
TOPOLOGY III
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Abstract. These are lecture notes for my lecture “Topology III” which I taught in the
winter term 2024/25 at LMU Munich and from the lecture “Topology IV” which I taught in
the summer term 2025 at LMU Munich.
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1. Recollection/Prerequisites

There will be no lectures on 18.11. and 20.11. and we will reschedule the lecture on
23.12. We will take some time to discuss exercises I pose during the lectures; either in the
beginning of each lecture or regularly (roughly) every 3 weeks. If you want to get credits for
this course, you can do so under WP37 for 6ECTS. The examination will be an oral exam at
the end of the term.

This course will build on the two lectures Topology I (WS 23/24) and Topology II (SS
24) taught at LMU. We briefly recall the main topics that were covered, so a reader has an
impression what will be the assumed background knowledge.

(1) Point-set topology
(2) Homotopy theory: homotopy groups, CW complexes, applications of cellular approx-

imation, cofibrations, Seifert-van Kampen’s theorem
(3) Covering theory; Fundamental theorem of covering theory
(4) Singular Homology; Definition, Properties, Applications.
(5) Singular Cohomology; Cup product, Universal coefficient theorems, Künneth theorem
(6) Topological Manifolds: Orientability and Poincaré duality, Applications
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(7) Homotopy theory: Fibrations, long exact homotopy sequence, Whitehead’s theorem,
cellular approximation theorem, homotopy excision theorem, Freudenthal

Parts (1)–(4) were covered in Topology I [Lan23] while parts (5)–(7) were covered in Topology
II [Win24]. These lecture notes are available on the course webpage.

The rough plan for this term is to cover the following.

(1) Hurewicz theorems
(2) Eilenberg–Mac Lane spaces and representability of cohomology
(3) Principal G-bundles; classification, characteristic classes (definitions), homotopy or-

bits of group actions
(4) Obstruction theory
(5) Steenrod operations; Definitions, Cartan formula, Adem relation, Sq0 = id.
(6) Vector bundles and the Thom isomorphism, Stiefel–Whitney and Wu classes.
(7) Applications to manifolds; geometric interpretation of cup product, existence of mani-

folds with certain cell structures, spinC-structures + intersection form on 4-manifolds,
(obstructions to the) existence of submanifolds representing homology classes.

2. Weak equivalences, singular homology, and the Hurewicz theorem

We first record the following fundamental property of singular homology:

2.1. Theorem Let f : X → Y be a weak equivalence of topological spaces. Then f induces an
isomorphism in singular homology.

For the proof, we will use simplicial techniques. Let us recall some things about simplicial
sets; see [Lan23, §4.3] and of course any other source on simplicial sets for more details.

2.2. Recollection We let ∆ be the full subcategory of the category of posets on the objects
[n] = {0, . . . , n} with its evident linear order. Hence, a morphism f : [n] → [m] in ∆ is
a map f : {0, . . . , n} → {0, . . . ,m} such that f(a) ≤ f(b) if a ≤ b. We let sSet be the
category Fun(∆op,Set) of presheaves on ∆. We denote the image of [n] under the Yoneda
embedding by ∆n. Note that HomsSet(∆

n, X) = X([n]) =: Xn by the Yoneda lemma. We
recall that the collection of topological n-simplices ∆n

top = {(x0, . . . , xn) ∈ Rn+1
≥0 |

∑
i xi = 1}

for a cosimplicial topological space, that is a functor ∆•top : ∆ → Top. We recall that for
0 ≤ i ≤ n there are maps δni : [n− 1]→ [n] uniquely determined by being injective and such
that i /∈ Im(δni ). Likewise, there are map σni : [n] → [n − 1], uniquely determined by being
surjective and satisfying σni (i) = σni (i + 1). These maps satisfy the simplicial relations, see
[Lan23, 4.15]. Any injective map in ∆ is a composite of δi’s and any surjective map is a
composite of σi’s. Any map in ∆ is a composite of an surjection followed by an injection.
In particular, giving a simplicial set X is the same data as specifying sets Xn together with
induced maps dni = (δni )∗ : Xn → Xn−1 and sni = (σni )∗ : Xn−1 → Xn satisfying the simplicial
relations. An n-simplex of a simplicial set is called degenerate if it is of the form f∗(y)
for some surjective map f : [n] → [m] different from the identity and some m-simplex y.
Equivalently, if x is of the form sni (y) for some y and i. It is called non-degenerate if it
is not degenerate. Every simplex x in a simplicial set X is uniquely the degeneration of a
non-degenerate simplex, i.e. there exists a unique map f : [n] → [m] and a unique element
y ∈ Xm such that y is non-degenerate and f∗(y) = x.

