally a symmetric monoidal category under Day
convolution so we may form CAlg(Fil(Sp)). For F ∈ Fil(Sp) we write Fn for its evaluation at
n. A filtered spectrum is called separated if limn F = 0.

A graded spectrum is an object of Fun(Zδ,Sp) =: Gr(Sp), where we view Zδ as a discrete
category. This is also symmetric monoidal under the sum of integers, so Gr(Sp) also carries
a Day convolution symmetric monoidal structure.

2.4. Remark Let us gather some facts about the above.

(1) There is a functor gr : Fil(Sp) → Gr(Sp) called the associated graded of a filtration,
sending F to n 7→ grn(F ) = cofib(Fn+1 → Fn). This functor preserves colimits and
limits and is equipped with a canonical symmetric monoidal structure.

(2) The colimit of a filtration gives rise to a functor Fil(Sp) → Sp; we often call this the
underlying spectrum of a filtered spectrum (and hence think of the filtered spectrum
as a filtration on its colimit).

(3) Given a spectrum X, its Whitehead tower τ≥•X

· · · → τ≥n+1X → τ≥nX → τ≥n−1X → . . .

is a separated filtered spectrum with underlying spectrum X. The association X 7→
τ≥•X refines to a lax symmetric monoidal functor Sp → Fil(Sp), see e.g. [Hed, Prop.



4 MARKUS LAND

II.1.26]. In particular, if X is a (commutative) algebra in Sp, its Whitehead tower
τ≥•X is a (commutative) algebra in Fil(Sp).

So let us now fix a separated filtered spectrum X• with colimit colimX• = X. Note that
there is a fibre sequence

grn(X) = Xn/Xn+1 → Xn−1/Xn+1 → Xn−1/Xn = grn−1(X)

and hence a connecting morphism grn−1(X) → Σgrn(X).

2.5. Theorem Assume that for each k ∈ Z,
(a) the maps πk(Xn) → πk(X) are isomorphisms for n sufficiently small and
(b) the group πk(Xn) vanishes for n sufficiently large.

Then there is associated a strongly convergent spectral sequence with

(1) abutment given by π∗(X) with (finite, by assumption) filtration given by Fn(π∗(X)) =
Im(π∗(Xn) → π∗(X)).

(2) the first page is given as follows. E1
p,q = πp+qgr

−p(X) and the differential is the map

induced on homotopy groups by the map grn−1(X) → Σgrn(X): This is a map

πp+qgr
−p(X) → πp−1+qgr

−p+1(X)

as needed.

The higher pages of the spectral sequence can also be described via the so called décalage
construction, see [Ant24] for the details.

If X is a (commutative) algebra in Fil(Sp), then the associated spectral sequence is multi-
plicative.

Depending on the particular filtered spectrum we use as input for our spectral sequence,
it will be convenient to reindex as to get the usual familiar grading conventions. Let us work
this out in the main examples of interest:

2.6. Example (The homological Serre spectral sequence) Let F → E → B be a fibre sequence
in An and let A be a coefficient abelian group. Note that the category Fil(Sp) has all limits
and colimits. We may therefore form colimB τ≥•C∗(F ;A) which we claim is a separated
filtration with colimit C∗(E;A). Indeed, recall that C∗(X;A) is merely a notation for the
colimit over X over the constant functor taking values A ∈ Sp. Then we find

colim
n

colim
B

τ≥nC∗(F ;A) = colim
B

colim
n

τ≥nC∗(F ;A) = colim
B

C∗(F ;A) = C∗(E;A).

To see that the filtration is separated, note that colimB τ≥nC∗(F ;A) is itself n-connective, so
we find that in the system computing limn colimB τ≥nC ∗ (F ;A), the terms become more and
more connective and so the limit vanishes; in fact, this argument shows that (a) and (b) of
the assumptions in Theorem 2.5 hold true.

Exercise: The filtration we just introduced leads to a finite filtration on Hk(E;A) =
πkC∗(E;A) for each k. Moreover, the associated graded has the following property (hint:
use that the associated graded functor commutes with colimits):

grn(colim
B

τ≥•C∗(F ;A)) = ΣnC∗(B;Hn(F )).

We therefore obtain a strongly convergent spectral sequence with abutment C∗(E;A) and
first page given by

E1
s,t = πs+tgr

−s(colim
B

τ≥•C∗(F ;A)) = πs+tΣ
−sC∗(B;H−s(F )) = H2s+t(B;H−s(F )).
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Taking the following reindexing: p := 2s + t and q = −s, we obtain E′
p,q = Hp(B;Hq(F )).

Now, the differential in the above spectral sequence goes as follows:

H2s+t(B;H−s(F )) = E1
s,t → E1

s−1,t = H2s+t−2(B;H−s+1(F )

so in our reindexing, we obtain

Hp(B;Hq(F )) → Hp−2(B;Hq+1(F ))

making the reindexing to Ep,q look like the second page of a spectral sequence.
Therefore, after the above reindexing, we obtain a spectral sequence with second page and

differential

E2
p,q = Hp(B;Hq(F ))

d2−→ Hp−2(B;Hq+1(F )).

This is the homological Serre spectral sequence associated to the fibre sequence F → E → B.

2.7. Example (The cohomological Serre spectral sequence) Again, we consider a fibre se-
quence F → E → B in An and a coefficient abelian group (commutative ring) k. We then
form limB τ≥•C

∗(F ; k) which is a (commutative algebra) filtered spectrum. It is separated
since limits commute, and has colimit C∗(E; k) since the terms over which we take a colimit
have growing coconnectivity, since they are obtained by taking a limit over terms which have
growing coconnectivity. This implies again that the filtration we obtain on πkC

∗(E; k) is
finite for each k ∈ Z. Moreover, the associated graded now satisfies

grn(lim
B

τ≥•C
∗(F ; k)) = ΣnC∗(B;Hn(F ; k))

so that we obtain a strongly convergent spectral sequence with abutment C∗(E; k) and first
page

E1
s,t = πs+tgr

−s(lim
B

τ≥•C
∗(F ; k)) = π2s+tC

∗(B;Hs(F ; k)) = H−2s−t(B;Hs(F ; k)).

Performing now the reindexing p := −2s− t and q = s, we obtain again a spectral sequence
(of cohomological indexing convention) with second page (again, this is just convention) and
differential

Ep,q
2 = Hp(B;Hq(F ; k)) → Hp+2(B;Hq−1(F ; k)) = Ep+2,q−1

2 .

This is the cohomological Serre spectral sequence associated to the fibre sequence F → E →
B. If k is a commutative ring, then C∗(F ; k) is a commutative algebra in spectra, hence
τ≥•C

∗(F ; k) is a commutative algebra in Fil(Sp), and since the forgetful functor from com-
mutative algebras always preserves limits, we find that limB τ≥•C

∗(F ; k) is also a naturally a
commutative algebra in filtered spectra. Hence, the cohomological Serre spectral sequence is
multiplicative.

2.8. Example The Atiyah–Hirzebruch spectral sequence for computing E∗(X) = π∗(X ⊗E)
where E ∈ Sp and X ∈ An. This is given by the spectral sequence associated with the filtered
spectrum colimX τ≥•E, where the colimit is over the constant diagram indexed on X with
value τ≥•E, the Whitehead tower of E. Note that when E is not bounded below, we arrive
at a situation in which footnote 3 in Definition 2.1 has to be taken seriously; We obtain a
spectral sequence with (reindexed) second page and differentials given by

Hp(X;πq(E)) = E2
p,q → E2

p−2,q+1 = Hp−2(X;πq+1(E))
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converging to πp+q(X ⊗ E) = Ep+q(X). The convergence is strong (in the sense of a finite
filtration on the abutment) if X has bounded above homology or E has bounded below
homology.

There exists a similar spectral sequence, the cohomological Atiyah–Hirzebruch spectral
sequence, converging to π∗(Map(X,E)), but here convergence is even more subtle.

2.9. Example (The twisted Serre spectral sequence) Here the setup is as follows. Consider

a fibration F
i−→ E → B and a functor φ : E → Sp (The Serre spectral sequence as above is

the special case where φ is constant with values A or k and the Atiyah–Hirzebruch spectral
sequence above is the special case F = ∗ and the functor X → Sp is constant – apologies
for the double use of E in these two examples). Then there is a spectral sequence abutting
to π∗(colimE φ) coming from the filtration colimB τ≥• colimF φi. It’s (once reindexed) second
page then looks like

E2
p,q = Hp(B;πq(colim

F
φi))

Example: Consider the fibration BSpin → BSO → K(Z/2, 2) and the functor BSO → Sp
induced by the J-homomorphism. Then we obtain a spectral sequence

E2
p,q = Hp(K(Z/2, 2);MSpinq(∗)) ⇒ MSOp+q(∗).

I learned the following from Peter Teichner: This spectral sequence can be used to prove that
the signature of smooth spin 4-manifolds is divisible by 16. We should do this in an exercise
session once we have the necessary ingredients (which are essentially the computation of all the
groups that participate in the spectral sequence computation for π4(MSO)). Easier exercise:
Use a similar spectral sequence to show that the map MSpin[12 ] → MSO[12 ] is an equivalence.

Hint: Show H∗(K(Z/2, 2);A) = A if A is a Z[12 ]-module.
A similar twisted cohomological Serre spectral sequence exists, but again, the convergence

is more subtle in general.

2.10. Example (The homological Serre spectral sequence for monoids) The homological Serre
spectral sequence can also admit a multiplicative structure as we explain in this example. So
let N → M be a map of monoids in anima with M connected and fibre F . We may view this
map as an algebra in the slice category An/M , which carries a monoidal structure ⊠ informally
given by (N → M) ⊠ (N ′ → M) = N × N ′ → M ×M → M where the map M ×M → M
is the multiplication of the monoid M . The straightening-unstraightening equivalence then
refines to a monoidal equivalence An/M ≃ Fun(M,An) where Fun(M,An) is equipped with

the Day convolution monoidal structure.4 In particular, we find an equivalence

Mon(An)/M ≃ Alg(An/M ) ≃ Alg(Fun(M,An)) = Funlax(M,An)

where the superscript lax stands for lax monoidal functors. As a consequence, the monoid
map N → M is classified by a lax monoidal functor M → An. We may then consider the
composite

M → An → Sp → Fil(Sp)

where An → Sp is given by X 7→ C∗(X; k) for some fixed ring k and Sp → Fil(Sp) is the
Whitehead-tower functor. Both of these functors are lax symmetric monoidal, so we deduce
that the above composite is canonically lax monoidal, i.e. an object of Funlax(M,Fil(Sp)) =

4See [Ram22] for vast generalisations of this statement and [Ram22, Corollary D] with O = E1 for the case
at hand.
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Alg(Fun(M,Fil(Sp))). Now, in general, left Kan extension along a monoidal map M → M ′

refines to a lax monoidal functor Fun(M,C) → Fun(M ′,C) under Day convolution (as soon
as the Day convolution exists, which is the case for instance when C is cocomplete), see e.g.
[?, proof of Cor. 3.8]. In particular, left Kan extension along M → ∗, i.e. colimM refines to a
lax monoidal functor. In particular, it induces a functor on algebras

colim
M

: Funlax(M,Fil(Sp)) → Alg(Fil(Sp))

whose underlying filtered spectrum is the one giving rise to the homological Serre spectral
sequence if evaluated on the image of N → M in Mon(An)/M under the previously described

functor Mon(An)/M ≃ Funlax(M,An) → Funlax(M,Fil(Sp)).
In particular, for F → E → B a fibre sequence of anima, we find that the homological

Serre spectral sequence for the fibre sequence ΩF → ΩE → ΩB is multiplicative.

2.11. Remark In the lectures, I drew the relevant pictures for the second pages of the above
spectral sequences in the plane and mentioned that the cohomological indexing moves the
cohomolgical Serre spectral sequence of this last example, which naturally sits in the lower
left quadrant, into the upper right quadrant at the cost of reversing the direction of all
differentials. The homological Serre spectral sequence naturally lives in the first quadrant.

2.12. Remark A map of filtered spectra gives rise to a map of associated spectral sequences.
In particular, given a pullback diagram

E′ E

B′ B

with vertical fibre F , we obtain a map between the corresponding Serre spectral sequences.
Indeed, say for the homological Serre spectral sequence, note that there is a canonical map

colim
B′

τ≥•C∗(F ) → colim
B

τ≥•C∗(F )

of filtered spectra. More generally, a map between fibre sequences

F ′ E′ B′

F E B

gives rise to a map of filtered spectra

colim
B′

τ≥•C∗(F
′) → colim

B
τ≥•C∗(F )

giving in turn rise to a map of Serre spectral sequences; similarly for cohomology.

2.13. Remark Suppose given a pullback square

E′ E

B′ B
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with vertical fibre F and associated map

colim
B′

τ≥•C∗(F ) → colim
B

τ≥•C∗(F )

of filtered spectra. Then we may form the cofibre of this map of filtered spectra (which
is computed levelwise), and consider the spectral sequence associated to this cofibre. Since
the associated graded functor commutes with colimits, we obtain a spectral sequence with
(reindexed) second page given by:

E2
p,q = Hp(B,B′;Hq(F )) ⇒ Hp+q(E,E′)

converging from relative homology of B → B′ to relative homology of E → E′; again there is
a similar such statement for the cohomological Serre spectral sequence.

The naturality of the Serre spectral sequence for instance implies the following:

2.14. Lemma Let F
i−→ E

π−→ B be a fibre sequence with F connected. Then

(1) for the homological Serre spectral sequence, E∞
p,0(π) canonically identifies with the

image of the map π∗ : Hp(E) → Hp(B). Similarly, E∞
0,q(π) identifies with the image

of i∗ : Hq(F ) → Hq(E).

(2) for the cohomological Serre spectral sequence, Ep,0
∞ (π) identifies with the image of

π∗ : Hp(B) → Hp(E). Similarly, E0,q
∞ identifies with the image of i∗ : Hq(E) →

Hq(F ).

Proof. Consider the map of fibre sequences

F E B

∗ B B

It induces a map on (co)homological Serre spectral sequences, so we obtain commutative
diagrams

Hp(E) E∞
p,0(π) Ep,0

∞ (id) Hp(B)

Hp(B) E∞
p,0(id) Ep,0

∞ (π) Hp(E)

π∗

∼=

π∗

∼=

showing claim (1). Similarly, we may consider the map of fibre sequences

F F ∗

F E B

pr

which again induces a map on (co)homological Serre spectral sequences, to obtain commuta-
tive diagrams

E∞
0,q(pr) Hq(F ) Hq(E) E0,q

∞ (π)

E∞
0,q(π) Hq(E) Hq(F ) E0,q

∞ (pr)

∼=

i∗ i∗

∼=
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showing claim (2). □

Let us now work through some examples of the Serre spectral sequence.

Exercise. Prove the Leray–Hirsch theorem using the Serre spectral sequence.

2.15. Example The cohomological Serre spectral sequence for the fibration S1 → ∗ → CP∞.
We obtain H∗(CP∞;Z) = Z[x] with |x| = 2 from the multiplicativity of the spectral sequence.

2.16.Example Consider the fibration ΩSn → ∗ → Sn for n > 1. We obtain thatH∗(ΩSn;Z) =
ΓZ[x] with |x| = n− 1 if n is odd and ΓZ[x]⊗Z ΛZ[e] with |e| = n− 1 and |x| = 2(n− 1) if n
is even.

Let us give an application of this computation:

2.17. Lemma There is a fibre sequence

S2n−1 → ΩS2n H−→ ΩS4n−1

where the first map is the unit of the suspension-loop adjunction and the second map is the
Hopf map.

Proof. We recall the construction of the Hopf map: To that end, by adjunction, we may
equivalently describe a map ΣΩS2n → S4n−1. For that, we recall the James splitting [Lan25,
Exercise 4 Sheet 2]:

ΣΩS2n ≃ Σ(
∨
k≥1

Sk(2n−1))

so that there is a canonical projection map to the k = 2 wedge-summand. The so constructed
map H : ΩS2n → ΩS4n−1 induces an isomorphism

H4n−2(ΩS4n−1;Z) → H4n−2(ΩSn;Z),

in other words, it sends the divided power generator of the source to the divided power
generator of the target from Example 2.16, see Remark 2.18 below. The Serre spectral
sequence therefore implies that the fibre F of the map H has the (co)homology of S2n−1. By
Hurewicz, there is then a map S2n−1 → F inducing an isomorphism onH2n−1(−;Z) – this map
is then an equivalence by Whitehead’s theorem. That the resulting map S2n−1 ≃ F → ΩS2n

is (up to a sign) the unit of the adjunction follows simply since π2n−1ΩS
2n ∼= Z and the unit

of the adjunction is also a generator of this group. □

2.18. Remark First, we note that the same arguments provide a map H : ΩSn → ΩS2n−1;
again it is adjoint to the map

ΣΩSn ≃ Σ(
∨
k≥1

Sk(n−1)) → Σ(S2n−2) = S2n−1

induced by the projection to the k = 2 wedge-summand.
We now argue that in this situation, the induced map

H2n−2(ΩS
n;Z) → H2n−2(ΩS

2n−1;Z)

is an isomorphism. Indeed, by the suspension isomorphism, it suffices to show that the map

H2n−1(ΣΩS
n;Z) → H2n−1(ΣΩS

2n−1;Z)
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is an isomorphism. Note that the counit map ϵ : ΣΩS2n−1 → S2n−1 is a one-sided inverse of
Σ(η), where η : S2n−2 → ΩS2n−1 is the unit of the adjunction; this map is (4n− 2)-connected
by Freudenthal, so we deduce that the counit ϵ induces an isomorphism on H2n−1. Hence it
suffices to show that the composite

H2n−1(ΣΩS
n;Z) → H2n−1(ΣΩS

2n−1;Z) → H2n−1(S
2n−1;Z)

is an isomorphism. But by construction, it is the projection to the k = 2 wedge summand
which indeed induces an isomorphism on H2n−1 as required.

Let us now discuss what is known as Serre class theory.

2.19. Definition A Serre class is a collection of abelian groups which is closed under exten-
sions, subobjects, and quotients. A derived Serre ring is a Serre class C such that A,B ∈ C

implies that A⊗B and Tor(A,B) are contained in C.

2.20. Example The following examples form derived Serre rings.

(1) torsion abelian groups, that is ker(−⊗Q), or more generally P-primary torsion abelian
groups where P is a set of primes, that is ker(−⊗ Z[ 1

P
]).

(2) finite abelian groups.
(3) finitely generated abelian groups.
(4) trivial abelian groups.

It is important to say p-primary torsion abelian groups in example (3): The collection of Fp-
vector spaces do not form a Serre class, since they are not closed under extensions in abelian
groups. Similarly, torsionfree abelian groups do not form a Serre class, since they are not
closed under quotients and for instance Q-vector spaces are not a Serre class since they are
not closed under subobjects.

2.21. Lemma Let F → E → B be a simple fibre sequence with B connected, that is, where
the π1(B)-action on H∗(F ) is trivial, and C a derived Serre ring. If two out of the three terms

H̃∗(B;Z), H̃∗(E;Z), and H̃∗(F ;Z) are contained in C5 then so is the third.

Proof. By assumption, the a terms appearing in the homological Serre spectral sequence are
untwisted homology groups. Assume that H̃∗(B;Z) and H̃∗(F ;Z) are contained in C. Then,
by the universal coefficient theorem, every term on the second page of the Serre spectral
sequence is also contained in C. Hence, the same is true for any higher page, since C is a Serre
class. Consequently, H̃∗(E;Z) is also contained in C as it is an iterated extension of finitely
many terms on some higher page of the spectral sequence.

Now let us assume that H̃∗(E;Z) and H̃∗(B;Z) are contained in C. We deduce that the
infinite page of the spectral sequence is contained in C as it contains the associated graded of
a filtration of an abelian group in C. Moreover, there is an exact sequence

H2(B) → H1(F ) → E∞
0,1 → 0

so the assumption that H2(B) lies in C together with the just made observation implies that
H1(F ) ∈ C. Using again the universal coefficient theorem, we deduce that the whole 1-line of
the second page of the spectral sequence lies in C, and hence the 1-line of all higher pages as
well. Then we can induct up on k in Hk(F ) to see that all Hk(F ) are contained in C.

The same argument works if the role of F and B are reversed. □

5By which we mean that H̃k(B;Z) is contained in C for all k.
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2.22. Lemma Let C be any of the derived Serre rings of Example 2.20 and A ∈ C. Then
Hk(K(A,n);Z) lies in C for all n, k > 0.

Proof. Using the (simple) fibre sequence

K(A,n− 1) → ∗ → K(A,n)

and induction, together with Lemma 2.21, we see that it suffices to prove the result for n = 1.
We now do a case by case study and begin with the following observation. Let A be a finite
p-local abelian group (that is p-primary torsion and finite). Then Hk(BA;Z) is again finite
p-local. Indeed, by the classification of such groups and the Künneth theorem, it suffices to
treat the case A = Z/pk. Exercise: Hk(BZ/n;Z) is cyclic of order n if k > 0 is odd and

trivial if k > 0 is even; Hint: there is a fibre sequence S1 → BZ/n → B2Z ·n−→ B2Z.
Now we prove the lemma case by case, starting with (2), i.e. where A is finite. By the

classification of finite abelian groups, we find that it is a finite product of p-local finite groups,
so by Künneth we deduce from the previous argument that Hk(BA;Z) is finite for all k > 0
giving (2). To see (1), since homology commutes with filtered colimits and every abelian
group A is the filtered colimit of its finitely generated subgroups Ai (which are contained in
C if A is contained in C), we find that it suffices to treat finitely generated P-torsion groups.
But these are all products of finite p-primary torsion groups, so again by Künneth we deduce
the claim from the above argument. To see (3), again by the classification and Künneth,
it suffices to in addition note that Hk(BZ;Z) is indeed finitely generated since BZ = S1.
Finally (4) is obvious. □

2.23. Theorem Let C be any of the derived Serre rings of Example 2.20 and X a connected
simple anima.6 Then the following are equivalent:

(1) All homotopy groups of X are contained in C.
(2) All reduced homology groups of X are contained in C.

Proof. We first show that (1) implies (2). Note that X being simple implies that τ≤nX is
also simple for all n. Since Hk(X) ∼= Hk(τ≤k+1(X)) is suffices to assume that X is itself
n-truncated, i.e. equivalent to τ≤nX. Now we induct on n. The base case is n = 1 where
X = BA for some abelian group A which was treated in Lemma 2.22. Now assume that
we have inductively proven that H∗(τ≤n−1X) is contained in C. Considering the (simple)
fibration

K(πn(X), n) → τ≤nX → τ≤n−1X

the claim then follows from Lemma 2.22 and Lemma 2.21.
Conversely, let us assume (2) and show (1). From the Hurewicz theorem we find π1(X) ∼=

H1(X) is contained in C. Considering the the fibre sequence

τ≥2X → X → Bπ1(X)

and using Lemma 2.21 and Lemma 2.22 we find that Hk(τ≥2X;Z) is contained in C for
k > 0, and hence by the Hurewicz that π2(X) ∼= π2(τ≥2X) ∼= H2(τ≥2X;Z) is contained in C.
Cinsidering inductively with the (simple) fibration

τ≥nX → τ≥n−1X → K(πn−1(X), n− 1)

6One can also generalise this to connected nilpotent anima.
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we find from Lemma 2.22 that H̃∗(K(πn−1(X), n − 1)) ∈ C and H̃∗(τ≥n−1X) ∈ C, so from

Lemma 2.21 that H̃∗(τ≥nX) ∈ C; and hence by the Hurewicz theorem again that πn(X) ∈
C. □

2.24. Corollary For all k, n > 0, the groups πk(S
n) are finitely generated abelian groups.

Proof. Indeed, Sn is a simple space with finitely generated homology. □

Later, we will also compute some of these groups explicitly.

3. p-local and Rational homotopy theory

3.1. Definition Let R be a localisation of Z, mainly Q,Z(p), or Z[1p ]. Recall that there is

a functor An → Sp given by X 7→ X ⊗ R = C∗(X;R). This functor is a left adjoint and
hence defines a Bousfield localisation AnR ⊆ An of R-local anima, a full subcategory of
anima. An object X is R-local, i.e. lies in this full subcategory, if every map A → B inducing
an isomorphism on R-homology (we shall refer to such maps as R-homology equivalences)
induces an equivalence Map(B,X) → Map(A,X). We denote the localisation functor by
(−)R : An → AnR, this turns out to be a localisation at all R-homology equivalences. In case
R = Q we use the terminology rational anima for Q-local anima, and rational equivalence for
Q-homology equivalence. In case R = Z(p) we say p-local anima and p-local equivalence.

Exercise. The map localisation map X → XR is an R-homology equivalence. Moreover, let
f : A → B be an R-homology equivalence. If A and B are R-local, then f is an equivalence.

3.2. Remark An anima X is R-local if and only if for all R-homology equivalences f : A → B,
the induced map [B,X] → [A,X] on homotopy classes of maps is a bijection. Indeed, we
have π0Map(T,X) = [T,X], so one implication is immediate. To see the converse, we aim to
show that Map(B,X) → Map(A,X) is an equivalence. By Yoneda in the homotopy category
of anima, it suffices to show that for every anima T , the induced map

Map(T,Map(B,X) → Map(T,Map(A,X)

induces a bijection on π0. But this map is equivalent to

Map(T ×B,X) → Map(T ×A,X)

so it suffices to note that T ×A → T ×B is again an R-homology equivalence by Künneth.

3.3. Example Let R = Q,Z(p), or Z[1p ] be as above, V an R-module and n ≥ 1. Then

K(V, n) is an R-local space. Indeed, if X → Y induces an isomorphism on R-homology, by
Remark 3.2 we need to show that [B,K(V, n)] → [A,K(V, n)] is a bijection. By representabil-
ity of cohomology, this is equivalent to the statement that the map H∗(B;V ) → H∗(A;V )
is an isomorphism, which in turn follows from the universal coeffcient theorem over the base
PID R.

3.4. Corollary Let R = Q,Z(p), or Z[1p ] and let X be a connected simple anima7 whose

homotopy groups are R-modules. Then X is R-local.

7Much of what we say in this section extends to nilpotent spaces, but to keep the arguments shorter, we
restrict to simple spaces. Moreover, for the present claim, it in fact suffices to assume that π1(X) is abelian.



TOPOLOGY V 13

Proof. Let A → B be a map inducing an isomorphism on R-homology. Since Map(T,X) ≃
limnMap(T, τ≤nX) and the homotopy groups of τ≤nX are again R-modules, it suffices to
prove the claim for τ≤nX. This we prove inductively, the induction start is τ≤1X = K(π1(X), 1)
which is R-local by Example 3.3. For the inductive step, consider the fibre sequence

K(πn(X), n) → τ≤nX → τ≤n−1X

whose fibre and base are R-local, again by Example 3.3 and induction. Hence, in the diagram

Map(B,K(πn(X), n)) Map(B, τ≤nX) Map(B, τ≤n−1X)

Map(A,K(πn(X), n)) Map(A, τ≤nX) Map(A, τ≤n−1X)

the left most and right most vertical maps are equivalences, and the horizontal sequences are
fibre sequences. Hence the middle vertical map is an equivalence as well. □

3.5. Lemma Let R = Q,Z(p), or Z[1p ] and let A be an abelian group. Then the map K(A,n) →
K(A⊗R,n) is an R-localisation.

Proof. Indeed, the target is a simple space whose homotopy groups are R-modules and is
hence R-local by Corollary 3.10. We need to show that the map under investigation is an
R-homology isomorphism. First, writing A as the filtered colimit over all its finitely generated
subgroups, and using that homology, K(−, n) and −⊗R all commute with filtered colimits,
it suffices to treat the case where A is finitely generated, and by Künneth, it suffices to treat
the case where A is cylic of prime power order or A = Z. We now distinguish cases and begin
with n = 1, and A = Z we note that K(R, 1) can be modelled by the filtered colimit of degree
k (for suitable k depending on R) maps on S1, so that the commutation of homology with
filtered colimits gives the desired result. For A = Z/nZ with n = qk a prime power, we have
argued earlier that H∗(BZ/n;Z) is cyclic of order n in odd degrees and trivial in even positive

degrees. Hence, if q = p and R is Z[1p ] or Q, then A⊗ R = 0 and H̃∗(BA;R) = 0 as needed,

while if R = Z(p), the map A → A⊗R is an isomorphism itself. Conversely, if A is cyclic and

q-local for q ̸= p, then A⊗R = 0 for R = Q,Z(p), as is H̃∗(BA;R), while if A → A⊗ Z[1p ] is
an isomorphism.

For n ≥ 2, consider F = fib(K(A,n) → K(A ⊗ R,n). Then F is connected and simple
with only 2 possibly non-trivial homotopy groups which are abelian groups which vanish after
applying −⊗R (they are given by kernel and cokernel of the map A → A⊗R and R is flat,
so preserves kernels and cokernels). Recall that the class of abelian groups which vanish upon
applying −⊗R forms a derived Serre ring as in Example 2.20. We deduce from Theorem 2.23

that H̃∗(F ;R) = H̃∗(F ;Z) ⊗ R = 0. Then we deduce from the Serre spectral sequence that
H∗(K(A,n);R) → H∗(K(A⊗R,n);R) is an isomorphism. □

3.6. Lemma Let f : X → Y be a map between connected simple spaces and R = Q,Z(p), or

Z[1p ]. If f induces an isomorphism on π∗(−) ⊗ R, then it also induces an isomorphism on

H∗(−;R), that is, it is an R-local equivalence.
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Proof. Consider the diagram

τ≥2X X K(π1(X), 1)

τ≥2Y Y K(π1(Y ), 1)

induced by the map f : X → Y . Using the Serre spectral sequence, it will suffice to show
that both outer maps induce isomorphisms on H∗(−;R) (exercise). For the left hand one,
note that F = fib(τ≥2X → τ≥2Y ) is connected and has trivial π∗(−) ⊗ R; since the class of
abelian groups which vanish upon applying − ⊗ R is a derived Serre ring, we deduce from
Theorem 2.23 that H̃∗(F ;R) vanishes as well. It then follows from the Serre spectral sequence
that H∗(τ≥2X;R) → H∗(τ≥2Y ;R) is an isomorphism. For the right hand one, consider the
square

K(π1(X), 1) K(π1(X)⊗R, 1)

K(π1(Y ), 1) K(π1(X)⊗R, 1)

≃

whose right vertical map is an equivalence by assumption and hence induces an isomorphism
on R-homology. In Lemma 3.5, we have argued that the horizontal maps also induce isomor-
phisms on H∗(−;R), hence so does the left vertical map. □

3.7. Proposition Let R = Q,Z(p), or Z[1p ] and let X be a connected simple space. Then there

exists a map X → X ′ such that X ′ is simple, whose homotopy groups are R-modules and such
that the map f is an R-localisation.

Proof. We will construct X ′ and f so that f induces an isomorphism π∗(X)⊗R → π∗(X
′)⊗

R ∼= π∗(X
′) and hence is an R-local equivalence by Lemma 3.6. Since X ′ is R-local by

Corollary 3.4, the map f factors as X → XR → X ′ for an essentially unique map XR → X ′

which is again a R-local equivalence, and hence an equivalence as XR is also R-local. To show
the existence of X ′ and f , we now induct over the Postnikov tower. First, we recall from
Example 3.3 that K(π1(X), 1) → K(π1(X)⊗R, 1) is an R-localisation. Since X is simple, its
Postnikov tower consists of principal fibrations, so that we have fibre sequences

τ≤nX → τ≤n−1X → K(πn(X), n+ 1).

Consider the composite of the latter map with the R-localisation map K(πn(X), n + 1) →
K(πn(X) ⊗ R,n + 1). Assume inductively that there exists a map as claimed for τ≤n−1X.
Since such a map is an R-localisation, we obtain a commutative diagram

τ≤nX τ≤n−1X K(πn(X), n+ 1)

(τ≤nX)′ (τ≤n−1X)′ K(πn(X)⊗R,n+ 1)

in which the dashed arrow exists by the universal property of rationalisation, the lower left
most term is defined as the fibre of the horizontal dashed arrow and the vertical dashed arrow
is the induced map on fibres. The vertical dashed arrow then, by construction, again induces
an isomorphism on π∗(−) ⊗ R. Inductively, we have then constructed commutative squares
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as in the left part of the above diagram, allowing to define X ′ = limn(τ≤nX)′. The resulting
map X → X ′ again induces an isomorphism on π∗(−)⊗R and hence does the job. □

3.8.Remark In particular, this proposition shows that any R-localisation map on a connected
simple space induces an isomorphism on π∗(−)⊗ R, not only on H∗(−;R) (which is true by
definition) and that R-local simple spaces have π∗(−) being R-modules.

3.9. Proposition Let R = Q,Z(p), or Z[1p ] and let X be a connected anima.

(1) If π∗(X) is an R-module, then so is H̃∗(X;Z).
(2) If X is simple and H̃∗(X;Z) is an R-module, then π∗(X) is an R-module

Proof. To see (1), it suffices to argue that H̃∗(X;Fq) = 0 for suitable primes q, namely all q
in case R = Q, all q different from p for R = Z(p) and q = p for R = Z[1p ]. To that end, we

first prove show that H̃∗(K(A,n);Fq) = 0 for all R-modules A and n ≥ 1. For n = 1 we have
already argued this earlier. Then consider the fibre sequence

K(A,n− 1) → ∗ → K(A,n)

and use Leray–Hirsch (or the Serre spectral sequence) to deduce inductively that H̃(∗;Fq) →
H̃∗(K(A,n);Fq) is an isomorphism. Having established this case, consider then the fibre
sequence

K(πn(X), n) → τ≤nX → τ≤n−1X

and use again Leray–Hirsch and induction over n to deduce the claim for τ≤nX. The result

then follows since for n > k, we have H̃k(X;Fq) ∼= H̃k(τ≤nX;Fq).
To see (2), the Hurewicz theorem implies that π1(X) is an R-module. Now we induct over

n in the fibre sequence

τ≥nX → X → τ≤n−1X

as follows. Inductively, we know that π∗(τ≤n−1X) is an R-module. Again, By (1) and
assumption, consider again the Serre spectral sequence in Fq-homology for the relevant q.
We see that only the spots on the y-axes are possibly non-trivial, and so from convergence

we deduce that H̃∗(τ≥nX;Z) is an R-module, and the from Hurewicz that also πn(X) is an
R-module, establishing the inductive step. □

Putting the above together we conclude:

3.10. Corollary Let R = Q,Z(p), or Z[1p ] and let X be a connected simple space. Then

(1) X is R-local if and only if π∗(X) is an R-module if and only if H̃∗(X;Z) is an R-
module.

(2) A map f : X → Y between connected simple spaces is an R-equivalence if and only if
it induces an isomorphism on π∗(−)⊗R.

Proof. (1) follows from Proposition 3.9 and one direction of (2) is Lemma 3.6. To see the
converse, assume that f is an R-homology equivalence. Consider the commutative diagram

X Y

XR YR
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in which the the vertical maps are π∗(−) ⊗ R isomorphisms and the map XR → YR is a
R-local equivalence equivalence between simple R-local spaces, and hence an equivalence and
consequently induces an isomorphism on π∗(−)⊗ R. It follows that the same is true for the
top horizontal map as needed. □

3.11. Corollary Let R = Q,Z(p), or Z[1p ] and let X be a connected simple space and n ≥ 2.

Suppose π∗(X) ⊗ R = 0 for 1 ≤ ∗ ≤ n − 1. Then H∗(X;R) = 0 for 1 ≤ ∗ ≤ n − 1 and
πn(X)⊗R → Hn(X;R) is an isomorphism and πn+1(X)⊗R → Hn+1(X;R) is surjective.

Proof. Consider the R-localisation map X → XR and note that π∗(XR) ∼= π∗(X)⊗R as well
as H∗(XR;Z) ∼= H∗(X;R). The claim then follows from the usual Hurewicz theorem applied
to XR. □

Let us now work out an application of the above: In particular, that away from 2, homotopy
groups of even dimensional spheres are understood once homotopy groups of odd dimensional
spheres are understood.

3.12. Proposition Away from 2 the EHP fibre sequence from Lemma 2.17 splits. That is,
we have an equivalence

ΩS2n[12 ] ≃ S2n−1[12 ]× ΩS4n−1[12 ]

and consequently, for all i ≥ 1, we have isomorphisms

πi+1(S
2n)[12 ]

∼= πi(S
2n−1)[12 ]⊕ πi+1(S

4n−1)[12 ].

Moreover, for odd k, there is a 2-local fibre sequence

Sk−1
(2) → ΩSk

(2) → ΩS2k−1
(2) .

Proof. Consider the map f : S4n−1 → S2n∨S2n → S2n of which the first map is the attaching
map for the top cell of S2n × S2n. One computes that the Hopf invariant of this map is 2
(exercise). Then consider the composite

S2n−1 × ΩS4n−1 η×Ωf−−−→ ΩS2n × ΩS2n µ−→ ΩS2n

where the latter map is the multiplication map of the loop space (i.e. the concatenation of
loops). This composite is a Z[12 ]-homology isomorphism, and hence an equivalence away from
2. To see this, it is most convenient to first compute that H∗(ΩS

m;Z) ∼= Z[xm−1] as rings.
Using this, the claim then follows from the computation that Ωf induces the multiplication
by ±2 map on H4n−2; this in turn follows from the fact that f has Hopf invariant 2; see
Remark 3.15 below for the argument.

For the moreover, we run the same argument as in Lemma 2.17. The difference is that
now, the Hopf map ΩSk → ΩS2k−1 induces on cohomology the map ΓZ[x2k−2] → ΓZ[xk−1],
sending x2k−2 to the divided square of xk−1, that is, the unique element y with 2y = x2k−1.
Exercise: After localising at 2, this map is an isomorphism in all degrees where the source is
non-trivial; the same argument as in Lemma 2.17 therefore applies and shows that the fibre
of the Hopf map is, 2-locally, equivalent to Sk−1. □

3.13. Remark We argue here why H∗(ΩS
m;Z) = Z[xm−1]. In fact, we prove something more

general. First we note that ΩΣX is the free E1-group on the pointed anima X. Indeed, this
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follows from the equivalence between GrpE1
(An) ≃ An≥1

∗ given by B(−) and Ω as discussed
in [Lan24]; we have

MapGrp(ΩΣX,G) ≃ MapGrp(ΩΣX,ΩBG)

≃ MapAn∗(ΣX,BG)

≃ MapAn∗(X,ΩBG)

≃ MapAn∗(X,G)

as needed.
Furthermore, this free functor factors as An∗ → MonE1(An) → GrpE1

(An) where the first
functor is the free E1-monoid functor F . Now we claim that if X ∈ An∗ is connected, then
F (X) is also connected and hence grouplike, and therefore F (X) = ΩΣX. Indeed, to see this,
we claim that the diagram

An∗ MonE1(An)

Set∗ Mon(Set)

F

π0 π0

in which the bottom horizontal map is the free monoid on a pointed set functor commutes;
this is a simple matter of comparing universal properties using that π0 is left adjoint to the
inclusion Set ⊆ An. Exercise: This functor takes a pointed set S to the quotient of the free
monoid on the unpointed set S by the submonoid generated by the basepoint. In particular,
it sends a point to a point.