Further important simplicial sets are:

(1) ∂∆n ⊆ ∆n: Its k-simplices are precisely those maps f ∈ Hom∆([k], [n]) which are not
surjective.
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(2) Λnk ⊆ ∂∆n for 0 ≤ k ≤ n: Its k-simplices are those maps f ∈ Hom∆([k], [n]) such that
k is not in the image of f .

In both cases, one readily checks that these are in fact sub simplicial sets.

2.3. Lemma There is an adjunction

| − | : sSet Top: Sing

whose left adjoint | − | is uniquely determined by the requirement |∆n| = ∆n
Top.

Proof. The universal property of presheaf categories like sSet = Fun(∆op,Set) says that any
functor ∆ → Top, like [n] 7→ ∆n

Top extends to a unique left adjoint sSet → Top. This is the

definition of | − |. In this generality, the right adjoint is then given by sending an object X
to the presheaf sending [n] to HomTop(∆n

top, X); this means that Sing(X) is the simplicial set
HomTop(∆•top, X). �

2.4. Remark The functor | − | is called the geometric realization of a simplicial set, and the
functor Sing(−) is the singular complex functor. A concrete formula is given as follows:

|X| =
(∐
n≥0

Xn ×∆n
Top

)
/ ∼

where for each f : [m] → [n] a morphism in ∆, x ∈ Xn and t ∈ ∆m
Top, we have (f∗(x), t) ∼

(x, f∗(t)). Exercise: Prove this fact. Note also that the geometric realization of an injection
of simplicial sets is a (closed) subspace inclusion.

2.5. Definition Let X be a simplicial set. We let skn(X) be the simplicial set i!i
∗!(X),

where i : ∆≤n ⊆ ∆ is the full subcategory inclusion on objects [k] for k ≤ n. Dually, we let
coskn(X) be i∗i

∗(X). Here, i! and i∗ denote the left and right adjoints of i∗, respectively.
These are also left and right Kan extensions. More concretely, we have that the counit map
skn(X) = i!i

∗(X) → X exhibits skn(X) as the smallest subsimplicial set of X with same
k-simplices as X for k ≤ n; that is, all k-simplices for k > n are degenerate.

2.6. Example We have skn(∆n) = ∆n and skn−1(∆n) = ∂∆n.

2.7. Lemma For every simplicial set, there is an isomorphism colimn skn(X)→ X and there
are canonical pushouts ∐

In

∂∆n skn−1(X)

∐
In

∆n skn(X)

of simplicial sets.

Proof. The colimit statement is clear: Every simplex of X has a dimension. So let us discuss
the pushout. The lower horizontal map in the putative pushout diagram is defined by Yoneda’s
lemma: A non-degenerate n-simplex of X determines a map ∆n → X to which we may apply
skn(−). Then we may apply skn−1 to the lower map and obtain the upper horizontal map.
The natural transformation skn−1 → skn then provides the vertical maps and the fact that
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the resulting square commutes. To see that the diagram is a pushout, we need to argue on
the level of k-simplices for all k. If k ≤ n − 1, then both vertical maps are isomorphisms on
k-simplices. Now we discuss skn(X)n: Since every n-simplex is either degenerate or not, and
the non-degenerate simplices are in the image of the lower horizontal map and the degenerate
simplices are in the image of the right vertical map, to see that it is a pushout, we only need to
observe for a non-degenerate simplex α in Xn, if f : [n]→ [n] is such that f∗(α) ∈ skn−1(X)n,
then f is not surjective, i.e. that it is not the identity. But this is clear, because a non-
degenerate n-simplex of X is not an n-simplex of skn−1(X). The argument for skn(X)k with
k > n is similar: First, we note that any element there is degenerate, and hence as discussed
above the unique degeneration of a non-degenerate smaller dimensional simplex. Either that
non-degenerate simplex is of dimension n or of dimension smaller than n. In the former case,
the simplex in question comes from the lower horizontal morphisms, and in the latter case, it
comes from the right vertical morphism. Again, to see that the square is in fact a pushout,
one argues that if for α ∈ Xn non-degenerate, and f : [k] → [n] we have f∗(α) ∈ skn−1(X)l,
then f is not surjective. We leave this part as an exercise. �

2.8. Corollary Let X be a simplicial set. Then |X| is canonically a CW complex.

Proof. We define a filtration on |X| by skn(|X|) := |skn(X)| - this is well-defined because
geometric realization of the skeletal inclusions are again (closed) inclusions and geometric
realization commutes with colimits (as it is a left adjoint). In particular, it also commutes
with the pushouts of Lemma 2.7, so we obtain pushouts∐

In

|∂∆n| |skn−1(X)|

∐
In

|∆n| |skn(X)|

Now, by definition we have |∆n| = ∆n
Top which is homeomorphic to Dn. From this, one can

deduce (exercise) that |∂∆n| = ∂∆n
Top which is homeomorphic to Sn−1. This shows that the

geometric realization of the skeletal filtration on X is a CW filtration on |X|. �

2.9. Remark Conversely, the image of Sing : Top→ sSet is also restricted: For any topological
space X, we have that Sing(X) is a Kan complex, i.e. it satisfies the lifting property against
the horn inclusions Λnk → ∆n for all 0 ≤ k ≤ n. Essentially, this follows from the above
adjunction and the fact that the inclusion Λnk ⊆ ∆n geometrically realizes to an inclusion
which admits a retraction. Here Λnk denotes the sub simplicial set of ∂∆n in which also the
face opposite to the 0-simplex {k} is removed.

Even more, if f : X → Y is a Serre fibration, the Sing(f) : Sing(X) → Sing(Y ) is a Kan
fibration. This again follows from the above adjunction, the observation that Λnk → ∆n

geometrically realizes to a cofibration which is also a homotopy equivalence, and [Win24,
Cor. 5.2.6].

2.10. Definition Let X and Y be simplicial sets and f, g : X → Y maps of simplicial sets.
A simplicial homotopy from f to g is a map h : X × ∆1 → Y such that h|X×{0} = f and
h|X×{1} = g. We denote by [X,Y ] the quotient of HomsSet(X,Y ) be the equivalence relation
generated by the relation homotopy.
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2.11. Remark The relation of homotopy on HomsSet(X,Y ) is typically neither symmetric nor
transitiv. (Exercise: proof this). Nevertheless, there is the following coequalizer diagram in
sets:

HomsSet(X ×∆1, Y ) HomsSet(X,Y ) [X,Y ]

where the two maps are induced by the inclusions {0}, {1} ⊆ ∆1.
If you know what a Kan complex is, then you can try to prove that if Y is a Kan complex,

then the homotopy relation on HomsSet(X,Y ) is in fact an equivalence relation. You may
want to prove or use that when Y is Kan, so is Hom(X,Y ), the internal hom in simplicial
sets.

It is elementary to check that composition and the identity map descend to a composition
map

[Y, Z]× [X,Y ]→ [X,Z]

and to elements [idX ] ∈ [X,X], satisfying the axioms of a category.

2.12. Definition We denote the category with objects the simplicial sets and with morphism
sets given by [X,Y ] by hsSet; the homotopy category of simplicial sets.

Coming back to our aim to prove weak-homotopy invariance of singular homology, we could
have observed the following lemma already in Topology I.

2.13. Lemma For n ≥ 0, the singular homology groups Hn(−) viewed as functors Top→ Ab
factor as follows:

Top
Sing−−→ sSet→ hsSet→ Ab.

Proof. Since hsSet is obtained from sSet by dividing out an equivalence relation on morphism
sets, it suffices to construct a functor sSet → Ab which is compatible with the generating
relation and whose restriction along Sing : Top → sSet is given by Hn(−). This is easy:
Given a simplicial set X, we first construct a chain complex C•(X) by the same formulas
as in [Lan23]: Cn(X) = Z[Xn], the free abelian group on the set of n-simplices of X. The
differential in the chain complex is given by

∂n =

n∑
i=0

di : Z[Xn]→ Z[Xn−1].

That this is in fact a chain complex and the fact that C•(Sing(X)) = Csing
• (X) was verified

again in [Lan23]. Now, the claim is that given a simplicial homotopy h : X ×∆1 → Y from
f to g, then f and g induce the same map on Hn(−). In fact, they induce homotopic maps
C•(X)→ C•(Y ), and hence equal maps on homology, just as utilized in [Lan23]. For this, we
can either reprove homotopy invariance of this chain complex using an version of the acyclic
models result we have used in the case of topological spaces, or we can also just use the
Prism operator as described in [Lan23, Remark 4.66] is obtained by triangulating the prism
∆n ×∆1, which in fact gives elements hn ∈ Cn+1(∆n ×∆1) – recall that such elements give
rise to natural maps hXn : Cn(X)→ Cn+1(X ×∆1) – and that these elements satisfy relations
which imply that the maps hXn form a chain homotopy from the map X× δ1 to X× δ0, where
δ1 : {0} → ∆1 and δ0 : {1} → ∆1 are the evident inclusions. This proves the lemma. �

The decisive fact about weak equivalences is now the following proposition, giving a proof
of Theorem 2.1.
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2.14. Proposition Let f : X → Y be a weak equivalence of topological spaces. Then the map
Sing(f) : Sing(X) → Sing(Y ) is sent to an isomorphism under the functor sSet → hsSet. In
particular, a weak equivalence induces an isomorphism on singular homology.