As a consequence, we find that for a connected pointed space X, we have that S[ΩΣX] is
the image of X under the down-right composite of the following commutative square

An∗ Sp

MonE1(An) AlgE1
(Sp)

S[−,∗]

S[−]

in which both left vertical maps are the free functors. This diagram indeed commutes as
follows from inspecting the corresponding diagram of right adjoints. Hence, we see that
S[ΩΣX] is the free E1-algebra in Sp on S[X, ∗] = Σ∞X:

S[ΩΣX] = freeE1(Σ
∞X).

Now, in general, if C is a cocomplete symmetric monoidal category in which the tensor
product commutes with colimits in each variable, the forgetful functor Alg(C) → C has a left
adjoint free : C → Alg(C), which takes an object V ∈ C to a commutative algebra free(V )
whose underlying object is given by ∐

k≥0

V ⊗k

and whose multiplication map is induced by the evident equivalences

V ⊗k ⊗ V ⊗k′ → V ⊗k+k′ .

As a consequence, we find

S[ΩΣX] =
⊕
n≥0

[Σ∞(X)]⊗n =
⊕
n≥0

Σ∞(X∧n).
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To compute the homology, we apply the functor Sp → Mod(Z) given by Z ⊗ −. Since this
functor is a symmetric monoidal left adjoint, it preserves free algebras, and we obtain

Z[ΩΣX] =
⊕
n≥0

Z[X∧n, ∗]

with evident multiplication map. Finally, for X = Sm−1, we then find

Z[ΩSm] =
⊕
n≥0

Σn(m−1)Z = Z[xm−1]

as claimed.

3.14. Remark The same strategy as the one given above gives several stable splitting results;
e.g. one also finds for X connected and pointed, and all k ≥ 1 including k = ∞, that
S[ΩkΣkX] ≃ freeEk

(Σ∞X) and therefore has underlying object given by⊕
n≥0

[Ek(n)⊗ Σ∞(X∧k)]hΣk

For k = 1, we have E1(n) = Σn, while for k = ∞, we have E∞(n) = ∗; we will make use of
this case below, see Remark 3.17.

3.15. Remark let n > 1 and f : S2n−1 → Sn be a map whose cofibre we denote by X. We
define the Hopf invariant h(f) of f as follows. Note that there is a cofibre sequence

Sn → X → S2n

so that the map H2n(S2n;Z) → H2n(X;Z) is an isomorphism; denote by β the image of
the cohomological fundamental class of S2n (which we recall we have fixed a long times
ago), and let α be a generator of Hn(X;Z) ∼= Z. Then h(f) is the unique integer satisfying
α2 = h(f) · β. Exercise: for f : S4n−1 → S2n ∨S2n → S2n as in the proof of Proposition 3.12,
we have h(f) = 2.

We now note that the Hopf invariant of f : S2n−1 → Sn can also be computed as follows.
Consider the map (Ωf)∗ : H2n−2(ΩS

2n−1;Z) → H2n−2(ΩS
n), and recall that both source and

target are isomorphic to Z. Then we have that this map is given by multiplication by ±h(f).
To that end, consider the pushout square

S2n−1 Sn

∗ X

f

p

in which the map f is (n − 1)-connected and the map p is (2n − 1)-connected. We deduce
from Blakers–Massey, see e.g. [Lan24, Theorem 2.23], that the map F = fib(f) → ΩX is
(3n− 3)-connected. Hence, in the Serre spectral sequence for the fibre sequence

ΩS2n−1 Ωf−−→ ΩSn → F

in homological degrees < 3n− 3, we may replace F by ΩX. Note that 2n− 2 < 3n− 3 if and
only if n > 1, which we have assumed. So let us first compute the (co)homology of ΩX using
the Serre spectral sequence. From the multiplicativity of the this spectral sequence, we find
that the non-trivial cohomology groups in in degrees ≤ 2n − 1 are H2n−1(ΩX;Z) ∼= Z/h(f)
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and Hn−1(ΩX;Z) ∼= Z. Hence from UCT and the above comparison argument, we find that
for k ≤ 2n− 2, we have

Hk(F ;Z) =


Z if k = 0, n− 1

Z/h(f) if k = 2n− 2

0 otherwise

Hence, considering the Serre spectral sequence for

ΩS2n−1 Ωf−−→ ΩSn q−→ F

we obtain a short exact sequence

0 → H2n−2(ΩS
2n−1;Z) (Ωf)∗−−−→ H2n−2(ΩS

n)
q∗−→ H2n−2(F ;Z) → 0

showing the claim.

We now move towards studying the category An≥1,simple
Q of connected simple rational spaces

more algebraically. To that end, we first compute:

3.16. Proposition We have the following isomorphism of Q-algebras:

H∗(K(Z, n);Q) ∼= H∗(K(Q, n);Q) ∼=

{
Q[xn] if n is even

ΛQ[en] if n is odd

Proof. We run an induction over n, using the fibre sequence

K(Q, n) → ∗ → K(Q, n+ 1).

The base cases n = 1, 2 have in fact already been computed. The Serre spectral sequence
implies the claim. □

3.17. Remark In the category CAlg(D(Q)), Q[xn] and ΛQ[en] are the free commutative alge-
bras on an even and odd degree generator, respectively. We will make use of this momentarily.
Similarly to before, if C is a cocomplete symmetric monoidal (∞)-category in which the tensor
product commutes with colimits in each variable, the forgetful functor CAlg(C) → C also has
a left adjoint free : C → CAlg(C), which takes an object X ∈ C to a commutative algebra
free(X) whose underlying object now is given by∐

k≥0

[X⊗k]hΣk

and whose multiplication map is induced by the evident maps

X⊗k
hΣk

⊗X⊗l
hΣl

≃ [X⊗k+l]h(Σk×Σl) → [X⊗k+l]hΣk+l

induced by the inclusion Σk × Σl ⊆ Σk+l as block permutations. Now, for C = D(Q) and
X = Q[n] for some n ∈ Z, we find X⊗k = Q[nk] with trivial Σk-action if n is even, and
with sign action (via the abelianisation map Σk → C2) if n is odd. Since Q is a projective
Q[G]-module for all finite groups G, we have H∗(Σk;Q) = Q, while H∗(Σk;Q−) = 0. As a
consequence, we find that the map of commutative algebras in D(Q)

free(Q[n]) → C∗(K(Q, n);Q))

is an equivalence.
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We will need the following further result for which we consider the following situation

X Y C∗(W ;R) C∗(Y ;R)

Z W C∗(Z;R) C∗(X;R)

a

b f

g

where R is a commutative ring, and the left hand square is a commutative diagram in an-
ima with W connected. The right hand square is then a commutative diagram in D(R) ≃
ModSp(R) simply given by applying C∗(−;R) to the left hand diagram. Since pushouts in
this category are given by the relative tensor product (just as we are used to from ordinary
commutative algebra), we obtain a canonical map

Φ: C∗(Z;R)⊗C∗(W ;R) C
∗(Y ;R) → C∗(X;R).

If the square of anima is a pullback square, then one may wonder whether this map is an
equivalence. This is not always the case, but the following gives a sufficient condition which
is often true in practice. As last term, let us denote by r : W → ∗ the unique map and by
h : X → W the composite in the square. For any anima T , in Fun(T,D(R)) we will always
write R for the monoidal unit, that is, for the constant diagram with value R.

The following proposition is not aiming for maximal generality. The proof will reveal what
refined statements in fact hold true, we will comment on this later.

3.18. Theorem (Eilenberg–Moore) In the above situation, assume that R = k is a field, that
Hn(fib(f); k) is finite dimensional for all n,8 and that the π1(W )-action on Hn(fib(f); k) is
nilpotent for all n. Then the map

C∗(Z; k)⊗C∗(W ;k) C
∗(Y ; k) → C∗(X; k)

is an isomorphism.

Proof. For ease of notation, we write C∗(−) for C∗(−; k). For L ∈ Fun(W,D(k)), we may
consider the object g∗g

∗(k) ⊗k L of Fun(W,D(k)). Since r∗ : Fun(W,D(k)) → D(k) is lax
symmetric monoidal (it is the right adjoint of a symmetric monoidal functor), we obtain a
canonical map

ΦL : r∗g∗g
∗(k)⊗r∗(k) r∗(L) → r∗(g∗g

∗(k)⊗k L)

in D(k). Note that r∗(k) = C∗(W ) and r∗g∗g
∗(k) = C∗(Z) and that the above map is the

component of a natural transformation between exact functors Fun(W ;D(k)) → D(k). Let us
consider the special case L = f∗f

∗(k). Then the left hand side becomes C∗(Z)⊗C∗(W )C
∗(Y ),

and we claim that the right hand term becomes C∗(X). To see, this, we observe that there is
a canonical map φ : g∗g

∗(k) ⊗k f∗f
∗(k) → h∗h

∗(k), adjoint to the following composite (here
we use gb = h = fa):

b∗g∗g∗g
∗(k)⊗k a

∗f∗f∗f
∗(k) → b∗g∗(k)⊗k a

∗f∗(k) → k

where the first map is the counit in each tensor factor and the second map is the multiplication
map of the unit k (which is of course an equivalence). We claim that the map φ is an
equivalence. To do this, it suffices to show that it is an equivalence pointwise, i.e. after
applying i∗ where i : {w} → W is a point. Doing so, the resulting map becomes (exercise)
the map

C∗(fib(g))⊗ C∗(fib(f)) → C∗(fib(g)× fib(f))

8We also say that fib(f) is of finite cohomological k-type.
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which is an isomorphism by Künneth and the assumption that C∗(fib(f)) is of finite cohomo-
logical k-type. The map Φf∗f∗(k) therefore becomes a map

C∗(Z)⊗C∗(W ) C
∗(Y ) → C∗(X)

which turns out to be the map Φ we are trying to show is an equivalence.
Now, we observe that ΦL is evidently an equivalence in the case L = k, and hence also in the

case where L lies in the thick subcategory generated by L. Note that for L in Fun(W,D(k)), we
may consider its pointwise Whitehead tower τ≥•L, obtained by the functor Fun(W,D(k)) →
Fun(W,Fil(D(k)) induced by D(k) → Fil(D(k)) given by sending A ∈ D(k) to its Whitehead
tower τ≥•A.

9 Inductively over m, we now show that τ≥−mf∗f
∗(k) lies in the thick subcategory

generated by the unit k. Indeed, note that the pointwise formula for the Kan extension gives
that f∗f

∗(k) = C∗(fib(f); k) viewed as a functor on W . Inducting through the Whitehead
tower, we see that it suffices to show that Hn(fib(f); k) lies in the thick subcategory generated
by k. But this is exactly what the nilpotency of the action gives: The the functor on W
taking a point to Hn(fib(f); k) factors through the map W → Bπ1(W ), the nilpotency then
precisley means that there is a finite filtration on Hn(fib(f); k) with associated graded which
has trivial π1(W )-action. Hence, Hn(fib(f); k) indeed lies in the thick subcategory generated
by k. Inductively, we then deduce that for all m ≤ 0, the functor on W given by τ≥−mf∗f

∗(k)
lies in the thick subcategory generated by k, and hence that for L = τ≥mf∗f

∗(k), the map
ΦL is an equivalence.

We now claim that both source and target of the map ΦL commute with the filtered colimit
colim
m→−∞

f∗f
∗(k) ≃ f∗f

∗(k), more precisely, we consider the following diagram

colim
m→−∞

C∗(Z)⊗C∗(W ) r∗[τ≥mf∗f
∗(k)] colim

m→−∞
r∗(g∗g

∗(k)⊗ τ≥mf∗f
∗(k)

C∗(Z)⊗C∗(W ) colim
m→−∞

r∗[τ≥mf∗f
∗(k)] r∗[ colim

m→−∞
(g∗g

∗(k)⊗ τ≥mf∗f
∗(k)]

C∗(Z)⊗C∗(W ) r∗[f∗f
∗(k)] r∗[(g∗g

∗(k)⊗ f∗f
∗(k)]

≃

≃

≃

where the upper horizontal equivalence comes form the previously established case and the
two vertical equivalences come from commutative of tensor products with colimits. We want
to see that the lower horizontal map is an equivalence, so it suffices to argue that the two
remaining vertical ones are. For the left hand side, this is the same argument we have already
seen in the construction of th Serre spectral sequence: the maps in the colimit system have
more and more coconnective cofibres, so the claim follows from the fact that r∗, being the limit
over W preserves coconnectivity. For the right vertical map we appeal to the same argument
and have to use: the maps in the colimit system for g∗g

∗(k)⊗ τ≥•f∗f
∗(k) still have more and

more coconnected cofibres: Indeed, the cofibres are obtained from those of τ≥•f∗f
∗(k) upon

tensoring with g∗g
∗(k), which is coconnective since it is C∗(fib(g); k). Now since k is a field,

this tensor product is still as coconnective as the cofibre of τ≥•f∗f
∗(k), whose coconnectivity

tends to −∞. This proves the theorem. □

9We have recalled in the beginning of this course that this works for spectra, but it works equally for D(k),
in fact, for any stable ∞-category equipped with a t-structure.
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3.19. Remark Inspecting the proof of Theorem 3.18 we find that the argument applies to
more general commutative rings R whenever

(1) the R-cohomological Künneth theorem holds for fib(f)× fib(g), and
(2) the tensor product of a coconnective R-module with an m-coconnective R-module is

φ(m)-coconnective for some function m 7→ φ(m) tending to −∞ if m tends to −∞.

If we assume that fib(f) has R-cohomologically finite type (i.e. Hn(fib(f);R) is a finitely
generated R-module for all n) and that the π1(W )-action is still nilpotent, this can be shown
to be true for noetherian commutative rings of finite global dimension. In particular it is true
for fields and PIDs like the integers.

The following is then a version of Sullivan’s famous result on rational homotopy theory.

3.20. Theorem The functor AnQ → CAlg(D(Q))op, given by X 7→ C∗(X;Q), is fully faithful
when restricted to connected, simple spaces of finite rational type.10

Proof. We will show that for any space T and rational, simple space of finite rational type
X, the map

Map(T,X) → MapCAlg(D(Q))(C
∗(X;Q), C∗(T ;Q))

is an equivalence. To that end, write X = limn τ≤nX, then we find colimnC
∗(τ≤n;Q) →

C∗(X;Q) is an equivalence in CAlg(D(Q)) simply because for each cohomological degree,
the colimit stabilizes. Hence commuting out limits/colimits, we reduce to the case where
X = τ≤nX. Then we may induct on n. For the inductive step, we consider the fibration

K(πn(X), n) → τ≤nX → τ≤n−1X

and obtain the diagram

Map(T,K(πn(X), n) MapCAlg(D(Q))(C
∗(K(πn(X), n);Q), C∗(T ;Q))

Map(T, τ≤nX) MapCAlg(D(Q))(C
∗(τ≤nX;Q), C∗(T ;Q))

Map(T, τ≤n−1X) MapCAlg(D(Q))(C
∗(τ≤n−1X;Q), C∗(T ;Q))

in which we claim both vertical sequences to be fibre sequences: For the left hand one, this
follows from the fact that Map(T,−) preserves fibre sequences, for the right hand one, we
note that the square

C∗(τ≤n−1X;Q) C∗(τ≤nX;Q)

Q C∗(K(πn(X), n);Q)

is a pushout in CAlg(D(Q)) by Theorem 3.18, and then use that the functor

MapCAlg(D(Q))(−, C∗(T ;Q)) : CAlg(D(Q))op → An

10In fact, similar arguments as we present here also show the same claim for nilpotent spaces of finite
rational type.
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preserves limits. Hence, the inductive step as well as the base case follow once we show the
claim for X = K(A,n) with A a finite dimensional Q-vector space, in other words where X is
a finite product of K(Q, n). Using the Künneth theorem, and the fact that the tensor product
in CAlg(D(Q)) is the coproduct, we finally reduce to the case X = K(Q, n) (exercise). In
other words we need to investigate the map

Map(T,K(Q, n)) → Map(C∗(K(Q, n);Q), C∗(T ;Q)).

Similarly as previously, using Yoneda in the homotopy category of anima, it suffices to show
that for all further anima U , the map

Map(U,Map(T,K(Q, n)) → Map(U,Map(C∗(K(Q, n);Q), C∗(T ;Q)))

induces a bijection on π0. Exercise: there is a canonical equivalence

Map(U,Map(C∗(K(Q, n);Q), C∗(T ;Q))) ≃ Map(C∗(K(Q, n);Q), C∗(U × T ;Q))

under which the above map becomes equivalent to the map

Map(U × T,K(Q, n)) → Map(C∗(K(Q, n);Q), C∗(U × T ;Q)).

Using that C∗(K(Q, n);Q) is free on a class of (cohomological) degree n, see Remark 3.17,
we deduce that on π0, this map induces the map

[U × T,K(Q, n)] → Hn(U × T ;Q)

sending f to f∗(ιn) which we have shown to be an isomorphism in [Lan24, Theorem 3.7]. □

3.21. Remark The functor X 7→ C∗(X;Q) is left adjoint to the functor CAlg(D(Q))op →
An given by A 7→ MapCAlg(Q)(A,Q). In particular, this functor, restricted to underlying
coconnective objects with are degreewise finite dimensional homotopy groups, is the inverse
of the above fully faithful functor.

3.22. Remark The essential image of the above established fully faithful functor, when re-
stricted to simply connected rational spaces of finite rational type is the full subcategory of
CAlg(D(Q)) on those objects whose underlying object of D(Q) is coconnective with π0(−)
isomorphic to Q, π−1(−) trivial, and which have degreewise finite dimensional homotopy
groups over Q as we show now:

Indeed, suppose given such an A ∈ CAlg(D(Q)). We will inductively construct a rational,
simply connected anima Xn with a map fn : C

∗(Xn;Q) → A in CAlg(D(Q)) which induces an
isomorphism on πk for k > −n and a surjection on π−n and maps αn : Xn+1 → Xn together
with an identification

fn+1 ◦ α∗
n ∼ fn : C

∗(Xn;Q) → A.

For the induction start, we note that a similar argument as in Remark 3.17 shows that for
V a finite dimensional Q-vector space, we have that C∗(K(V ∨, n);Q) identifies with the free
commutative Q-algebra on V [−n]; here V ∨ = HomQ(V,Q) denotes the dual vector space. The
induction start is then X2 = K(π−2(A)∨, 2) which by what we have just argued, is equipped
with a tautological map C∗(K(π−2(A)∨, 2);Q) → A which induces an isomorphism on πi for
i = 0,−1,−2; this uses the finite type hypothesis on A. Now assume inductively that Xn and
fn have been constructed. Let

V = ker(Hn(Xn;Q)
fn−→ π−n(A)).

Using again that C∗(K(V ∨, n);Q) is free, we obtain a canonical map C∗(K(V ∨, n);Q) →
C∗(Xn;Q) classifying the inclusion V ⊆ Hn(Xn;Q). By the established fully faithfulness of
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C∗(−;Q) this map is the map induced on rational cochains of a map of animaXn → K(V ∨, n).
Let X ′

n+1 be the fibre of this map, so that we have a squares

X ′
n+1 Xn C∗(K(V ∨, n)) C∗(Xn)

∗ K(V ∨, n) Q C∗(X ′
n+1)

α′
n

ϕn

of which the left is a pullback square of simple rational anima and the right is a pushout
in CAlg(D(Q)) by Theorem 3.18. Note that in case n = 2 we have V = 0 and this part
of the argument only appears for n ≥ 3 which we assume from here on. In particular,
π1(X

′
n+1) → π1(Xn) = 0 is an isomorphism so that X ′

n+1 is indeed simply connected.
It then follows from the universal properties that the map fn : C

∗(Xn;Q) → A extends to
a map f ′

n+1 : C
∗(Xn+1;Q) → A, i.e. such that fn ∼ f∗

n+1 ◦ α′
n as needed. We now claim that

f ′
n+1 induces an isomorphism on π−i for i ≤ n. To see this, it suffices to argue that the map

α∗ : Hk(Xn;Q) → Hk(X ′
n+1;Q) is an isomorphism for k < n and is surjective with kernel

equal to V for k = n. To see this, consider the cohomological Serre spectral sequence for the
fibre sequence

K(V ∨, n− 1) → X ′
n+1 → Xn.

We have Hk(K(V ∨, n− 1);Q) = 0 for k < n− 1 and that the differential

V ∼= Hn−1(K(V ∨, n);Q) → Hn(Xn;Q)

identifies naturally with the map induced by Xn → K(V ∨, n) as follows from naturality of
the Serre spectral sequence applied to the map of fibre sequences

K(V ∨, n− 1) X ′
n+1 Xn

K(V ∨, n− 1) ∗ K(V ∨, n)

ϕn

and the fact that the corresponding differential in the spectral sequence of the lower fibre
sequence is an isomorphism for formal reasons. Moreover, Hn(K(V ∨, n − 1);Q) = 0 since
n ≥ 3 and so that n is not a multiple of n−1. Since Xn is simply connected, we also have that
E1,n−1

2 = H1(Xn;V ) = 0. Hence, from Lemma 2.14 we find Hn(X ′
n+1;Q) ∼= Hn(Xn;Q)/V

as needed.
Define then

Xn+1 = X ′
n+1 ×K(π−(n+1)(A)∨, n+ 1).

By Künneth we then have

C∗(Xn+1;Q) = C∗(X ′
n+1;Q)⊗Q C∗(K(π−(n+1)(A)∨, n+ 1))

which is a coproduct in CAlg(D(Q)) of the two terms. Hence, the map f ′
n+1 extends to a map

fn+1 : C
∗(Xn+1;Q) → A which is then by construction also surjective on π−(n+1). Moreover,

by Künneth, the inclusion X ′
n+1 → Xn+1 induces an isomorphism on Hk(−;Q) for k < n+1,

so the pair (Xn+1, fn+1) proves the wanted inductive step.
We then finally define X = limnXn and f = colimn fn : colimnC

∗(Xn;Q) → A. Using
then that the canonical map colimnC

∗(Xn;Q) → C∗(X;Q) is an isomorphism, we have finally
shown that A ≃ C∗(X;Q) as needed.



TOPOLOGY V 25

3.23. Remark One may wonder what the image of C∗(−;Q) is when restricted to connected,
simple or nilpotant rational spaces of finite rational type. One could (and in fact, I did) think
that it is given by those A ∈ CAlg(D(Q)) whose underlying object in D(Q) is coconnective
with π0 isomorphic to Q and all homotopy groups finite dimensional over Q.

To prove this, one could try to run the same argument as in Remark 3.22 to build, for fixed
such A ∈ CAlg(D(Q)) a simple space X with C∗(X;Q) ≃ A. Trying to do this, one runs into
a problem in the inductive step where we argued that the map C∗(X ′

n+1;Q) → A is injective

on π−n. Indeed, in that situation, the term H1(Xn;V ) a priori contributes to the cokernel of

the map Hn(Xn;Q) → Hn(Xn+1;Q); in fact, a closer analysis shows that E1,n−1
∞ consists of

those x ∈ H1(Xn;V ) ∼= H1(Xn;Q) ⊗Q V ⊆ H1(Xn;Q) ⊗Hn(Xn;Q) which lie in the kernel
of the multiplication map to Hn+1(Xn;Q). But a priori, there is no reason that this term
vanishes in general.

Have we just not been clever enough? It turns out that no; there really is a problem here:
Assume that we have proven the more general claim about fully faithfulness of C∗(−;Q) when
restricted to connected, nilpotent, rational spaces of finite rational type (the argument we gave
for simple spaces really extends readily to the case of nilpotent spaces). If the above argument
were to work, we find that every connected, nilpotent, rational space of finite rational type
has a rational homology equivalence to a connected, simple, rational space of finite rational
type. We now show that this is not the case:

Consider the central extension

1 → Q → N → Q2 → 1

classified by a generator of H2(Q2;Q) ∼= H2(Z2;Q) ∼= H2(T 2;Q) ∼= Q and consider the con-
nected, nilpotent, rational space of finite type BN . If BN has a rational homology isomor-
phism to a connected, simple, rational space X, we conclude Q2 = Nab⊗ZQ ∼= H1(BN ;Q) ∼=
H1(X;Q) ∼= π1(X): Indeed, N is a rational version of the classical Heisenberg group, which
is generated by two elements x, y with relations that x and y both commute with the com-
mutator z = xyx−1y−1. Exercise: H∗(BN ;Q) is Q in degree 0, 3 and Q2 in degree 1, 2. In
fact, constructing the “same” central extension with Z’s in place of Q’s, taking the classifying
space one obtains an aspherical 3-manifold M whose rationalisation is equivalent to BN .

Assuming now that X is simple, we have a fibre sequence

τ≥2X → X → BQ2

so we find that H2(τ≥2X;Q) ∼= Q to obtain H2(X;Q) ∼= H2(BN ;Q) ∼= Q2. But then

we find that E1,2
2 = H1(BQ2;H2(τ≥2X;Q)) ∼= Q2 and that this term does not admit any

non-trivial differentials, showing that dimQH3(X;Q) ≥ 2, contradicting the assumption that
H3(X;Q) ∼= H3(BN ;Q) ∼= Q.

As discussed above, this argument implies that the image of C∗(−;Q) when restricted to
connected, simple, rational spaces of finite rational type is not merely those A ∈ CAlg(D(Q))
which are coconnective, with π0 equal to Q and all homotopy groups finite dimensional over Q.
Unfortunately, I don’t know at this time how to describe the essential image when restricted
to simple, and also not when restricted to nilpotent, rational spaces of finite rational type.

3.24. Remark I have now understood more than before, thanks to discussions with Jonas
Stelzig. The starting point is the following observation: Instead of dealing with connected an-
ima, let us work with connected pointed anima. Since the point is nilpotent, what we have (al-
most) shown earlier implies that the functor C∗(−;Q) is again fully faithful when restricted to
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pointed connected rational nilpotent anima of rational finite type, when viewed as taking val-
ues in augmented coconnected commutative Q-algebras.. Now, there is a functor taking inde-
composables of an augmented commutative Q-algebra; it gives a functor Q : CAlg(D(Q))/Q →
D(Q), which sends free(V ) to V for all V ∈ D(Q). Indeed, the indecomposables functor is
left adjoint to a “trivial square zero extension” functor D(Q) → CAlg(D(Q))/Q, which in-
formally sends V to Q ⊕ V with multiplication determined by the zero multplication on V ;
Formally, this functor can be obtained by showing that Sp(CAlg(D(Q))/Q) ≃ D(Q), so that
Ω∞ serves as this trivial square zero functor (of course, it has to be shown that it sends
C to some augmented algebra whose underlying object is Q ⊕ V ); the functor Q can then
be defined as the functor CAlg(D(Q))/Q → D(Q) left adjoint to Ω∞ (often denoted Σ∞).
Exercise: Show from this that Q(free(V )) = V using that free : D(Q) → CAlg(D(Q))/Q is left
adjoint to the underlying object of the augmentation ideal functor ϵ : CAlg(D(Q))/Q → D(Q),
A → Q 7→ fib(A → Q).

Now, applying C∗(−;Q) to pointed connected anima gives a map

πn(X) = π0(MapAn∗(S
n, X)) → π0(MapCAlg(D(Q))/Q

(C∗(X), C∗(Sn)).

Moreover, it can be shown that C∗(Sn) = Q ⊕ Q[−n] is the trivial square zero extension on
Q[−n]; this is very classical. To see this, note that for n odd this is immediate since both
sides in addition agree with the free algebra on Q[−n] (exercise); Now for n ≥ 2 even, we
have

C∗(Sn;Q) ≃ C∗(ΣSn−1;Q) ≃ ΩC∗(Sn−1;Q) ≃ Ω(Q⊕Q[−n+ 1]) ≃ Q⊕Q[−n]

where Ω is the loop functor of the pointed category CAlg(D(Q))/Q. The last equality holds
since the square zero extension functor, as a right adjoint, commutes with limits and hence
preserves loop objects. Hence, we obtain by adjunction the equivalence

MapCAlg(D(Q))/Q
(C∗(X), C∗(Sn) ≃ MapD(Q)(QC∗(X),Q[−n])

from which we then obtain a canonical map

πn(X) → π−n(QC∗(X))∨.

This map is an isomorphism if X is pointed, connected, nilpotent, rational of finite rational
type, by fully faitfhfulness of the functor C∗(−;Q). As a consequence, we find that the image
of C∗(−;Q), when restricted to connected, nilpotent, rational anima of finite rational type,
is contained in coconnected, i.e. coconnective with π0(−) = Q, commutative Q-algebras A of
finite type whose indecomposables QA are also of finite type.

We obtain the following computation of rational homotopy groups of spheres:

3.25. Proposition For n odd, the map Sn → K(Z, n) is a rational equivalence. For n even,

the map Sn → fib(K(Z, n) ι2n−→ K(Z, 2n)) is a rational equivalence. In particular,

πk(S
n)Q ∼=

{
Q if k = n or k = 2n− 1 and n is even

0 else.

Consequently, the map S → Q is a rational equivalence, so that π0(S)Q ∼= Q and πk(S)Q = 0
if k ̸= 0.
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Proof. The case where n is odd is an immediate consequence of Proposition 3.16. In case n is
even, denote by F the fibre of the map K(Z, n) → K(Z, 2n) classifying ι2n. The Serre spectral
sequence with Q-coefficients reveals that

Hk(F ;Q) ∼=

{
Q if k = 0, n

0 else

so that the canonical map Sn → F induces an isomorphism on rational homology, and
therefore also on rational homotopy by Corollary 3.10. □

3.26. Remark As noted before, it is not difficult to construct a generator of the Q-vector
space π4n−1(S

2n)Q. Indeed, the composite

S4n−1 → S2n ∨ S2n → S2n

where the first map is the attaching map for the top cell of S2n × S2n and the second map is
the fold map. This map is not null homotopic as it has Hopf invariant 2, and hence generates
the 1-dimensional Q-vector space π4n−1(S

2n)Q.
A bit more explicitly, we find π4n−1(S

2n) ∼= Z ⊕ A where A is a finite abelian group, by
the classification of finitely generated abelian groups of rank 1 and Corollary 2.24. Now, the
cup product in the cone of an element of π4n−1(S

2n) leads to a map to a homomorphism to
Z called the Hopf invariant. As noted earlier, the element we have constructed above has
Hopf invariant 2. Most of the times, that is, unless n = 1, 3, 7 there is no element of odd
Hopf invariant. This is, however, still a non-trivial result which we have not yet proven. In
particular, though true, we do not know just yet that outside of these 3 special cases, the
element we have written above in fact gives rise to a generator of the maximal torsion free
quotient of π4n−1(S

2n).

Let us now turn to p-local homotopy theory. To begin, we need to explicate the failure of
Proposition 3.16 to hold true integrally.

3.27. Lemma Let n ≥ 3 and p be a prime. If n is odd, then the canonical map ΛZ[ιn] →
H∗(K(Z, n);Z)/tors is an isomorphism. If n is even, the canonical map Z[ιn] → H∗(K(Z, n);Z)/tors
is an isomorphism, and the canonical map Z(p)[ιn] → H∗(K(Z, n);Z(p)) is an isomorphism
in degree ∗ < 2p− 1 + n. Moreover, for all n, we have

H2p−1+n(K(Z, n);Z(p)) ∼= Fp

and this is the lowest degree in which non-trivial p-torsion appears.

Proof. First note that by Theorem 2.23, H∗(K(Z, n);Z) is degreewise finitely generated, so
the same is true for H∗(K(Z, n);Z) and we have H∗(K(Z, n);Z(p)) ∼= H∗(K(Z, n);Z)(p). If n
is odd, it then follows immediately from Proposition 3.16, that ΛZ[ιn] → H∗(K(Z, n);Z)/tors
is an isomorphism. Similarly, it follows that for n even, the map Z[ιn] → H∗(K(Z, n);Z)/tors
is injective and the target is infinite cyclic or trivial, so it suffices to show that ιkn is not

divisible. Consider the map CP∞ → K(Z, n) classifying x
n
2 , where x ∈ H2(CP∞;Z) is a

generator. Then we obtain a map Z[ιn] → H∗(K(Z, n);Z)/tors → H∗(CP∞;Z) ∼= Z[x],
sending ιkn to x

nk
2 which is not divisible, so neither is ιkn.

Now we aim to prove the remaining cases inductively over n. To begin, we need to consider
the case n = 3 for which we analyze the Serre spectral sequence for K(Z, 2) → ∗ → K(Z, 3)
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and cohomology with Z(p)-coefficients. Since H∗(K(Z, 2);Z) = Z[ι2], we find that E3,2k
2

∼=
Z(p), and that the differential

H2k(K(Z, 2);Z(p)) ∼= Z(p) → Z(p)
∼= H3(K(Z, 3);H2k−2(K(Z, 2);Z(p)))

is given by multiplication by k. In particular, p-locally, the first instance in which this map
is not an isomorphism is when k = p, so that we have E3,2p−2

4
∼= Fp. Again inductively, we

deduce that this Fp supports a differential with target necessarily in the q = 0 line of the
spectral sequence; the target is then given by H2p+2(K(Z, 3);Z(p)). This shows that the first
p-torsion appears in the degree 2p + 2 as claimed. Now let us prove the inductive step, and
consider the fibration K(Z, n − 1) → ∗ → K(Z, n) with n even and again the Serre spectral
sequence with p-local coefficients. In this case, we find that the differential

Hn−1(K(Z, n− 1);Z(p)) → Hn(K(Z, n);Z(p))

is an isomorphism. From this, and multiplicativity of the spectral sequence, we find that
Hkn(K(Z, n);Z(p)) is isomorphic to Z(p) as long as kn < 2p − 1 + n. Note that we have al-

ready shown that this group is generated by ιkn. Now, by induction, we have an isomorphism
H2p−1+n−1(K(Z, n−1);Z(p)) ∼= Fp, so this term also has to support a differential for the spec-
tral sequence to converge to the cohomology of a point. The only option is that it is the longest
differential, going from the y-axes to the x-axes. This results in H2p−1+n(K(Z, n);Z(p)) ∼= Fp;
note that 2p− 1 + n is odd since we are in the situation where n is even.

Finally, we need to prove the inductive step using the fibration K(Z, n−1) → ∗ → K(Z, n)
in case n is odd. But this is similar to the analysis in the computation of the inductive start,
so we shall leave this part as an exercise. □

3.28. Proposition Let n ≥ 3 be odd. Then we have

πk(S
n)(p) =


Z(p) if k = n

Fp if k = 2p− 3 + n

0 if k < 2p− 3 + n and k ̸= n

Proof. Consider the map Sn
(p) → K(Z(p);n) which is an isomorphism on πn and let F be its

fibre. By Lemma 3.27, we find from the universal coefficient theorem:

Hk(K(Z;n);Z(p)) ∼=


Z(p) if k = n

Fp if k = 2p− 2 + n

0 if k < 2p− 2 + n and k ̸= n

Then, from the Serre spectral sequence for the fibration F → Sn
(p) → K(Z(p);n) or the p-local

relative Hurewicz theorem, we find for k ≤ 2p− 3 + n that

πk(F )(p) ∼= Hk(F ;Z(p)) ∼=

{
0 if 0 < k < 2p− 2− n

Fp if k = 2p− 3 + n

From the long exact sequence associated to the defining fibre sequence and the observation
that 2p− 2 > 2p− 3 > 0 for all primes p, we also find that the canonical map

πk(F )(p) → πk(S
n)(p)

is an isomorphism for n < k ≤ 2p−3+n, giving the not yet proven part of the proposition. □
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3.29. Corollary For all primes p and all n ≥ 3, we have that the first torsion which appears
in πk(S

n)(p) is an Fp in degree k = 2p− 3 + n.

Proof. Only the case of even spheres remains S2n to be argued. If p = 2, then Freudenthal
implies that the map π4(S

3) → π2n+1(S
2n) is an isomorphism, so we may focus on the case

of odd primes p. There, by Proposition 3.12 we have

πk(S
2n) ∼= πk−1(S

2n−1)⊕ πk(S
4n−1)

from which the claim follows immediately. □

3.30. Remark Note that we have in particular shown that π∗(S
3) contains p-torsion for every

prime p and is non-trivial for infinitely many degrees: Indeed, π2p(S
3)(p) ∼= Fp for all p.

3.31. Proposition For all n ≥ 3 and all primes p, the suspension maps

π2p−3+n(S
n)(p) → π2p−3+n+1(S

n+1)(p)

are isomorphisms. In particular,

πk(S)(p) ∼= πk(S(p)) ∼=


Z(p) if k = 0

Fp if k = 2p− 3

0 if 0 < k < 2p− 3

Proof. For p = 2, this is a consequence of Freudenthal, see e.g. [Win24, Theorem 5.4.5], so
we may assume p is odd. In case n is odd, it follows from Proposition 3.12 that the map in
question is injective, and hence an isomorphism since both source and target are isomorphic
to Fp by Proposition 3.28. Now still assuming n is odd, we consider the composite

Sn → ΩSn+1 → Ω2Sn+2.

We will argue below that

Hk(Ω
2Sn+2;Z(p)) ∼=


Z(p) if k = 0, n

Fp if k = p(n+ 1)− 2

0 if k < p(n+ 1)− 2 and k ̸= 0, n

It then follows from either Blakers–Massey or the Serre spectral sequence that the above map
Sn → Ω2Sn+2 is about p(n + 1) − 2 connected. Since 2p − 3 + n < p(n + 1) − 2, we deduce
that the composite

π2p−3+n(S
n)(p) → π2p−3+n+1(S

n+1)(p) → π2p−3+n+2(S
n+2)(p)

is an isomorphism. Since all groups appearing in this composite are isomorphic to Fp, we find
that also the second map is an isomorphism, treating now also the case of the proposition in
which n is even. □

3.32. Lemma For odd n ≥ 3, we have

Hk(Ω
2Sn+2;Z(p)) ∼=


Z(p) if k = 0, n

Fp if k = p(n+ 1)− 2

0 if k < p(n+ 1)− 2 and k ̸= 0, n
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Proof. We consider the Serre spectral sequence for the fibre sequence

Ω2Sn+2 → ∗ → ΩSn+2.

Recall that H∗(ΩSn+2;Z) = ΓZ[xn+1], the free divided power algebra on a generator of degree
n+1. In the cohomological Serre spectral sequence, we then first deduce that the differential

Z ∼= Hn(Ω2Sn+2;Z) → Hn+1(ΩSn+2;Z)

is an isomorphism. Consequently, we inductively find that

E
(k−1)(n+1),n
2 = H(k−1)(n+1)(ΩSn+2;Z) → Hk(n+1)(ΩSn+2;Z) = E

k(n+1),0
2

is given by multiplication by k, at least as long as k ≤ p. In particular, p-locally all these
maps are isomorphisms, so with Z(p)-coefficients, we deduce that the first next non-trivial
entry on the y-axes of the spectral sequence is at row p(n+ 1)− 1:

Hn(p+1)−1(Ω2Sn+2;Z(p)) ∼= Fp

The claim then follows from UCT. □

3.33. Remark One can show that for odd primes p, the next p-torsion in π∗(S) appears in
degree 4p− 5 and is again isomorphic to Fp. The proof is similar to the one above, but more
complicated. We leave the details to the reader for now, and perhaps add the argument later.

4. Cohomology of Eilenberg–Mac Lane spaces

We begin with an important property of the (cohomological) Serre spectral sequence often
referred to as the transgression theorem. So let F → E → B be a simple fibre sequence with
F and B connected and A an abelian group. First, we need a definition.

4.1. Definition A pair (x, y) ∈ Hn(F ;A)×Hn+1(B;A) is called transgressive11 if dr(x) = 0

for all 2 ≤ r ≤ n and dn+1(x) = [y] ∈ En+1,0
n+1 .

We now aim to prove the following theorem.