Proof. By Yoneda’s lemma, we aim to show that for any simplicial set Z, the map

[Z,Sing(f)] : [Z,Sing(X)]→ [Z,Sing(Y )]

is a bijection. Exercise: The above adjunction induces bijections making this map isomorphic
to the map

[|Z|, f ] : [|Z|, X]→ [|Z|, Y ].

Now recall that |Z| is a CW complex by Corollary 2.8, and that we have shown in Topology
II that this map is therefore a bijection [Win24, Theorem 5.2.18]. �

2.15. Remark In the above exercise, it will be crucial to know that for all simplicial sets X,
the canonical map |X×∆1| → |X|×|∆1| = |X|×∆1

top is a homeomorphism. One way to prove
this is to regard this canonical map as the component of a natural transformation of functors
(in the variable X). Then we observe that source and target both commute with colimits in
X. Therefore, it suffices to show that this map is a homeomorphism in case X = ∆n in which
case it is a direct argument.

2.1. The Hurewicz theorem. Next, we will discuss the theorem of Hurewicz, which is
about a comparison between homotopy and singular homology groups. To state it, we first
recall the Hurewicz homomorphism. To that end, recall that we have fixed generators [Sn] of
Hn(Sn;Z) inductively via the suspension isomorphism and a once in life chosen generator of

H̃0(S0;Z).

2.16. Definition Let (X,x) be a pointed topological space and n ≥ 1. The Hurewicz homo-
morphism is the map

hn : πn(X,x)→ Hn(X;Z), [f ] 7→ f∗([S
n]).

This is well-defined because singular homology is homotopy invariant.

2.17. Lemma The Hurewicz homomorphism is a natural group homomorphism, compatible
with the suspension operation and is an isomorphism for Sn.

Proof. The Hurewicz homomorphism hn sends the constant map to 0 since Hn(∗;Z) = 0
(recall that we assume n ≥ 1). Moreover, given f, g ∈ πn(X,x), its sum is represented by the
map

Sn
pinch−−−→ Sn ∨ Sn f+g−−→ X

so it suffices to recall that Hn(Sn∨Sn;Z) ∼= Hn(Sn;Z)⊕Hn(Sn;Z), that the pinch map sends
[Sn] to ([Sn], [Sn]) and that therefore, the composite sends [Sn] to f∗[S

n] + g∗[S
n], showing

that hn is a group homomorphism. Naturality of hn means that for any pointed map of spaces
ϕ : X → Y , the diagram

πn(X,x) Hn(X;Z)

πn(Y, y) Hn(Y ;Z)

hn

ϕ∗ ϕ∗

hn
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commutes. This is immediate from the functoriality of singular homology. The compatibility
with the suspension operation is the claim is that the following diagram, in which the lower
horizontal map is the suspension isomorphism, commutes.

πn(X) πn+1(ΣX)

Hn(X) Hn+1(ΣX)

This follows from the fact that we have chosen the fundamental class of Sn+1 to be the
suspension of the fundamental class of Sn and the naturality of the suspension isomorphism
in homology. To see the final claim, by compatibility with the suspension isomorphism, it
suffices to show that h1 : π1(S1)→ H1(S1;Z) is an isomorphism.1 This follows from the fact
that the degree map deg : π1(S1)→ Z is an isomorphism. �

2.18. Remark There is a Hurewicz homomorphism for pairs of spaces: Recall that for a pair
of spaces (X,A), i.e. a space X with pointed subspace a ∈ A ⊆ X, there is the relative
homotopy set πn(X,A); it is represented e.g. by maps of pairs (Dn, Sn−1)→ (X,A) and the
relation is relative homotopy as discussed in [Lan23, Def. 2.1]. In general, πn(X,A) is then
only a set when n ≤ 1, is a group when n = 2 and an abelian group when n > 2. There is
then a relative fundamental class Hn(Dm, Sn−1;Z) and the relative Hurewicz homomorphism
is defined similarly:

πn(X,A)→ Hn(X,A), [f ] 7→ f∗([D
n, Sn−1]).

We now note the map of pairs (X,A) → (X/A, [A]) induces a map πn(X,A) → πn(X,A).
Since homotopy groups and singular homology groups are invariant under weak equivalences,
we may assume that (X,A) is a CW pair, and in particular that A ⊆ X is a cofibration. It
follows straight from the definitions that the relative Hurewicz homomorphism is then also
given by the composite

πn(X,A)→ πn(X/A, [A])
h−→ Hn(X/A;Z)

'← Hn(X,A;Z).

2.19. Remark The relative homotopy groups πn(X,A) fit into an evident long exact sequence

· · · → πn+1(X,A)→ πn(A, a)→ πn(X, a)→ πn(X,A)→ . . .

where the boundary map simply restricts to the appropriate cube of smaller dimension. Let
F = hofiba(A → X). Exercise: Construct a canonical bijection πn(X,A) ∼= πn−1(F ) com-
patible with the long exact sequences and show that the Hurewicz homomorphism induces a
commutative diagram

. . . πn+1(A) πn+1(X) πn+1(X,A) πn(A) πn(X) . . .

. . . Hn+1(A) Hn+1(X) Hn+1(X,A) Hn(A) Hn(X) . . .

1Indeed, it was argued in [Lan23, Win24] that the iterated suspension map π1(S1) → πn(Sn) is an
isomorphism.
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2.20. Remark Let F → E → B be a fibration sequence. Using the above exercise, one also
obtains a commutative diagram

. . . πn+1(E) πn+1(B) πn(F ) πn(E) πn(B) . . .

. . . Hn+1(E) Hn+1(B) Hn+1(C(p)) Hn(E) Hn(B) . . .

where the middle vertical map is induced by the map suspension map πn(F ) → πn+1(ΣF ),
the map ΣF → C(p) as well as the Hurewicz homomorphism for C(p).

Finally, we recall the notion of n-connected maps of spaces.

2.21. Definition Let f : X → Y be a map of spaces and n ≥ 0. It is called n-connected
if it induces a surjection on πn and a bijection on πk for k < n (at every basepoint of X,
respectively).

2.22. Remark A pair of spaces (X,A) is called n-connected if the inclusion map i : A → X
is n-connected. This in turn is equivalent to the condition that πk(X,A) = {∗} for k ≤ n. In
general, a map f is n-connected if and only if for all basepoints y ∈ Y , the space hofiby(f) is
(n− 1)-connected, compatible with the Exercise in Remark 2.19.

We now recall the theorem of Blakers–Massey, i.e. the homotopy excision theorem, since
we will derive the Hurewicz theorem from it.

2.23. Theorem Consider a homotopy pushout square2

C A

B X

j

i f

g

in which the map j is n-connected and the map i is m-connected. Then, for all a ∈ A, the
map hofiba(j)→ hofibf(a)(g) is (n+m− 1)-connected.

Proof. See [Win24, Thm. 5.4.1] and use that we may replace C by a homotopy equivalent
open neighborhood in A and B. �

As a consequence we record the following corollary which we might also be using a number
of times:

2.24. Corollary Let f : X → Y be a map and X → Y → C(f) its associated homotopy
cofibration sequence. If f is n-connected and X is m-connected, then the map X → hofib(Y →
C(f)) is (n+m− 1)-connected. In particular, there is a along exact sequence

πn+m(X)→ πn+m(Y )→ πn+m(C(f))→ πn+m−1(X)→ . . .

In general, this sequence does not extend further to the left.

2That is, a pushout square in which the maps i and j are relative CW inclusions
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Proof. Apply Theorem 2.23 to the homotopy pushout

X Y

C(X) C(f)

f

and use that the map X → C(X) ' ∗ is precisely as connected as X is. �

2.25. Remark Considering the map Sn → ∗, we find that the map Sn → ΩSn+1 is (2n− 1)-
connected. In this case, to extend the sequence appearing in Corollary 2.24 one further to
the left says that this map induces an isomorphism on π2n−1, not only a surjection. This
is incorrect for n = 2, in which this map is isomorphic to the canonical projection map
Z→ Z/2Z, see [Win24, Remark 5.4.9].

2.26. Example Consider a map f :
∨
β S

n →
∨
α S

n and write X = C(f). Then the map

itself is (n− 1)-connected and for all k ≥ 0,we obtain the following exact sequence.

π2n−2−k(
∨
β

Sn)→ π2n−2−k(
∨
α

Sn)→ π2n−2−k(X)→ π2n−3−k(
∨
β

Sn)→ π2n−3−k(
∨
α

Sn)

When n ≥ 2, we find 2n− 2 ≥ 0 and hence in particular obtain that πn(X) ∼= coker(πn(f)).
This isomorphism in fact also holds when n = 1 by the theorem of Seifert–van Kampen.

We come to the absolute Hurewicz theorem.

2.27. Theorem (1) Let X be a connected space. Then π1(X,x)→ H1(X;Z) is surjective
and induces an isomorphism π1(X,x)ab → H1(X;Z).

(2) Let X be an (n − 1)-connected space with n ≥ 2. Then the map hn : πn(X,x) →
Hn(X;Z) is bijective and the map hn+1 : πn+1(X,x)→ Hn+1(X;Z) is surjective.