4.2. Theorem (Transgression Theorem) In the above situation, let θ : K(A,n+1) → K(B,m)
be a cohomology operation and (x, y) a transgressive pair. Then (Ωθ(x), θ(y)) is again a
transgressive pair.

The proof of the above theorem is essentially about characterising transgressive pairs in
the following way. Thanks to Achim Krause for reminding me of this characterisation.

4.3. Lemma In the above situation, a pair (x, y) is transgressive if and only if it participates
in a map of fibre sequences

F E B

K(A,n) ∗ K(A,n+ 1)

i

x

π

y

11Sometimes, just x is called transgressive.
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Proof. First suppose given a map of fibre sequences as displayed. By Remark 2.12, there is
a map from the cohomological Serre spectral sequence of the bottom fibre sequence to that
of the top fibre sequence. Since (ιAn , ι

A
n+1) ∈ Hn(K(A,n);A) × Hn+1(K(A,n + 1);A) is a

transgressive pair for formal reasons, the same then holds true for its image under the just
indicated map of spectral sequences, showing that (x, y) is transgressive.

Conversely, suppose that (x, y) is transgressive. We deduce that [y] = 0 ∈ En+1,0
∞ which

by Lemma 2.14 implies that π∗(y) = 0. We may therefore choose a null-homotopy γ of the
composite E → B → K(A,n+ 1), giving rise to a map of fibre sequences

F E B

K(A,n) ∗ K(A,n+ 1)

x̃ y

where x̃ is the map induced on fibres. By what we have just discussed, we find that (x̃, y)

is also a transgressive pair, and in particular, that dn+1(x− x̃) = 0 and hence x− x̃ ∈ E0,n
∞ .

By Lemma 2.14, there exists z ∈ Hn(E;A) with i∗(z) = x− x̃. We may use z to change the
null-homotopy γ, and doing so, the induced map on fibres F → K(A,n) becomes x. This
shows the lemma. □

Proof of Theorem 4.2. By Lemma 4.3, the following diagram consists of maps of fibre se-
quences

F E B

K(A,n) ∗ K(A,n+ 1)

K(B,m− 1) ∗ K(B,m)

x y

Ωθ θ

so another application of Lemma 4.3 gives the claim. □

4.4. Example Recall from [Lan24, Remark 6.6] that, in somewhat abusive notation, ΩSqi =
Sqi. Hence, for A = F2 and (x, y) a transgressive pair, (Sqi(x),Sqi(y)) is also a transgressive
pair for all i ≥ 0. This fact is extremely helpful for computations, as we shall see next.

The next goal is to compute H∗(K(Fp, n);Fp). Somewhat surprisingly, this can actually
be done. Following what I have done in [Lan24], we work this out for p = 2, the odd
primary case will at most be indicated. Recall that a multiindex I = (i1, . . . , ik) determines
SqI = Sqi1 · · · Sqik and that I is called admissible if ij ≥ 2ij+1 for all j. As a consequence of
the Adem relations, we have seen in [Lan24] that every element in the Steenrod algebra A∗

is a sum of admissible monomials SqI , that is, monomial SqI with I admissible.

4.5. Definition Let I = (i1, . . . , ik) be an admissible multiindex. We define its excess e(I) as

e(I) =
∑
j≥0

ij − 2ij+1 = i1 − i2 − i3 − · · · − ik

so that i1 = e(I) + i2 + · · ·+ ik.
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4.6. Example The admissible monomials of excess ≤ 0 is precisely Sq0. The admissible
monomials of excess ≤ 1 are precisely Sq0,Sq1,Sq2Sq1, Sq4Sq2Sq1, . . . etc.

4.7. Remark Let x ∈ H∗(X;F2) and I is admissible with e(I) > |x|. Then SqI(x) = 0 in
H∗(X;F2). Indeed, in this case we have i1 > |x|+ i2 + · · ·+ ik = |Sqi2 . . . Sqik(x)| so that

SqI(x) = Sqi1Sqi2 . . . Sqik(x) = 0

for degree reasons. In particular, SqI(ιn) = 0 in H∗(K(F2, n);F2) if e(I) > n.

We then aim to prove the following theorem.

4.8. Theorem The canonical maps

(1) F2[Sq
I(ιn) | I adm. with e(I) < n] → H∗(K(F2, n);F2), for n ≥ 1,

(2) F2[Sq
I(ιn) | I adm. not containing 1 with e(I) < n] → H∗(K(Z, n);F2), for n ≥ 2,

(3) F2[Sq
I(ιn), Sq

J(κn+1) | I, J adm. not containing 1 with e(I) < n, e(J) ≤ n] → H∗(K(Z/2k, n);F2)
where k > 1 and κn+1 is a generator of Hn+1(K(Z/2k, n);F2) ∼= F2.

are isomorphisms of F2-algebras.

The proof of Theorem 4.8 will be by induction over n. For the case (1) with n = 1, recall
that only Sq0 is an admissible monomial of excess 0. Hence, the statement translates to the
fact that F2[ι1] → H∗(K(F2, 1);F2) is an isomorphism, which we have proven a long time
ago. For the proof, we will make use of the following definition.

4.9. Definition Let R be a graded commutative F2-algebra. A subset I ⊆ R consisting of
homogenous elements is called a simple system of generators if the set

{xJ =
∏
x∈J

x | J ⊆ I finite subset }

forms a basis of the underlying F2-vector space of R.

4.10. Example (1) The exterior algebra ΛF2 [x] has {x} as simple system of generators.

(2) The polynomial algebra F2[x] has {x2
i}i≥0 as simple system of generators.

(3) More generally, F2[x1, x2, . . . ] has {x2
i

k }k≥1,i≥0 as simple system of generators.

(4) Even more generally, ΛF2 [y1, y2, . . . ] ⊗F2 F2[x1, x2, . . . ] has {yj ⊗ x2
i

k }i,j,k as simple
system of generators.

The computation of the cohomology of Eilenberg–Mac Lane spaces then rests on the fol-
lowing theorem.

4.11. Theorem (Borel) Let B be a simply connected anima. Assume that H∗(ΩB;F2) has
a simple system of generators (x1, x2, . . . ) of positive degrees with only finitely many xi’s of
fixed degree. Assume further that we can choose for each i ≥ 1 an element yi ∈ H∗(B;F2)
such that (xi, yi) is a transgressive pair. Then the map F2[y1, y2, . . . ] → H∗(B;F2) is an
isomorphism.

Proof. To ease notation, we write H∗(−) for H∗(−;F2). First, we claim that there is a unique
multiplicative spectral sequence with second page given by

F p,q
2 = F2[yi | i ∈ I]p ⊗F2 H

q(ΩB)
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and such that the pairs (xi, yi) are transgressive and abutment given by F2 concentrated in
degree 0. Here, F2[yi | i ∈ I]p denotes the degree p part of the graded ring F2[yi | i ∈ I]
where |yi| = |xi|+ 1. Indeed, we need to convince ourselves that all differentials determined
by the Leibniz rule and d(xi) = yi lead to the infinite page of the spectral sequence being
concentrated in bidegree (0, 0). Furthermore, there is a unique map of spectral sequences θ
from the just described spectral sequence to the cohomological Serre spectral sequence of the
fibration ΩB → ∗ → B sending xi to xi and yi to yi. By construction, θ then induces an
isomorphism

F 0,q
2

∼=−→ E0,q
2 and F p,q

∞
∼=−→ Ep,q

∞ for all p, q ≥ 0

We will now show that this implies that

F2[yi | i ∈ I]p ∼= F p,0
2

θp,02−−→ Ep,0
2 = Hp(B),

is also an isomorphism, giving the theorem. This is a tedious but not really complicated
argument in homological algebra. We aim to show that the map

θk,02 : F k,0
2 → Ek,0

2

is an isomorphism, via induction over k. The induction start k = 0 is true by assumption.
So let us fix k and assume that we know that θp,02 is an isomorphism for p ≤ k. Observe that
this implies, again by assumption, that θp,q2 is an isomorphism for all p ≤ k and all q ≥ 0.
First, we show that this implies that for all r ≥ 2,

(1) θp,qr is an isomorphism for all p ≤ k − r + 2, and
(2) θp,qr is injective for p ≤ k.

This claim will be proven by induction over r, the induction start r = 2 having just been
observed. For the induction step and part (1), consider the diagram

(∗)
F p−r,q+r−1
r ZF p,q

r F p,q
r+1 0

Ep−r,q+r−1
r ZEp,q

r Ep,q
r+1 0

dFr

θp−r,q−r+1
r θp,qr θp,qr+1

dEr

where ZF and ZE stand for the cycles, that is, the kernel of the corresponding differentials
in the respective spectral sequences. Now, if p ≤ k − (r + 1) + 2, then p − r ≤ k − r + 2, so
inductively, the left most vertical map is an isomorphism. To see that the right vertical map
is an isomorphism, it therefore suffices to show that the middle vertical map is one. To see
this, consider the diagram

(∗∗)
0 ZF p,q

r F p,q
r F p+r,q−r+1

r

0 ZF p,q
r Ep,q

r Ep+r,q−r+1
r

θp,qr

dFr

θp,qr θp+r,q−r+1
r

dEr

Now, since p ≤ k − (r+ 1) + 2, we find p ≤ k + 1 so the inductive hypothesis gives that both
the middle and the right vertical maps are isomorphisms, and hence so is the middle vertical
map.

To see (2), we argue again by induction over r. Considering again diagram (∗), note that for
p ≤ k, we find that by the just proven part (1), the left most vertical map is an isomorphism.
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Then note that, by induction over r and using diagram (∗∗), the middle vertical map is
injective. It then follows from the 5-Lemma that (2) holds as claimed.

To establish the inductive step that θk,02 : F k,0
2 → Ek,0

2 is an isomorphism, consider the
following diagram.

ZF k−r+1,r−1
r F k−r+1,r−1

r F k+1,0
r F k+1,0

r+1 0

ZEk−r+1,r−1
r Ek−r+1,r−1

r Ek+1,0
r Ek+1,0

r+1 0

dFr

θk−r+1,r−1
r θk+1,0

r θk+1,0
r+1

dEr

By the assumption that θ∞ is an isomorphism and that the spectral sequence is concentrated
in the first quadrant, we find that the right most vertical map is an isomorphism for sufficiently
large r. We then run a downwards induction over r. Now, by the already established (1)
above, and since k−r+1 ≤ k−r+2, we find that the second left most map is an isomorphism
for all r. Hence, to establish the inductive step and hence the theorem, by the 5-Lemma, it
suffices to argue that the left most vertical map is surjective. To see this, consider the diagram

F k−r−s+1,r+s−2
s ZF k−r+1,r−1

s F k−r+1,r−1
s+1 0

Ek−r−s+1,r+s−2
s ZEk−r−1,r−1

s Ek−r+1,r−1
s+1 0

dFs

θk−r−s+1,r+s−2
s θk−r+1,r−1

s+1

dEs

Again, we run a downwards induction over s until s = r is reached. Similarly to before,
the right most vertical map is an isomorphism for s sufficiently large, so we may assume
inductively that it is an isomorphism. Using again the proven (1) above, we also find that
the left most vertical map is an isomorphism; indeed k − r− s+ 1 ≤ k − s+ 2, and hence by
the 4-Lemma we find that the middle vertical map is an isomorphism as needed. □

Proof of Theorem 4.8. We begin with (1) and prove the result by induction, the case n =
1 already having been noted. For the induction step, assume that H∗(K(F2, n);F2) =

F2[Sq
I(ιn) | e(I) < n] which has a simple system of generators given by {[SqI(ιn)]2

k} for
k ≥ 0 and I admissible with e(I) < n. We claim that this set is precisely the set {SqJ(ιn)}
for J admissible with e(J) ≤ n.

Indeed, the case k = 0 just gives the monomials of excess less than n, so it suffices to argue

that if J is admissible with e(J) = n, then SqJ(ιn) identifies uniquely with SqI(ιn)
2k . Indeed,

we have i1 = n + i2 + · · · + ik, so that SqJ(ιn) = SqI(ιn)
2 where I = (i2, . . . , ik). Note that

e(I) ≤ e(J), so either e(I) < n in which case we are done, or e(I) = n in which case we argue
in the same manner with I instead of J . Since the length of I is strictly smaller than that of
J , this process terminates at a finite step.

Hence, we find that H∗(K(F2, n);F2) has a simple system of generators given by SqJ(ιn)
with e(J) ≤ n. By Theorem 4.2 the pairs (SqJ(ιn), Sq

J(ιn+1)) are transgressive pairs, so
Borel’s theorem gives the claim.

The details of (2) and (3) are left as an exercise, but here are some hints. To see (2), we
start the induction at n = 2: Here H∗(K(Z, 2);F2) = F2[x] with |x| = 2 so has a simple

system of generators {x2i}i≥0. A similar argument as in the previous case then gives the
result. For (3), we note that H∗(K(Z/2k, 1);F2) ∼= ΛF2 [e] ⊗F2 F2[u] with |e| = 1 and |u| = 2
and again use induction via Borel’s theorem. □
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Recall now that H̃∗(X) is an A∗-module for all anima X.

4.12. Proposition The canonical map A∗ → H̃∗(K(F2, n))[−n] is an isomorphism in degrees
≤ n.

Proof. Note that the elements of degree < n in H̃∗(K(F2, n)[−n], viewed as elements of degree

< 2n in H̃∗(K(F2, n)) are indecomposable for degree reasons. Hence, as a consequence of

Theorem 4.8, the degree < 2n elements of H̃∗(K(F2, n))[−n] have an additive basis consisting
of the admissible monomials SqJ with |J | < n, where |J | = j1 + . . . jk is the total degree of
J ; note that e(J) ≤ |J |. Moreover, the only decomposable element in degree 2n is given by

ι2n = Sqn(ιn). Together, this implies that the map A∗ → H̃∗(K(F2, n))[−n] is surjective in
degrees ≤ n. Now since the set {SqJ(ιn)}, with J running through admissible multiindices of
degree < n is linearly independent, we deduce that the also the set {SqJ} ⊆ A∗, with same
J ’s, is linearly independent in A∗, and by the Adem relations, we find that they therefore
form a basis of the degree < n elements of A∗. It then follows that an additive basis of the

degree ≤ n elements of both A∗ and H̃∗(K(F2, n))[−n] is given by admissible monomials
associated to an admissible mulitiindex J of degree < n and Sqn (which has degree equal to
excess equal to n), and the proposition follows. □

4.13. Corollary The admissible monomials form an additive basis of A∗.

Proof. Pick a finite set S of admissible monomials in A∗. Then they lie in the degree ≤ n part
of A∗ for some n, so the claim follows from Proposition 4.12, as S is then linearly independent
in H∗(K(F2, n)). □

4.14. Corollary The canonical maps

F∗
2(F2) = π−∗map(F2,F2) → lim

n
H̃∗(K(F2, n))[−n]

as well as

A∗ → lim
n

H̃∗(K(F2, n)[−n]

are isomorphisms. In particular, A∗ ∼= F2
∗(F2) and the admissible monomials form an addi-

tive basis of A∗.

Proof. Recall that the canonical map colimnΩ
nΣ∞K(F2, n) → F2 is an equivalence of spectra

(exercise). Hence, we find

map(F2,F2) = lim
n

map∗(K(F2, n),Σ
nF2).

Note that the inverse limit system of homotopy groups stabilizes in each homotopical degree as
a consequence of Proposition 4.12 and representability of cohomology. In particular, Milnors
lim-lim1-sequence has no lim1-term and we obtain the first claim. The second claim follows
also directly from Proposition 4.12. To see the final claim, it remains to show that the
admissible monomials are linearly independent in A∗. So pick a finite set S of such admissible
monomials. It suffices to show that the image of S under the canonical map to H∗(K(F2, n))
is linearly independent for some n. Choosing n large enough, the set S then even consist
of polynomial generators of a polynomial algebra again by Proposition 4.12, and so is in
particular additively linearly independent. □
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4.15. Corollary The canonical map Z → F2 induces an isomorphism A∗/Sq1 ∼= F∗
2(Z).12

Moreover, F∗
2(Z) has an additive basis consisting of those admissible monomials SqI where

1 /∈ I.

Proof. Consider the Bockstein fibre sequence Z ·2−→ Z → F2. It induces a fibre sequence

map(F2,F2) → map(Z,F2)
·2−→ map(Z,F2)

in which the second map is canonically trivial, as 2 = 0 in F2. Note that the connecting
map F2 → ΣZ in the Bockstein fibre sequence is the Bockstein operator β (hence the name).
Therefore, the long exact sequence of the displayed fibre sequence breaks up into short exact
sequences

0 → Fk−1
2 (Z) β∗

−→ Fk
2(F2)

p∗−→ Fk
2(Z) → 0

Since the latter map is surjective for all k, we also have an exact sequence

Fk−1
2 (F2)

(pβ)∗−−−→ Fk
2(F2)

p∗−→ Fk
2(Z) → 0

Since pβ is equal to Sq1 and using that A∗ = F∗
2(F2), we find an exact sequence

A∗−1 −·Sq1−−−→ A∗ → F∗
2(Z) → 0

showing the first part of the corollary. For the latter, simply note that right multiplication
by Sq1 preserves admissible monomials in the following sense: For an admissible sequence
I = (i1, . . . , ik), there are two options: Either ik = 1, in which case SqISq1 = 0, or ik > 1, in
which case SqISq1 = SqJ with J = (I, 1) = (i1, . . . , ik, 1) again admissible. Therefore, we see
that A∗/Sq1 has the claimed additive basis. □

4.16. Proposition For each k > 0, the group ZkZ is finite. Moreover, all elements of 2-power
order are in fact of order 2.

Proof. First, as earlier, we have that Z∗(Z) = π−∗map(Z,Z) and
map(Z,Z) = lim

n
map∗(K(Z, n),ΣnZ)

and this limit stabilises on a fixed homotopy group, all of which are then finitely generated.
It follows that the map map(Z,Z)⊗Q → map(Z,Q) = map(S,Q) = Q is an equivalence, and
hence that for each k > 0, ZkZ is a finite group as claimed.

The second claim is then equivalent to the statement that the multiplication by 2 map on
ZkZ is the zero map for k > 0. To that end, consider the long exact sequence

· · · → Zk−1(Z) ·2−→ Zk−1(Z) p∗−→ Fk−1
2 (Z) β∗−→ Zk(Z) ·2−→→ Zk(Z) → . . .

where p : Z → F2 is the projection and β : F2 → ΣZ is the Bockstein.
So pick for k > 0 an element y ∈ ZkZ. We aim to show that 2y = 0. First we note that

0 = Sq1 · p∗(y) ∈ Fk+1
2 (Z), since is is represented by the composite

ΩkZ y−→ Z p−→ F2
Sq1−−→ ΣF2

of which the latter two maps canonically compose to the zero map. We now claim that

ker[Sq1 · − : Fk
2(Z) → Fk+1

2 (Z)] = im[Sq1 · − : Fk−1
2 (Z) → Fk

2(Z)].

12Here, A∗/Sq1 denotes the quotient of A∗ by the left ideal generated by Sq1, that is, the image of right
multiplication by Sq1 on A∗.
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Hence, we find an x in Fk−1
2 (Z) such that Sq1 · x = p∗(y) and since Sq1 = p∗β, we find

that y − β(x) lies in the kernel of p∗, which by exactness of the Bockstein sequence gives a
y2 ∈ Zk(Z) such that

y − β(x) = 2y2.

Running the same argument again, we can then inductively find for yi (with y1 = y and
y2 = y2) elements xi and yi+1 such that for all i ≥ 1 we have

yi − β(xi) = 2yi+1.

This gives:

2y = 2y2 + 2β(x) = 2y2 = · · · = 2iyi

for all i ≥ 1. But since ZkZ is a finite group by the first part of the proposition, its 2-exponent
is some finite number e, so once i > e, we deduce

2y = 2iyi = 0.

It therefore remains to prove the above claim about the left multiplication by Sq1 on
F∗
2(Z) = A∗/Sq1. We leave this verification as an exercise. Hint: Use the basis of A∗/Sq1

established in Corollary 4.15. □

4.17. Remark It is also true that for p an odd prime, all elements of p-power order in Z∗(Z)
are of order p; the proof is similar to the one given above, but of course relies on F∗

p(Fp) = A∗
p

and the computation of F∗
p(Z). This allows an inductive computation of Z∗(Z) from F∗

p(Fp)
for all primes p. Exercise: Work out the 2-torsion in Z∗(Z) for ∗ ≤ k for k as large as you
want.

5. Some homotopy groups of spheres

We reprove what we already know:

5.1. Proposition We have π4(S
3) ∼= Z/2.

Proof. Consider the 3-truncation map S3 → K(Z, 3) and denote by F4 its fibre. Then we find

π4(S
3) ∼= π4(F4) ∼= H4(F4;Z)

and therefore want to compute the homology of F4 using the Serre spectral sequence for the
fibre sequence K(Z, 2) → F4 → S3. Again, it is convenient to first consider the cohomological
spectral sequence, which using the multiplicativity reveals

H̃∗(F4;Z) ∼=

{
Z/kZ for ∗ = 2k + 1

0 else

It then follows from the universal coefficient theorem that

H̃∗(F4;Z) ∼=

{
Z/kZ for ∗ = 2k

0 else

and in particular that H4(F4;Z) ∼= Z/2Z as claimed. □

We now aim to compute π5(S
3) with a similar method; later we will present a slightly

different, second approach. Since π4(S
3) ∼= Z/2, it may not be a surprise that we will need

to calculate something about the (integral) homology of mod 2 Eilenberg–Mac Lane spaces.
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5.2. Lemma We have

H̃k(K(Z/2, 2);Z) ∼=


0 for k = 0, 1, 2, 4

Z/2 for k = 3, 6

Z/4 for k = 5

and the non-zero element of degree 3 squares to the non-zero element of degree 6.

Proof. We consider the Serre spectral sequence in integral cohomology for the fibre sequence
K(Z/2, 1) → ∗ → K(Z/2, 2). We recall that H∗(K(Z/2, 1);Z) = Z[u]/2u with |u| = 2.
By Hurewicz, we know the claim for k = 0, 1, 2. Note also that by the universal coef-

ficient theorem and the already established fact that H̃k(K(Z/2, 2);Z) is a finite abelian

2-group, we have isomorphisms H̃k(K(Z/2, 2);Z) ∼= H̃k−1(K(Z/2, 2);Z) for k ≥ 1. In
particular, we have H3(K(Z/2, 2);Z) ∼= Z/2 and H4(K(Z/2, 2);Z) = 0 andthe differential
d3 : H

2(K(Z/2, 1);Z) → H3(K(Z/2, 2);Z) is an isomorphism for formal reasons. Now, to
compute H5(K(Z/2, 2;Z), we first see that the differential

d3 : Z/2 ∼= H2(K(Z/2, 2);H2(K(Z/2, 1);Z)) → H5(K(Z/2, 2);Z)

has to be injective, as the source cannot be hit by a differential as the only possible source
of such a differential is H3(K(Z/2, 1);Z) = 0. Furthermore, the only other possible dif-
ferential with target H5(K(Z/2, 2);Z) has source H4(K(Z/2, 1);Z) ∼= Z/2. The map from
Z-coefficients to F2-coefficients induces a map of spectral sequences for the same fibre sequence

K(Z/2, 1) → ∗ → K(Z/2, 2). Note that the map H̃∗(K(Z/2, 1);Z) → H̃∗(K(Z/2, 1);F2) in-
duces an isomorphism whenever the source is non-trivial. We deduce that the map of spectral
sequences induces an isomorphism on the rows corresponding to even q’s. In particular, we
deduce that the d3 differential eminating from spot (0, 4) is determined by the F2-coefficient
spectral sequence. In this, we have that H4(K(Z/2, 1);F2) is generated by ι41 = Sq2Sq1(ι1)
which is transgressive by the transgression theorem. In particular, we deduce that in the
Z-coefficient spectral sequence, the differential

d5 : H
4(K(Z/2, 1);Z) → H5(K(Z/2, 2);Z)

is also injective. This results in the conclusion that H5(K(Z/2, 2);Z) is either Z/4 or Z/2⊕
Z/2. To decide which one it is, we note that for formal reasons, the differential

d3 : Z/2 = H3(K(Z/2, 2);H2(K(Z/2, 1)) → H6(K(Z/2, 2);Z)

is an isomorphism. Exercise: deduce from the homological universal coefficient theorem

(using that Csing
∗ (K(Z/2, 2);Z) is homologically of finite type) applied the chain complex

C∗
sing(K(Z/2, 2);Z) that

H5(K(Z/2, 2);F2) ∼= H5(K(Z/2, 2);Z)⊗Z F2 ⊕ TorZ1 (H
6(K(Z/2, 2);Z),Z/2).

Now, as a consequence of Theorem 4.8 the left hand side is 2-dimensional over F2. From
H6(K(Z/2, 2);Z) ∼= Z/2, we then deduce that H5(K(Z/2, 2);Z) = Z/4.

For the claim about the multiplication, note that the degree 3 generator is given by β(ι2)
where β : H2(K(Z/2, 2);F2) → H3(K(Z/2, 2);Z) is the Bockstein. Hence,

red2(β(ι2)
2) = Sq1(ι2)

2 ̸= 0

by Theorem 4.8, so β(ι2)
2 is also non-zero as claimed. □
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Exercise. Compute H7(K(Z/2, 2);Z). Spectral sequence shows: either Z/4 or Z/2 ⊕ Z/2.
Now, the mod 2-reduction of this group injects into H7(K(Z/2, 2);F2) with image contained
in the kernel of Sq1. One computes that this is a 1-dimensional F2-vector space generated by
ι22 · Sq1(ι2) since Sq1(ι2 · Sq2Sq1(ι2)) ̸= 0. It follows that H7(K(Z/2, 2);Z) ∼= Z/4.

5.3. Lemma We have

H̃k(K(Z/2, 3);Z) ∼=

{
0 for k = 0, 1, 2, 3, 5

Z/2 for k = 4, 6, 7

Proof. Consider the Serre spectral sequence for the fibre sequenceK(Z/2, 2) → ∗ → K(Z/2, 3).
We claim that the differential

d3 : E
0,5
3 = H5(K(Z/2, 2);Z) ∼= Z/4 → H3(K(Z/2, 3);H3(K(Z/2, 2);Z)) ∼= Z/2

is non-trivial. To see this, consider the comparison map from the Z-coefficients to F2-
coefficients. It induces an isomorphism H3(K(Z/2, 2);Z) → H3(K(Z/2, 2);F2) and sends
the generator of the source to Sq1(ι2). Since the change-of-coefficients induces a map of
spectral sequences, we obtain a commutative diagram

H5(K(Z/2, 2);Z) H3(K(Z/3, 3);H3(K(Z/2, 2);Z))

H5(K(Z/2, 2);F2) H3(K(Z/2, 3);H3(K(Z/2, 2);F2)

d3

d3

of which we want to show that the top horizontal map is non-trivial. Since the right vertical
map is an isomorphism, it suffices to show that the composite through the lower left corner
is non-trivial. Now, first recall that a basis of H5(K(Z/2, 2);F2) is given by Sq2(Sq1(ι2)) and
ι2 · Sq1(ι2). Now, the left vertical map induces an injection

H5(K(Z/2, 2);Z)/2 → H5(K(Z/2, 2);F2)

which image contained in the kernel of Sq1 · −. Using the above basis, we find that this
kernel is spanned by Sq2Sq1(ι2) + ι2 · Sq1(ι2). Now by the transgression theorem, we have
d3(Sq

2Sq1(ι2)) = 0 = d3(Sq
1(ι2)), and by multiplicativity of the spectral sequence we have

d3(ι2 · Sq1(ι2)) = d3(ι2) · Sq1(ι2) = ι3 · Sq1(ι2) ̸= 0

as needed.
Hence we find E5,0

4 = ker(d3) = Z/2 ⊆ Z/4. We then find d4 = d5 = 0 on that Z/2, since
the respective targets of these differentials vanish. Since the spectral sequence converges to
F2, we then find that the differential

d6 : Z/2 → H6(K(Z/2, 3);Z)
is an isomorphism.

Next we show that d4 : E
6,0
4 = H6(K(Z/2, 2);Z) → H4(K(Z/2, 3);H3(K(Z/2, 2);Z)) =

E4,3
4 vanishes. Indeed, by Lemma 5.2, the source is generated by the square of β(ι2), the

non-trivial element in degree 3. By the Leibniz rule, we then obtain

d4(β(ι2)
2) = 2β(ι2) · β(ι3) = 0

since the group in which this element lives is F2. Again, we then find that the differential

d7 : E
6,0
7 = H6(K(Z/2, 2);Z) ∼= Z/2 → H7(K(Z/2, 3);Z)
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is an isomorphism. □

5.4. Proposition We have π5(S
3) ∼= Z/2.

Proof. Consider the 4-truncation map F4 → K(Z/2, 4) and denote by F5 its fibre. Then we
find

π5(S
3) ∼= π5(F4) ∼= π5(F5) ∼= H5(F5;Z)

and therefore want to compute the (co)homology of F5 using the Sere spectral sequence for
the fibre sequence K(Z/2, 3) → F5 → F4. From this, we deduce

H̃k(F5;Z) ∼=


0 for k = 0, 1, 2, 3, 4, 5

Z/2 for k = 6

Z/2⊕ Z/3 for k = 7

In particular, we deduce H5(F5;Z) ∼= Z/2 as claimed. □

As promised, we now demonstrate a different way of doing these computations. The main
observation is:

5.5. Lemma For all n ≥ 3 we have isomorphisms

Hk(τ≤n−1S
3;Z) ∼=


Z for k = 0, 3

0 for k = 1, 2 and 3 < k ≤ n

πn(S
3) for k = n+ 1

Proof. Indeed, the map S3 → τ≤nS
3 induces a isomorphism on Hk(−;Z) for k ≤ n and a

surjection for k = n+ 1 giving the computations for k ≤ n. Then consider the fibre sequence

K(πn(S
3), n) → τ≤nS

3 → τ≤n−1S
3

and the associated Serre spectral sequence. By what we have just argued, the differential

Hn+1(τ≤n−1S
3;Z) → Hn(K(πn(S

3), n);Z) ∼= πn(S
3)

is an isomorphism, as its kernel contributes toHn+1(τ≤nS
3;Z) = 0 and its cokernel contributes

to Hn(τ≤nS
3;Z) = 0, giving the remaining claim. □

Then we consider the fibre sequence

K(π4(S
3), 4) → τ≤4S

3 → τ≤3S
3 = K(Z, 3).

Exercise. Show that

Hk(K(Z, 3);Z) ∼=


Z for k = 0, 3

Z/2 for k = 6, 9, 10

Z/3 for k = 8

0 for k = 1, 2, 4, 5, 7

and that ι23 and ι33 are non-zero.

Hence H5(K(Z, 3);Z) ∼= H6(K(Z, 3);Z) ∼= Z/2 so that by Lemma 5.5 we find, yet again,
π4(S

3) ∼= Z/2. Then we want to use the Serre spectral sequence to compute Hk(τ≤4S
3;Z)

for k ≤ 9. To begin, we first record:
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5.6. Lemma We have

H̃k(K(Z/2, 4);Z) ∼=

{
0 for k = 0, 1, 2, 3, 4, 6

Z/2 for k = 5, 7, 8

Proof. We consider the Serre spectral sequence for K(Z/2, 3) → ∗ → K(Z/2, 4). All claims
with k ≤ 7 are then formal. To also see the claim for k = 8, we need to show that the
differential

d4 : H
7(K(Z/2, 3);Z) → H4(K(Z/2, 4);H4(K(Z/2, 3);Z))

is trivial, as then the longest differential must be an isomorphism giving the case k = 8 as well.
To do so, we again compare with the mod 2 spectral sequence, which results in a commutative
square

H7(K(Z/2, 3);Z) H4(K(Z/2, 4);H4(K(Z/2, 3);Z))

H7(K(Z/2, 3);F2) H4(K(Z/2, 4);H4(K(Z/2, 3);F2))

in which the right vertical map is an isomorphism and the left vertical map is injective with
image contained in the kernel of Sq1. Similarly to before, H7(K(Z/2, 3);F2) is 2-dimensional
with basis ι3Sq

1(ι3) and Sq3Sq1(ι2) since the admissible sequence (3, 1) has excess 2. We
deduce that the kernel of Sq1 : H7 → H8 is generated by Sq3Sq1(ι3) which lies in the kernel
of d4 by the transgression theorem. □

We obtain again:

5.7. Proposition We have π5(S
3) ∼= Z/2.

Proof. By Lemma 5.5, we have π5(S
3) ∼= H6(τ≤4S

3;Z) which by UCT is in turn isomorphic
to H7(τ≤4S

3;Z). Then we investigate the cohomological Serre spectral sequence for

K(Z/2, 4) → τ≤4S
3 → K(Z, 3).

As observed earlier, the differential

d6 : H
5(K(Z/2, 4);Z) → H6(K(Z, 3);Z)

is an isomorphism. The only non-trivial term with total degree 7 is then H7(K(Z/2, 4);Z)
which has a possible differential to H3(K(Z, 3);H5(K(Z/2, 4);Z)). Considering the commu-
tative square

H7(K(Z/2, 4);Z) H3(K(Z, 3);H5(K(Z/2, 4);Z))

H7(K(Z/2, 4);F2) H3(K(Z, 3);H5(K(Z/2, 4);F2))

in which the right vertical map is an isomorphism and the horizontal maps are the differentials
in the Z- and F2-coefficients Serre spectral sequence; by the same reasoning as in the proof
of Lemma 5.6, we deduce that the top horizontal map vanishes. The only other possible
differential is the

d8 : Z/2 = H7(K(Z/2, 4);Z) → H8(K(Z, 3);Z) = Z/3
which vanishes since there is no non-trivial 2-torsion in Z/3. Therefore, we deduce from the
spectral sequence that H7(τ≤4S

3;Z) ∼= H7(K(Z/2, 4);Z) ∼= Z/2 as claimed.
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Since we will use it momentarily, we also record that H8(τ≤4S
3;Z) ∼= Z/6; Indeed, what we

have already shown implies that neither H8(K(Z/2, 4);Z) ∼= Z/2 nor H8(K(Z, 3);Z) ∼= Z/3
participate in some non-trivial differential and hence both contribute to H8(τ≤4S

3;Z). The
spectral sequence also implies that

H9(τ≤4S
4;Z) ∼= ker(d10 : H

9(K(Z/2, 4);Z) → H10(K(Z, 3);Z) = Z/2).

□

5.8. Proposition We have π6(S
3) ∼= Z/12.

Proof. We again use Lemma 5.5 and compute H8(τ≤5S
3;Z) using the Serre spectral sequence

for K(Z/2, 5) → τ≤5S
3 → τ≤4S

3. For k ≤ 9, we have that H̃k(K(Z/2, 5);Z) vanishes unless
k = 6, 8, 9 in which case the group is Z/2 and we have computed Hk(τ≤4S

3;Z) for k ≤ 8
above and is given by Z in degree 3, Z/2 in degree 7 and Z/6 in degree 8. Consider the
change-of-coefficient commutative diagram

H8(K5;Z) H3(τ≤4S
3;H6(K(Z/2, 5);Z))

H8(K5;F2) H3(τ≤4S
3;H6(K(Z/2, 5);F2))

of which again the right vertical map is an isomorphism. The image of the left vertical map
is again contained in the kernel of Sq1; this kernel is then generated by Sq3Sq1(ι5) – the
degree 8 part is generated by Sq2Sq1(ι5) and Sq3(ι5) and the former is not in the kernel of
Sq1. But Sq3(ι5) is transgressive by the transgression theorem since H5(τ≤5S

3;F2) = 0 as a
consequence of Lemma 5.5. Then we claim that also the differential

d9 : H
8(K5;Z) → H9(τ≤4S

3;Z)

vanishes (this still has to be done; for now, we record it as an exercise). If this is so, we
find that H8(τ≤5S

3;Z) is an extension of Z/2 by Z/6. To decide which one it is we claim
that H7(τ≤5S

3;F2) = F2. Since this group surjects onto the 2-torsion of H8(τ≤5S
3;Z) by the

Bockstein long exact sequence, we find that the latter has to be Z/12.
Now, to show that H7(τ≤5S

3;F2) = F2, we consider the cohomological Serre spectral
sequence for K(Z/2, 5) → τ≤5S

3 → τ≤4S
3. From our earlier computations on H∗(τ≤4S

3;Z),
we find that

H∗(τ≤4S
3;F2) =


F2 if k = 0, 3, 6

F⊕2
2 for k = 7

0 for k = 1, 2, 4, 5

and that Sq1 : H6 → H7 is non-trivial. In the Serre spectral sequence we then have d6(ι5) equal
to the non-trivial class in degree 6, and hence by the transgression theorem that d7(Sq

1(ι5))
is also non-trivial. So to see that H7(τ≤5S

3;F2) = F2 it remains to show that the differen-
tial d8 : H

7(K(Z/2, 5);F2) → H8(τ≤4S
3;F2) is non-trivial. Since the source is generated by

Sq2(ι5), it suffices to show that Sq2 : H6(τ≤4S
3;F2) → H8(τ≤4S

3;F2) is non-trivial. To see
this, we claim that the map K(Z/2, 4) → τ≤4S

3 induces an isomorphism on H6(−;F2); to
see this, consider the Serre spectral sequence in F2-cohomology for K(Z/2, 4) → τ≤4S

3 →
K(Z, 3). The terms contributing to F2

∼= H6(τ≤4S
3;F2) a priori are H6(K(Z/2, 4);F2) and
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H6(K(Z, 3);F2). Similarly to before, we have that Sq1 : H5(K(Z, 3);F2) → H6(K(Z, 3);F2) is
an isomorphism, and we have d5(ι4) is the non-trivial element in H5(K(Z, 3);F2). This shows
that d6(Sq

1(ι4)) ̸= 0, and as a consequence, we have H6(τ≤4S
3;F2) → H6(K(Z/2, 4);F2)

is an isomorphism. Finally, note that H6(K(Z/2, 4);F2) is generated by Sq2(ι4). The
Adem relation give Sq2(Sq2(ι4)) = Sq3Sq1(ι4) ̸= 0, so we deduce that Sq2 : H6(τ≤4S

3;F2) →
H8(τ≤4S

3;F2) is non-trivial as needed. □

As another exercise, we have:

Exercise. For A,B abelian groups, we have that the map

π−imap(A,B) = H i(A;B) → H i+n(K(A,n);B)

induced by Σ∞K(A,n) → ΣnA, is an isomorphism for i < n and injective for i = n.

6. Bordism

In this section, we aim to compute the rationalized oriented bordism groups. Recall that
these groups are defined as follows:

6.1. Definition An (oriented) bordism between two (oriented) closed n-manifolds M1 and M2

is an oriented compact manifold (n+1)-W together with an isomorphism13 ∂W ∼= M1⨿−M2.
Here −M2 denotes the manifold M2 with its reversed orientation.

Exercise: The relation M1 ∼ M2 if and only if there exists an (oriented) bordism induces
an equivalence relation on the set of isomorphism classes of (oriented) isomorphism classes of
(oriented) closed n-manifolds. We say M1 and M2 are (oriented) bordant if there exists an
oriented bordism between them.

We then define ΩSO
n as the set of bordism classes of oriented closed n-manifolds; classically

this is often denoted by Ω∗. Similarly, we define ΩO
n as the set of bordism classes of n-

manifolds; classically this often denoted by N∗.