Proof. Since homotopy and homology are invariant under weak equivalences Theorem 2.1, we
may assume that X is a CW complex, which in case (2) satisfies Xn−1 = skn−1(X) = ∗. We
recall that part (1) has been proven in Topology I, see [Lan23, Prop. 4.25]. But the argument
for (2) we will now give in fact also applies to case (1) by Example 2.26. Now we prove (2).
We observe that Xn =

∨
α S

n is a wedge of n-spheres, since we have Xn−1 = ∗. Moreover,
the diagram

πn(Xn+1) Hn(Xn+1;Z)

πn(X) Hn(X;Z)

whose vertical maps are induced by the inclusion Xn+1 ⊆ X commutes by the naturality of
the Hurewicz homomorphism, and the vertical maps are isomorphisms: On homotopy, this
follows by cellular approximation, and on homology we have argued this in Topology I, see
[Lan23, Cor. 4.76]. We may hence assume that X is replaced by Xn+1. Now, we consider the
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iterated pushout diagram ∐
β S

n
∨
β S

n
∨
α S

n

∐
β D

n+1
∨
β D

n+1 Xn+1

p

p

in which the top horizontal composite is homotopic to the attaching map to obtain Xn+1 from
Xn: Indeed, all the attaching maps can be homotoped to be pointed since Xn is connected.
Writing X in place of Xn+1, this shows that there is a homotopy cofibre sequence∨

β

Sn
f−→
∨
α

Sn → X.

By Example 2.26, we obtain an exact sequence

πn(
∨
β

Sn)→ πn(
∨
α

Sn)→ πn(X)→ 0.

By naturality of the Hurewicz homomorphism, we obtain that the following diagram com-
mutes:

πn(
∨
β S

n) πn(
∨
α S

n) πn(X) 0

Hn(
∨
β S

n;Z) Hn(
∨
α S

n) Hn(X;Z) 0

Now, the canonical map
⊕

β πk(S
n) → πk(

∨
β S

n) is an isomorphism for k < 2n (Exercise,

or see [Win24, 5.3.4]). The same is true for singular homology. We deduce from Lemma 2.17
that the left and middle vertical maps are isomorphisms. Consequently, so is the right vertical
map.

To show that the map hn+1 : πn+1(X)→ Hn+1(X;Z) is surjective, we may again compare
with Xn+1: On both πn+1(−) and Hn+1(−;Z), the map Xn+1 → X induces a surjection,
so it suffices to prove the result for Xn+1. One can always choose a CW structure on X
such that Xn+1 is homotopy equivalent to M(A,n) ∨

∨
α S

n+1: Here, A is an abelian group
(namely πn(X)), for which we choose a presentation A = coker(f :

⊕
I Z→

⊕
J Z) where we

may assume that f is injective! The matrix which represents the map f determines a map∨
I S

n →
∨
J S

n whose homotopy cofibre is M(A,n): This is a space with a single (reduced)
homology group, namely A in degree n. Clearly, we have a map M(A,n)→ X which induces
an isomorphism on πn(−). For an appropriate set S we may therefore build M(A,n)∨

∨
S S

n+1

and a map to X which is now in addition surjective on πn+1. Then we continue to attach
cells of higher dimension to make the map M(A,n)∨

∨
S S

n+1 → X a homotopy equivalence,
showing that the (n+ 1)-skeleton of X can be chosen as claimed.3 Hence, we are reduced to
proving that the Hurewicz map

hn+1 : πn+1(M(A,n)
∨
S

Sn+1)→ Hn+1(M(A,n) ∨
∨
S

Sn+1)

3Alternatively, we know that Xn+1 is given by C(f) for some map f :
∨
β S

n →
∨
α S

n, and homotopy
classes of such maps are equivalent to their effect on πn, in particular, f is determined up to homotopy by an
integral matrix. This can be put into Smith normal form, i.e. is zero outside of the diagonal. The cofibre of
such a map is also as claimed.
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is surjective. Since homology of a wedge is the sum of homology, this reduces to the case of
Sn+1, where we have already argued that the Hurewicz is an isomorphism, and M(A,n) in
which case Hn+1(M(A,n);Z) = 0 – precisely because we have chosen A to be constructed as
a cokernel of an injective map. �

To state the relative Hurewicz theorems, we need to recall some things about π1-actions
in fibrations. In the following lemma, we assume that for all points e ∈ E, the inclusion
{e} → Ep(e) = p−1(p(e)) is a cofibration. We also use the analog of [Win24, 5.2.6] for
fibrations not merely Serre fibrations).

2.28. Lemma Let p : E → B be a fibration, e ∈ E and b = p(e) and write Eb for p−1(b).
Then are associated canonical fibre functors Φp : τ≤1(B) → hTop and Ψp : τ≤1(E) → hTop∗
fitting into the commutative square

τ≤1(E) hTop∗

τ≤1(B) hTop

The constructions of Φp and Ψp are compatible with pullbacks of fibrations.

Proof. We define Φp as follows: On objects, it sends b ∈ B to the image of Eb under the
tautological functor Top→ hTop. To describe the effect on morphisms, we let γ : [0, 1]→ B
be a path from b to b′. We then consider the diagram:

Eb × {0} E

Eb × [0, 1] B

p

γpr2

h

Then h(−, 1) defines a map Φp(γ) : Eb → Eb′ . We now show that the homotopy class of Φp(γ)
is independent of the choice of h and depends only on the homotopy rel endpoint class of
γ. Indeed, assume that γ is homotopic rel endpoint to γ′ and that h is a choice of a dashed
arrow for γ and h′ a choice of a dashed arrow for γ′. Pick a map homotopy rel endpoints
Γ: [0, 1]× [0, 1]→ B such that Γ(−, 0) = γ and Γ(−, 1) = γ′. Consider then the diagram

(Eb × [0, 1]× {0, 1}) ∪ (Eb × {0} × [0, 1]) E

Eb × [0, 1]× [0, 1] B

h∪h′∪constib

Γpr2,3

H

One readily checks that this diagram commutes and since p is a fibration, a dotted arrow
exists. Then we find

(1) pH(e, 1, t) = Γ(1, t) = b′ for all t ∈ [0, 1] since Γ is a homotopy rel endpoints. In
particular, H(e, 1, t) ∈ Eb′ for all t ∈ [0, 1].

(2) H(e, 1, 0) = h(e, 1) and H(e, 1, 1) = h′(e, 1).

Hence, H(−, 1,−) : Eb × [0, 1]→ Eb′ is a homotopy from Φp(γ) to Φp(γ
′). Exercise: Use this

to show that the so-defined Φp is a functor.
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We now argue that we can similarly define a functor Ψp : τ≤1(E)→ hTop∗: On objects, it
sends e to Ep(e). Given a path γ : e→ e′ in E, we consider the diagram

Ep(e) × {0} ∪ {e} × [0, 1] E

Ep(e) × [0, 1] B

h

and again wish to define Ψp(γ) = h(−, 1). The argument that this is independent of the
choice of h and only depends on the homotopy rel endpoints class of γ is similar as above. It
follows again from the independence of all choices involved that the diagram

τ≤1(E) hTop∗

τ≤1(B) hTop

commutes. Finally, it is a direct check, again using the independence of all choices, that if

E′ E

B′ B

f̄

p′ p

f

is a pullback diagram with p a fibration, the composites

τ≤1(B′)
f∗−→ τ≤1(B)

Φp−−→ hTop and τ≤1(E′)
f̄∗−→ τ≤1(E)

Ψp−−→ hTop∗

are given by Φp′ and Ψp′ , respectively. �

We collect some further properties of the above constructions.

2.29. Remark (1) We continue to consider a fibration p : E → B. The above implies,
in particular, that for each point b ∈ B, there are group homomorphism π1(B, b) →
π0(hAut(Eb)) and π1(E, e)→ π0(hAut∗(Eb), e) fitting into a commutative diagram.

π1(E, e) π0(hAut∗(Eb))

π1(B, b) π0(hAut(Eb))

(2) One may apply these observations in particular to the fibration Y → ∗. In this case,
we obtain a map π1(Y, y) → π0(hAut∗(Y, y)) =: [Y, Y ]×∗ . Since πn(−) : hTop∗ → Grp
is a functor, one obtains an action of π1(Y, y) on πn(Y, y) for all n ≥ 1. For n = 1,
this is really just the evident action by conjugation. We say that Y is simple if the
resulting action is trivial for all n ≥ 1 and nilpotent if the resulting action is nilpotent
for every n ≥ 1, that is, there is a finite π1(Y, y)-equivariant filtration

πn(Y, y) = F0(πn(Y, y)) ⊇ · · · ⊇ Fk(πn(Y, y)) ⊇ Fk+1(πn(Y, y)) ⊇ · · · ⊇ FN (πn(Y, y)) = 0
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by normal subgroups on πn(Y, y) such that the action on Fk/Fk+1 is trivial for all
k ≥ 0.4 In particular, π1 of a simple space is abelian and π1 of a nilpotent space is a
nilpotent group. These notions will also play an important role in our discussion of
obstruction theory later.

(3) Let us also note that it follows from the above that there is an action of π1(B) on
πn(F )⊗Zπ1(F ) Z compatible with the π1(E)-action on πn(F ). Indeed, the obstruction
to making an unpointed homotopy equivalence of F act on homotopy groups is pre-
cisely the action of π1(F ) on πn(F ). The compatibility with the π1(E)-action is then
valid by construction.