6.2. Remark It is perhaps more illuminating to define the following generalised version of
the above which takes as input a map θ : B → BO of anima – the above cases are the ones
where θ is either the map BSO → BO (the oriented case) or the identity of BO. A θ-manifold
is a manifold M together with a map f : M → B and a homotopy h : θf ≃ νM between the
pullback of θ along f and the stable normal bundle νM of M . Recall that the stable normal
bundle is simply the inverse of the stable tangent bundle T s(M); both viewed as maps to BO.

Observe that since BO is a group, a self-homotopy of νM is equivalently given by a self-
homotopy of the constant map M → ∗ → BO; this in turn is given by a map M → ΩBO ≃ O.
In particular, given a θ-structure (f, h) on M and a map α : M → O, we obtain a new θ-

structure (f, α ⋆ h), where α ⋆ h is the homotopy θf
h∼ νM

α∼ νM . Recall that π0(O) = {±1};
we denote by m the constant map at −1 ∈ O. For a θ-structure (f, h) on M , we define the
opposite θ-structure by (f,m ⋆ h); we write (M,f, h)op for (M,f,m ⋆ h).

Given a manifold with boundary (W,∂W ), there is an isomorphism TW|∂W ∼= T (∂W )⊕R
obtained by trivialising the normal bundle of the embedding ∂W ⊆ W via the inward point
normal frame (the fact that the normal bundle is trivialisable is essentially equivalent to the
existence of collars of the boundary, that is, of an embedding ∂W × [0, 1] → W ). It follows
that if (W,F,H) is a θ-manifold, then (∂W,F|∂W , H|∂W ) is also a θ-manifold.

13That is, orientation preserving homeomorphism for topological manifolds and orientation preserving dif-
feomorphism for smooth manifolds.
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A θ-bordism between two θ-manifolds (M0, f0, h0) and (M1, f1, h1) is a compact θ-manifold
(W,F ) together with an isomorphism (∂W, ∂F, ∂H) ∼= (M0, f0, h0)⨿ (M1, f1, h1)

op.
Exercise: The notion of θ-cobordism gives an equivalence relation on θ-manifolds, so for

each d ≥ 0, we obtain a set Ωθ
d of bordism classes of d-dimensional θ-manifolds. This set

is canonically an abelian group under disjoint union of θ-manifolds. Consequently, Ωθ
∗ is a

graded abelian group. There are exterior products

Ωθ
d × Ωθ′

d′ → Ωθ×θ′

d+d′

which make Ωθ
∗ into a graded (commutative) ring if θ : B → BO is a map of (E2-)groups in

anima. Moreover, given a commutative diagram

B BO

B′

θ

f
θ′

one obtains a canonical map Ωθ
∗ → Ωθ′

∗ .

6.3. Remark The same arguments work for ξ : B → BTop a stable euclidean bundle and
topological manifolds throughout.

6.4. Example (The θ-structure BO) When θ is the identity of BO, one finds that Ωθ
∗ is

canonically isomorphic to ΩO
∗ = N∗ as described earlier. In particular, π∗(MO) is canonically

isomorphic to the unoriented bordism ring ΩO
∗ .

6.5. Example (The θ-structure BSO) We work through the example where θ is the map
BSO → BO. A θ-structure can then equivalently be described by equipping the stable normal
bundle νM with an orientation, hence a θ-structure is often referred to as an orientation.
Exercise: Given a θ-structure (M,f, h) correspoding to an orientation o on νM , show that
(M,f, h)op corresponds to the reversed orientation ō on νM . Hint: changing the orientation
gives rise to a self-map rev : BSO → BSO. This map is homotopic to the identity such that
the following two triangles are equivalent

BSO BSO BSO BSO

BO BO

rev

θ
θ

θ
θ

where the left triangle is filled with the trivial homotopy htriv and the right square is filled
with the homotopy m ⋆ htriv. Deduce then the exercise. In particular, π∗(MSO) ∼= Ωθ

∗ is
canonically isomorphic to ΩSO

∗ , the oriented bordism ring.

6.6.Theorem (Pontryagin–Thom construction) Extracting from a θ-manifold its Pontryagin–
Thom collapse map induces an isomorphism of graded abelian groups

Ωθ
∗ → π∗(Mθ).

Proof sketch. Given a d-dimensional θ-manifold (M,f, h), the pair (f, h) induces a map
MνM → Mθ; recall here that M : An/BO → Sp is the Thom spectrum functor. Moreover, as

indicated in [Lan25, Remark 5.29], the Pontryagin–Thom collapse map is a map Sd → MνM
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which witnesses that the underlying spherical fibration of νM to be the dualizing spectrum
of the Poincaré duality complex underlying M , see [Lan25, Theorem 5.28]. Composing it
with the afore mentioned map MνM → Mθ, we obtain a map Sd → MνM → Mθ. The
construction sending a θ-manifold (M,f, h) to the map Sd → Mθ can be shown to induce the
isomorphism of the theorem. Perhaps we will add some details here at some later point. □

Exercise. Show that π0(MSO) ∼= Z and that π1(MSO) = π2(MSO) = 0. Similarly, show
that π0(MO) = Z/2, π1(MO) = 0 and π2(MO) ∼= Z/2. If you are eager, think about π3(MSO)
and π3(MO).

6.7. Remark The Pontryagin–Thom construction is compatible with exterior products, that
is, the diagram

Ωθ
d × Ωθ′

d′ πd(Mθ)× πd(Mθ′)

Ωθ×θ′

d+d′ πd+d′(Mθ ⊗Mθ′)

commutes. In particular, the isomorphism of Theorem 6.6 is one of (graded commutative)
rings if θ is a map of (E2-)groups.

6.8. Definition Let R be a commutative ring. Given an element x ∈ Hd(B;Rθ), there
is associated an R-valued characteristic number for d-dimensional θ-manifolds (M,f) given
by ⟨f∗(x), [M ]⟩ ∈ R. Here Rθ refers to the local system of R-modules on B induced by
w1(θ). Note that Rθ is an invertible object of Fun(B,Mod(R)) with inverse equivalent to Rθ

(essentially since (−1)2 = 1).
We say that θ is oriented if it is equipped with a lift B → BSO → BO. In that case,

w1(θ) = 0 and no local coefficients appear in the above construction. Similarly, we say that
θ is R-oriented if the local system of R-modules determined by w1(θ) vanishes.

14

6.9. Lemma The formation of R-valued characteristic numbers is invariant under bordisms
and additive. In other words, it leads to an R-module map

χR : Ωθ
∗ ⊗Z R → HomR(H

∗(B;Rθ), R).

Proof. The formation of characteristic numbers is readily checked to send disjoint unions to
sums. To get a map χ : Ωθ

∗ → HomR(H
∗(B;Rθ), R) we then need to show that if (W,F )

is a θ-manifold with d-dimensional boundary (∂W, ∂F ) = (M,f), then χ(M,f) = 0. To
see this, recall that W has a relative fundamental class [W ] ∈ Hd+1(W,M ;Rθ) whose image
under the boundary map Hd+1(W,M ;Rθ) → Hd(M ;Rθ) is the fundamental class of M . In
particular, denoting by i : M → W the inclusion, we find that i∗[M ] = 0. As a consequence,
for x ∈ Hd(B;Rθ), we find

⟨f∗(x), [M ]⟩ = ⟨i∗F ∗(x), [M ]⟩ = ⟨F ∗(x), i∗[M ]⟩ = 0.

Finally, the desired maps exists simply because the target is naturally an R-module. □

14For instance, this is automatically the case if R is an F2-algebra.
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6.10. Remark In fact, the above group homomorphism fits into the following commutative
diagram:

Ωθ
∗ ⊗Z R HomR(H

∗(B;Rθ), R)

π∗(Mθ)⊗Z R H∗(Mθ;R) H∗(B;Rθ)

χR

∼=

h ∼=

ev

where the left vertical map is induced by the Pontryagin–Thom isomorphism, the bottom left
map is the Hurewicz homomorphism, the bottom right map is the Thom isomorphism, and
the right vertical map is the Kronecker evaluation map (that this is well-defined as written
uses that Rθ is its own inverse). Exercise: Prove this.

6.11. Corollary If B is rationally of finite type, the formation of rational characteristic num-
bers gives an isomorphism

χQ : Ωθ
∗ ⊗Z Q

∼=−→ Hom(H∗(B;Qθ),Q).

This map is multiplicative for the ring structure on the target coming from the coalgebra
structure on H∗(B;Qθ) induced by the group structure on B.

Proof. This follows from Remark 6.10. Indeed, the Hurewicz homomorphism is an isomor-
phism since SQ ≃ Q by Serre’s finiteness theorem for the stable homotopy groups of spheres,
Proposition 3.25, and the Kronecker evaluation homomorphism is an isomorphism as follows
from the finite type hypotheses. Now, by construction the composite Ωθ

∗ ⊗Q → H∗(B;Qθ) is
a ring homomorphism for the ring structure coming from the assumption that B is a group.
By the finite type hypothesis, this ring is, under the Kronecker evaluation map, isomorphic
to the ring obtained as the dual of the coalgebra H∗(B;Qθ). □

6.12. Remark The proof above reveals that Ωθ
∗ ⊗Q is isomorphic to H∗(B;Qθ) as rings also

without the finite type hypothesis on R. In this case, the characteristic number map χR is
still injective as it and identifies with the canonical map from H∗(B;Qθ) to its double dual
(which is injective for any Q-vector space).

6.13.Example We consider the case where θ is the map BSO → BO. Recall thatH∗(BSO;Q) ∼=
Q[pi | i ≥ 1]. Then we obtain that the map

ΩSO
∗ ⊗Z Q → Hom(Q[pi | i ≥ 1],Q), [M ] 7→ [pI 7→ ⟨pI(νM ), [M ]⟩]

is an isomorphism. Here, I = (i1, . . . , ik) is a multi-index and pI = pi1 · · · pik the associated
monomial in the Pontryagin classes pij .

Note that the inversion map (−)−1 : BSO → BSO is an equivalence and hence induces
an isomorphism on cohomology, that is, an automorphism inv of Q[pi | i ≥ 1]. Hence, the
composite induced by this isomorphism

ΩSO
∗ ⊗Z Q → Hom(Q[pi | i ≥ 1],Q)

inv∗−−→ Hom(Q[pi | i ≥ 1],Q)

is also an isomorphism. Exercise: This composite is given by sending the bordism class of an
oriented manifold M to the function sending a monomial pI to ⟨pI(TM), [M ]⟩.

Consequently, extracting from an oriented manifold its normal or tangential Pontryagin
numbers results in isomorphisms χQ, χ

t
Q : ΩSO

∗ ⊗Q ∼= Hom(Q[pi | i ≥ 1],Q).
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6.14. Proposition ΩSO
∗ is degreewise finitely generated. In particular, ΩSO

k is finite unless
k ≡ 0(4).

Proof. We find that H∗(MSO;Z) ∼= H∗(BSO;Z) is finitely generated in each degree. Similarly
to the argument in Serre class theory, one then shows that a bounded below spectrum such
as MSO has degreewise finitely generated homotopy if and only if it has degreewise finitely
generated homology. □

Recall that for 4n-dimensional closed oriented manifolds M , the cup product determines
a unimodular symmetric form on H2n(M ;Z)/tors, and in particular on H2n(M ;R). Such a
symmetric unimodular form is represented by a symmetric matrix over R, which is therefore
diagonalisable. The number of positive minus the number of negative eigenvalues is called the
signature of such a form. In this way, we obtain the signature sign(M) of M as the signature
of the symmetric unimodular form determined by the cup product on H2n(M ;R).

Exercise. Show that the signature is an oriented bordism invariant, i.e. that if W is an
oriented compact (4n + 1)-manifold, then sign(∂W ) = 0. Hint: Show that the signature of
a unimodular form (V, b) over R vanishes if there is a half-dimensional subspace L ⊆ V on
which the form vanishes, that is, where b(v, w) = 0 for all v, w ∈ L. Then find such a subspace
in H2n(∂W ;R).

6.15. Corollary The map H∗(BSO;Q) → Hom(ΩSO
∗ ,Q) again extracting tangential (or nor-

mal) characteristic numbers, is an isomorphism. In particular, for all n ≥ 1, there exists
unique polynomials Ln(p1, . . . , pn) such that for all oriented closed 4n-dimensional manifolds
M , we have the signature formula

sign(M) = ⟨Ln(p1, . . . , pn)(TM), [M ]⟩.

Proof. The first part is immediate from what we have seen earlier using again that BSO is
of finite type. The in particular follows since sending an oriented manifold to its signature
induces a homomorphism ΩSO

4∗ → Z by the exercise above. □

Hirzebruch found a concrete way to determine the polynomials Ln(p1, . . . , pn). This is a
beautiful story, that we unfortunately will not have the time to go into. We will content
ourselves with determining L1 and L2 in this course. To that end, we will make use of the
following.

6.16. Proposition The tautological map Q[CPn | n ≥ 1] → ΩSO
∗ ⊗ Q of graded commutative

Q-algebras is an isomorphism. As a consequence, the map Z[CP2n | n ≥ 1] → ΩSO
∗ is injective.

Proof. By the previous result, it suffices to show that the composite

Q[CP2n | n ≥ 1] → ΩSO
∗ ⊗Q

χt
Q−−→ HomQ(Q[pi | i ≥ 0],Q)

where the second map is the formation of tangential characteristic numbers, is an isomorphism
of Q-vector spaces. Concretely, this amounts to proving the following: Fix k ≥ 1 and consider

a partition of the number 4k, that is, a set {i1, . . . , iℓ} such that
∑ℓ

j=1 ij = 4k. We may think

of such a set as an unordered multiindex I. Denote then by p(k) the set of partitions of 4k.
Then one can form the p(k)× p(k) matrix whose entry at a pair of partitions (I, I ′) is given

by χ(CP2I′)(pI). Here, pI = pi11 · · · piℓℓ and CP2I′ = CP2i1 × · · · × CP2iℓ′ . It is an algebraic
lemma that this matrix has non-trivial determinant, see e.g. [?, 16.8]. It follows that the map
under investigation is injective, so since both domain and codomain have degreewise the same
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dimension, so the map is in fact an isomorphism. For example, for p(1) = 1, and we obtain
the 1× 1 matrix p1(CP2). Similarly, p(2) = 2, with partitions 2 = 2 and 2 = 1 + 1; We then
obtain the 2× 2 matrix (

p21(CP2 × CP2) p21(CP4)
p2(CP2 × CP2) p2(CP4)

)
To compute these matrices explicitly, we recall or note that TCPn is stably isomorphic to
γ⊕n+1
C where γC is the universal line bundle on CPn. It follows then that the total Pontryagin

class of CPn satisfies

p(CPn) = (1 + x2)n+1 =
∑
i≥0

(
n+ 1

i

)
x2i

In other words, pi(CPn) =
(
n+1
i

)
x2i, where, as always x ∈ H2(CPn;Z) is a generator. Using

then that p(CP2 × CP2) = p(CP2) · p(CP2), we obtain that the above matrices are given by
the 1× 1 matrix (3) and the 2× 2 matrix(

18 9
25 10

)
whose determinant is −45 ̸= 0. □

6.17. Example Without proof, we note here some low dimension oriented bordism groups.

(1) ΩSO
n

∼= Z, generated by the oriented manifold {∗}.
(2) ΩSO

n = 0 for n = 1, 2, 3.
(3) ΩSO

4
∼= Z, generated by CP2 and detected by the signature.

(4) ΩSO
5

∼= Z/2, generated by the Wu manifold W = SU(3)/SO(3) or the mapping torus
of complex conjugation on CP2 (they are not diffeomorphic, but oriented bordant),
and detected by the F2-characteristic number associated to w2w3.

(5) ΩSO
n = 0 for n = 6, 7

(6) ΩSO
8

∼= Z⊕Z, generated by CP2×CP2 and CP4; under this isomorphism, the signature
map is the fold map.

(7) ΩSO
9

∼= Z/2, generated by some hypersurface in RP2 × RP8 and detected by ..?
(8) ΩSO

10
∼= Z/2, generated by W ×W , detected by w2

2w
2
3.

(9) ΩSO
11

∼= Z/2, generated by some hypersurface in RP4 × RP8 and detected by ..?

Taking suitable products of elements as described above, one then finds that ΩSO
n ≥ 0 for all

n ≥ 12.

Exercise. Suppose that M is an oriented closed manifold which admits an orientation
reversing diffeomorphism f : M → M . Show that M represents a torsion element in ΩSO

∗ .
Hint: You may use (or show) that f∗(TM) ∼= TM .

Exercise. Suppose that M is an oriented closed manifold and that p : M̂ → M is an n-fold
covering map. Show that [M̂ ] = n[M ] in ΩSO

dim(M) ⊗ Q. Hint: You may use (or show) that

p∗(TM) ∼= TM̂ .

Exercise. Show that the two manifolds described in part (4) above are indeed non-trivial
elements by showing that they have non-trivial characteristic number associated to w2w3.
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Exercise. Work out a formula for a characteristic number c such that (sign, c) : ΩSO
8 → Z⊕Z

is an isomorphism.

6.18. Remark Recall that we have noted (but not proven) in [Lan25, Remark 3.19] that the
map BO → BTop is a rational equivalence; the same applies for the map BSO → BSTop. It
then follows from the above that the map MSO → MSTop is also a rational equivalence. In

particular, Q[CP2n | n ≥ 1] is also isomorphic to π∗(MSTop)⊗Q ∼= ΩSTop
∗ ⊗Q, the rationalised

topological oriented bordism ring.
Note, however, that since the Pontryagin classes are elements in the integral cohomology

of BSO, we obtain a canonical map

ΩSO
∗ → Hom(H∗(BSO;Z),Z)

so that χ(M)(pI) = ⟨pI(TM), [M ]⟩ is an integer, if I is a multiindex of total degree equal to
the dimension of M . For topological manifolds, this is not necessarily the case. In particular,
the (non-) integrality of Pontryagin numbers is something that distinguishes smooth from
topological manifolds.

6.19. Corollary We have L1(p1) =
1
3p1 and L2(p1, p2) =

1
45(7p2 − p21).

Proof. We have to show that for all oriented 4-manifolds M and all oriented 8-manifolds N ,
we have

1

3
p1(M) = sign(M)

and
1

45
(7p2(N)− p21(N)) = sign(N).

By Proposition 6.16, it suffices to show this for generators of the rational bordism ring in
these degrees, i.e. for CP2, CP2 × CP2 and CP4. To that end, as noted earlier, we have find
p1(CP2) = 3x2, giving the formula for the L-polynomial in degree 4. Moreover, we have
p1(CP4) = 5x2 and p2(CP4) = 10x4. With that we compute

1

45
(7p2(CP4)− p21(CP4)) =

1

45
(70x4 − 25x4)

which evaluates to 1 against [CP4]. To do the relevant computation for CP2 × CP2 we recall
that

p(CP2 × CP2) = p(CP2)× p(CP2) = (1 + 3x2) · (1 + 3y2) = 1 + 3x2 + 3y2 + 9x2y2

Hence, p1(CP2 × CP2) = 3x2 + 3y2 and p2(CP2 × CP2) = 9x2y2. Consequently,

1

45
(7p2(CP2 × CP2)− p21(CP2 × CP2)) =

1

45
(63x2y2 − 18x2y2) = x2y2

which again evaluates to 1 = sign(CP2 × CP2) □

Exercise. Show that [HP2] = 3[CP2 × CP2]− 2[CP4] ∈ π8(MSO)⊗Q.

We will use the signature formula to show that some manifold we construct is not diffeo-
morphic, but homotopy equivalent to a S7. To perform the relevant computations showing
that the manifold in question is homotopy equivalent to S7, or a homotopy sphere for short,
we will use some geometric ways to compute cup products in manifolds.
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6.20. Construction Let M be a connected smooth manifold and i : N → M a smooth
embedding of a connected manifold N . In [Lan25, ...], we have indicated that this em-
bedding comes with an essentially unique with normal bundle νN,M , in addition it comes
with an essentially unique tubular neighbourhood, i.e. an embedding D(νN,M ) ⊆ M where
D(νN,M ) is the disk-bundle of νN,M . There is therefore associated a tautological collapse map
cN,M : M → Th(νN,M ) depending only on the embedding i. If M and N are oriented, then
there is an induced orientation on νN,M so that there is a Thom class u ∈ Hm−n(Th(νN,M ))
with integral coefficients in the oriented case or F2-coefficients in the non-orientable case; here
m = dim(M) and n = dim(N). In particular, in the above situation, we obtain an associated
element c∗M,N (u) ∈ Hm−n(M).

We then aim to prove the following theorems which explain why the cohomological pairing
on a manifold induced by Poincaré duality and the cup product is called the intersection
pairing. To that end, let us denote the Poincaré duality isomorphism − ∩ [M ] : H∗(M) →
Hm−∗(M) by PD(−).

6.21. Theorem Assume in addition to the above that M and N are closed oriented manifolds.
Then we have

PD(i∗[N ]) = c∗M,N (u)

6.22. Theorem Suppose that i : N → M and i′ : N ′ → M are the embeddings of smooth
submanifolds. Assume that N and N ′ are transversal; in particular that K = N ∩N ′ is also
a smoothly embedded submanifold of N , N ′ and M , respectively Dnote the embedding of K to
M by k. Then

PD(i∗[N ]) ∪ PD(i′∗[N
′]) = PD(k∗[K]).

Both theorems are, from the point of view presented here, about the geometry of various
collapse maps. We begin with the following observations:

6.23. Remark First, let us explain how the cap product in singular (co)homology is given
when using the description of singular (co)homology as the (co)homology theory associated
to the spectrum Z. To that end, let x ∈ Hk(X;Z) and y ∈ Hl(X;Z). Then the cap product
x∩ y is an element of Hl−k(X;Z). If x is represented by a map x : X → ΣkZ and y by a map
Sl → X ⊗ Z, the x ∩ y is represented by the composite

Sl y−→ X ⊗ Z ∆⊗id−−−→ X ⊗X ⊗ Z id⊗x⊗id−−−−−→ X ⊗ ΣkZ⊗ Z id⊗m−−−→ X ⊗ ΣkZ

which equivalently is a map Sl−k → X ⊗ Z as needed.
Next, we describe the Thom isomorphism in this picture. Recall that given an (oriented)

spherical fibration ξ : E → X with typical fibre Sd−1, we may form the Thom space Th(ξ)
and have then proved that cup product with the Thom class u ∈ Hd(Th(ξ);Z) induces an
isomorphism Hk(X;Z) ∼= Hd+k(Th(ξ);Z). In what follows, by abuse of notation, we denote
the suspension spectrum Σ∞Th(ξ) of Th(ξ) again by Th(ξ). If x : X → ΣkZ represents an
element of Hk(X;Z) the composite

Th(ξ) → X+ ∧ Th(ξ)
x⊗u−−→ ΣkZ⊗ ΣdZ m−→ Σd+kZ
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represents the corresponding element x ·u ∈ Hd+k(Th(ξ);Z). Here, the first map is the Thom
diagonal, obtained from the pullback diagram

ξ 0× ξ

X X ×X∆

Similarly, the homological Thom isomorphism Hk+d(Th(ξ);Z) ∼= Hk(X;Z) sends a class rep-
resented by Sk+d → Th(ξ)⊗ Z to the composite

Sk+d → Th(ξ)⊗ Z → X ⊗ Th(ξ)⊗ Z → X ⊗ ΣdZ⊗ Z → X ⊗ ΣdZ

which in turn is equivalent to the desired map Sk → X ⊗ Z.
Finally, we combine this to make explicit the function PD(−) : Hk(M ;Z) → Hm−k(M ;Z)

for M a closed oriented m-manifold. To that end, we first recall that the collapse map
cM : Sr → Th(νM ) for νM the normal bundle of an embedding M → Sr determines the
homological fundamental classes of M in the following sense: The composite

πr(Th(νM )) → Hr(Th(νM )) ∼= Hm(M)

where the second map is the Thom isomorphism, sends [cM ] to [M ]. By the above, we find
that [M ] is represented by the composite in the commutative diagram

Sr Th(νM ) M ⊗ Th(νM ) M ⊗ Σr−mZ

Th(νM )⊗ Z M ⊗ Th(νM )⊗ Z M ⊗ Σr−mZ⊗ Z

M ⊗ Σr−mZ

cM

id⊗i

id⊗u

id⊗id⊗i

id⊗u⊗id

id⊗m

where i : S → Z is the unit and m : Z ⊗ Z → Z the multiplication of the ring spectrum Z
and the unlabelled maps are (induced by) the Thom diagonal. Since the right most vertical
composite is the identity, the top horizontal composite represents [M ]. We deduce the fol-
lowing description of the function PD(−) : Hk(M ;Z) → Hm−k(M ;Z). For x : M → ΣkZ, we
consider the commutative diagram

Sr Th(νM ) M ⊗ Th(νM ) M ⊗ Σr−mZ

M ⊗M ⊗ Th(νM ) M ⊗M ⊗ Σr−mZ

M ⊗ ΣkZ⊗ Σr−mZ M ⊗ Σr−m+k
id⊗x⊗u

id⊗m

in which the composite now represents PD(x); here the first diagonal map is a “doubled”
Thom diagonal.

Proof of Theorem 6.21. Choose a smooth embedding h : M → Sr for suitably large r >
dim(M). Then hi : N → M → Sr is again an embedding. Let us denote by νN and νM
the normal bundles of these embeddings hi and h. Recall that the associated collapse map
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cM : Sr → Th(νM ) and cN : Sr → Th(νN ) then determine the homological fundamental
classes of M and N as described in Remark 6.23.

Exercise: we have a preferred isomorphism νN ∼= νN,M⊕(νM )|N . Hint: TM|N = TN⊕νN,M

for any embedding N ⊆ M with normal bundle νN,M . In particular, there are pullback
diagrams

νN νN,M × (νM )|N νN,M × νM

N N ×N N ×M

and we obtain an induced relative Thom diagonal map Th(νN ) → Th(νN,M ) ∧Th(νM ). The
geometric fact to contemplate is then that the following diagram commutes

Sr Th(νN )

Th(νM ) M+ ∧ Th(νM ) Th(νN,M ) ∧ Th(νM )

cN

cM

cN,M∧id

where the unlabelled maps are the just explained (relative) Thom diagonals. Exercise: adapt
the above construction of the relative Thom diagonal to contruct a commutative diagram

Th(νN ) N+ ∧ Th(νN )

Th(νN,M ) ∧ Th(νM ) M+ ∧ Th(νN,M ) ∧ Th(νM )

Hint: Consider the commutative diagram

N N ×N n (n, n)

N ×M N ×M ×M (n, i(n)) (n, i(n), i(n))

and consider the bundle νN,M ×νM ×0 over N×M×M and the pullbacks along all appearing
maps. Glueing the two diagrams we obtain

Sr N+ ∧ Th(νN )

Th(νM ) M+ ∧ Th(νN,M ) ∧ Th(νM )

Denote now by uN,M : Th(νN,M ) → Σm−nZ and uM : Th(νM ) → Σr−mZ the maps classifying
the Thom classes. Since Thom classes are natural for pullbacks of bundles, we find that the
composite

Th(νN ) → Th(νN,M ) ∧ Th(νM ) → Σm−nZ ∧ Σr−mZ → Σr−nZ
classifies the Thom class uN of νN . Therefore, also the following diagram commutes:

Sr N+ ∧ Th(νN ) N ⊗ Σr−nZ

Th(νM ) M+ ∧ Th(νN,M ) ∧ Th(νM ) M ⊗ Σr−nZ

uN

i⊗id

uN,M⊗uM
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The top horizontal then classifies an element in Hn(N ;Z); the above discussion about funda-
mental classes implies that this element in [N ]. □

Proof of Theorem 6.22. The fact that N and N ′ are transversal implies that there is a pull-
back diagram as follows:

νK,M νN,M × νN ′,M

K N ×N ′

In particular, there is associated a canonical relative Thom collapse map Th(νK,M ) →
Th(νN,M ) ∧ Th(νN ′,M ). The geometric fact to contemplate in this situation is that the fol-
lowing diagram involving the collapse map and the relative Thom diagonal commutes:

M Th(νK,M )

Th(νN,M ) ∧ Th(νN ′,M )

cK,M

cN,M∧cN′.M

The result then follows again from the naturality of Thom classes under pullback diagrams
and Theorem 6.21. □

6.24. Remark One can try to generalize the above arguments to topological manifolds; but
note that for embeddings of topological manifolds, a normal bundle need not exists, and if it
exist it need not be unique and/or admit a disk bundle representative, which even if it exists
might not be part of a tubular neighbourhood of the embedding. In addition, for a topological
version of Theorem 6.22, a correct notion of transversality needs to be used, as to ensure that
the two geometric facts about the collapse maps hold true in case the statements make sense.
To avoid discussing all these subtleties, we restrict attention to smooth manifolds here.

We now consider the following construction.

6.25. Construction We recall the E8-graph, a tree with vertix set V of cardinality 8. Fix
n ≥ 1 and denote by D(n) the disk-bundle of the tangent bundle of S2n. For a point x ∈ S2n,
we may fix an embedding D2n ⊆ S2n sending 0 to x, and denote by D2n

x its image, viewed
as closed subset of S2n. Then D(n)|D2n

x
is canonically diffeomorphic to D2n × D2n which

bundle projection corresponding to the projection onto the first factor together with the fixed
homeomorphism D2n

x
∼= D2n.

Now consider the disjoint union
∐

v∈V D(n) and for each v ∈ V pick x(v) ∈ S2n such that

D2n and embeddings D2n ∼= D2n
x(v) such that the subsets D2n

x(v) of S2n are pairwise disjoint.

Define E8(n) to be the quotient space of
∐

v∈V D(n) given by the following relation. Whenever
there is an edge between v and v′, we inductively glue together the two copies of D(n) indexed
by v and v′ according to the following pushout square

D2n ×D2n D2n ×D2n D(n)

D(n) D(n)′

sw
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where sw is the diffeomorphism switching the two factors. This defines a smooth15 manifold
E8(n) of dimension 4n with boundary ∂E8(n) of dimension 4n − 1. This manifold is often
called the Milnor manifold.

6.26. Lemma The tangent bundle of E8(n) is trivial.

Proof. By construction, for each vertex of the E8-graph, we have an embedding TS2n ⊆ E8(n).
In particular, we have embeddings of S2n into E8(n) whose normal bundle identifies with TS2n

and TE8(n)|S2n becomes isomorphic to TS2n ⊕ TS2n. This is a bundle of rank 4n > 2n, so is
already a stable bundle: The map BO(4n) → BO induces an isomorphism on π2n. Therefore,
since TS2n⊕R ∼= S2n×R2n+1 is trivial, we deduce that TE8(n)|S2n is trivial for each canonical

embedding S2n ⊆ E8(n) corresponding to a vertex. The claim then follows from noting that
the these maps combine to a homotopy equivalence

∨
x∈V S2n → E8(n). □

Exercise. If n ≥ 2, then π1(∂E8(n)) is trivial. Hint: Show that π1(∂D(n)) is trivial and
apply Seifert van Kampen several times to control π1 of each step of the glueing appearing
in the definition of E8(n).

Next we aim to prove the following:

6.27. Proposition For all n ≥ 1, we have H∗(∂E8(n);Z) ∼= H∗(S
4n−1;Z).

To prove this, we first record the following general claim. Let W be a connected oriented
compact 2n-manifold with connected boundary ∂W . Then we may consider the cup product
pairing

Hn(W,∂W )×Hn(W,∂W ) → H2n(W,∂W )
PD−−→ Z.

Then Poincaré duality also identifies Hn(W,∂W ) with Hn(W ). The above composite is then
adjoint to a map

Hn(W,∂W ) → Hom(Hn(W ),Z).

6.28. Lemma The just described map is itself given by the composite

Hn(W,∂W ) → Hn(W ) → Hom(Hn(W ),Z)
where the first map is the map part of the long exact sequence of the pair (W,∂W ) and the
second is the evaluation map appearing in the universal coeffcient theorem.

Proof. Fix x ∈ Hn(W,∂W ). For α ∈ Hn(W ) there exists a unique y ∈ Hn(W,∂W ) such that
y ∩ [W ] = α. By definition, the map described just before the statement of the lemma sends
x to the map sending α to (x ∪ y) ∩ [W ]. But we have

(x ∪ y) ∩ [W ] = x ∩ (y ∩ [W ]) = x ∩ α = ⟨x, α⟩.
This shows that the map depends only on the image of x under Hn(W,∂W ) → Hn(W ) and
is then given as claimed. □

6.29.Remark Similarly, the compositeHn(W ) → Hn(W,∂W ) ∼= Hn(W ) → Hom(Hn(W );Z)
is adjoint to a map

Hn(W )×Hn(W ) → Z
which, under the Poincaré duality isomorphism Hn(W ) ∼= Hn(W,∂W ) is given by the cup
product pairing

15By a procedure called smoothening the corners.



TOPOLOGY V 55

Proof of Proposition 6.27. We compute the cohomology of ∂E8(n) by means of the long exact
sequence

Hk+1(E8(n)) → Hk+1(Eb(n(, ∂E8(n)) → Hk(∂E8(n)) → Hk(E8(n)) → Hk(E8(n), ∂E8(n))

Since E8(n) ≃
∨
S2n and using Lemma 6.28 and Remark 6.29, the claim follows if we can

show that the cup product pairing

H2n(E8(n), ∂E8(n))×H2n(E8(n), ∂E8(n)) → Z

is unimodular. Now, under the Poincaré duality isomorphismH2n(E8(n), ∂E8(n)) ∼= H2n(E8(n)),
we find that a basis is represented by the various embedded submanifolds S2n ⊆ E8(n). Hence,
in order to compute the cup product pairing, by Theorem 6.22, we may compute geometric
intersection numbers of these embedded submanifolds. Then note that two embeddings of
S2n corresponding to vertices v ̸= v′ in the E8-graph are disjoint if v and v′ are not connected
by an edge; in this case, the cup product is therefore 0. When v ̸= v′ are connected by an
edge, we have arranged that the two corresponding S2n’s are indeed transversal and intersect
in a single point; taking the orientation behaviour into account, we find that the intersection
number in this case is −1. It remains to compute the self-intersection of each S2n. In this
case, we have to make the embedding transversal to itself. The way to do this is to consider
the normal bundle of the embedding – in our case this is, by construction, given by TS2n –
and then we may push the embedding of the zero section in the normal direction; concretely
by using a flow associated to a suitable section of the normal bundle. It follows that the
self-intersection number can be described be the number (counted with signs according to the
orientation) of zeros of such a section; this in turn can be shown to be the Euler number. In
our situation, we therefore find that the self-intersection number is equal to the Euler number
of TS2n, which is equal to the Euler characteristic of S2n which is equal to 2 (recall e.g.
Exercise 1 Sheet 4 from [Lan25]).

It follows that the cup product pairing has representing matrix given by the E8-matrix,
which is famously known to be invertible. □

6.30. Corollary Let n ≥ 2. Then the smooth manifold ∂E8(n) is homotopy equivalent to Sn.

6.31. Remark One can show that π1(∂E8(1)) is non-trivial, and so that ∂E8(1) is indeed only
a homology sphere16 P , the Poincaré homology 3-sphere, and not a homotopy sphere. In fact,
π1(∂E8(1)) is the binary icosahedral group, a finite group of order 120. Milnor has shown that
this is the only finite group which appears as the fundamental group of a homology 3-sphere.

6.32. Theorem We have that ∂E8(2) is not diffeomorphic to S7.

Proof. Suppose that there is a diffeomorphism ∂E8(2) ∼= S7. Then the topological manifold
Ē8(2) = E8(2) ∪∂E8(2) D

8 admits a smooth structure. Since the inclusion E8(2) ⊆ Ē8(2)

induces an isomorphism on H4 we deduce from the exercise above that p1(Ē8(2)) = 0 and
that sign(E8(2)) = sign(Ē8(2)). Hence, we find

8 = sign(Ē8(2)) = L2(p1, p2)(Ē8(2)) =
7

45
p2(Ē8(2)).

Since Ē8(2) is smooth, we deduce that p2(Ē8(2)) is an integer. Therefore, we deduce that

8 · 45 ≡ 0 mod 7

16That is, a smooth closed oriented 3-manifold whose homology is isomorphic to that of S3.
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which is evidently incorrect, yielding a contradiction as desired. □

6.33. Remark For all n ≥ 2, we have that ∂E8(n) is not diffeomorphic to S4n−1. Indeed, a
similar argument will give

8 = sign(Ē8(n)) = Ln(p1, . . . , pn)(Ē8(n)) = αnpn(Ē8(n))

where αn is the coefficient of pn in the nth L-polynomial. A detailed analysis of this coefficient
allows to deduce the same contradiction for all n ≥ 2.

6.34. Remark It is a consequence of the h-cobordism theorem, proven by Smale, that any
closed smooth manifold homotopy equivalent to Sn is in fact homeomorphic to Sn as long as
n ≥ 6 (in fact, the same is true if n ≥ 5 and for closed topological manifolds rather than closed
smooth ones). In particular, we deduce that ∂E8(2) is homeomorphic but not diffeomorphic to
S7. Such smooth manifolds are called exotic spheres (because they are topologically standard
spheres with an exotic smooth structure).

6.35. Remark As a consequence of Remark 6.34, for n ≥ 2 one can define closed oriented
topological manifolds Ē8(n) as in the proof of Theorem 6.32. Moreover, it is a deep theorem
in point-set topology of Freedman (for which he was awarded the fields medal in 1982) that
every homology 3-sphere Σ bounds a contractible topological 4-manifold W (Σ). Hence, one
may form the closed oriented topological manifold E8 = E8(1) ∪P W (P ). This manifold
admits a topological spin structure and has signature 8; this shows that an earlier theorem
of Rokhlin’s stating that a closed smooth spin 4-manifold has signature divisible by 16 is
really special to smooth manifolds (also, a K3 surface has signature 16 so Rokhlin’s theorem
cannot be improved). I believe that Kervaire and Milnor’s study of Rokhlin’s theorem was
when they realised they can in fact say much more about homotopy spheres than the mere
existence in dimension 7. In fact, in a landmark result on the combination of surgery theory
and homotopy theory, they essentially calculated17 the group of homotopy spheres Θn in
dimension n to participate in the exact sequence

0 → bPn+1 → Θn → coker(J)n → 0

where bPn+1 is the subgroup of those homotopy spheres which are boundaries of parallelisable
smooth manifolds of dimension n+1; This turns out to be a cyclic group whose order is trivial if
n+1 is odd, Z/2 if n+1 ≡ 2 mod 4 and for n+1 = 4k, it has order 22k−2·(22k−1−1)·num(4Bk

k )

where Bk is a Bernoulli number.18

Finally, I cannot resist to mention that Rokhlin’s theorem does not rule out that E8♯E8

admits a smooth structure as its signature is 16. This, however, is ruled out by a theorem of
Donaldson, for which he was awarded the fields medal in the same year as Freedman (1982).
Using methods from analysis, what is often referred to as gauge theory, he showed that if the
intersection form of a smooth closed 4-manifold is positive (or negative) definite, then the
form is isomorphic to the standard form with only 1s (or −1s) on the diagonal – this rules
out an enormous amount of definite forms as arising as the intersection form of a smooth
manifold. Freedman’s results in contrast showed that all unimodular forms appear as the
intersection form of a closed topological 4-manifold.

17With at the time some exceptions which by now we know to be finitely many exceptions.
18Topologists often write Bk rather than the convention in number theory which is B2k instead – this is

because the a priori defined numbers B2k+1 are in fact 0.
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