(4) Let us finally note that for a fibration E → B with F = p−1(B) and e ∈ F , the long
exact sequence

. . . πn(E)→ πn(B)→ πn−1(F )→ πn−1(E)→ πn−1(B)→ . . .

is one of Z[π1(E)]-modules: Here the action of π1(E) on πn(F ) and πn(E) are as
desribed above, and the action on πn(X) is via the morphism π1(E)→ π1(X).

2.30. Remark In a similar vein, for pointed spaces (X,x) and (Y, y), there is an exact sequence

[S1 ×X,Y ]f
∂−→ π1(Y, y)→ [X,Y ]∗ → [X,Y ]→ π0(Y )

where the first term denotes the set (in fact group) of homotopy classes of pairs (S1×X, {1}×
X)→ (Y, Y ) where the map {1}×X → Y is given by any pointed map f : X → Y . The map
∂ takes [h] to h[−, x]. We recall that exactness at [X,Y ]∗ means that π1(Y, y) acts on [X,Y ]∗
and that two elements in [X,Y ]∗ go to the same element in [X,Y ] if and only if they differ by
(the action of) an element of π1(Y, y). Here, the action is given as follows: Let γ : [0, 1]→ Y
represent an element of π1(Y, y) and let f : (X,x)→ (Y, y) be a pointed map. Then consider
the diagram

X × {0} ∪ {x} × [0, 1] Y

X × [0, 1]

f∪γ

h

which admits a lift h as indicated. Then h(−, 1) is a new pointed map which we define to be
γ · f . That this construction is well-defined is done similarly as above. Exactness at [X,Y ]∗
is then the following argument: Clearly, γ · f and f go to the same element in [X,Y ] as h is a
homotopy between them. Conversely, suppose given two pointed maps f, g : (X,x) → (Y, y)
and assume that there exists a homotopy h : X × [0, 1] → Y . Then by construction h(x,−)
represents an element of π1(Y ) and the original homotopy is a witness that g = h(x,−) ·f . It
follows that if Y is simply connected, then the forgetful map [X,Y ]∗ → [X,Y ] is a bijection.
Moreover, γ ∈ π1(Y, y) acts trivially on f ∈ [X,Y ]∗ if and only if γ is in the image of the
map [S1 × X,Y ]f → π1(Y, y). In particular, if this map is surjective for every f ∈ [X,Y ]∗,
then π1(Y, y) acts trivially on [X,Y ]∗ and we find that the map [X,Y ]∗ → [X,Y ] is injective.
This is the case, for instance, when Y is an h-space with basepoint u ∈ Y the unit of the
multiplication. We give the argument in case the multiplication is strictly left-unital, i.e.

4When π1 acts on itself by conjugation, this means that Fk/Fk+1 ⊆ C(F0/Fk+1), where C(−) denotes the
centre of a group, and therefore such filtrations are also called central series.
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if u · − : Y → Y is equal to the identity (not only homotopic to the identity)5: In that
case, consider γ ∈ π1(Y, u) and f ∈ [X,Y ]∗ and define the map H : S1 × X → Y given by
(t, x) 7→ γ(t) · f(y). Then H indeed represents an element of [S1 ×X,Y ]f and ∂(H) = γ as
needed. In general, one has to use a homotopy extension property to correct the problem
that the multiplication in Y is only unital up to homotopy. We note that for f the constant
map c at the basepoint of y, the map [S1 ×X,Y ]c → π1(Y, y) is always surjective: Given γ,
simply consider the map (t, x) 7→ γ(t). In particular, the action of π1(Y, y) on the constant
map is always trivial, and therefore, the constant map is null homotopic if and only if it is
pointed null homotopic (a fact we have seen already in topology I).

All of the above is reminiscent of a putative fibration sequence map∗(X,Y )→ map(X,Y )→
Y , see also Remark 3.11. Indeed, if X is a locally compact CW complex with basepoint x,
then map(X,Y )→ Y , given by evaluating at x is a fibration with fibre map∗(X,Y ). We have
then constructed an action of π1(Y ) on the homotopy type of map∗(X,Y ) and in particular
on its π0, which identifies with [X,Y ]∗. The two π1(Y )-actions then agree as one readily
shows, and the slightly cumbersome relative homotopy group appearing as first term in the
above exact sequence translates simply to π1(map(X,Y ), f) and the above is the usual long
exact sequence in homotopy groups of a fibration.

2.31. Addendum For a group G, we may define the following filtration, called the lower
central series of G: Set Γ1(G) = G and inductively, for n ≥ 2, set Γn(G) = [G,Γn−1G], so
that we obtain a descending filtration

G = Γ1G ⊇ Γ2G ⊇ · · · ⊇ ΓnG ⊇ . . .

A group G is nilpotent if and only if there exists an N ≥ 1 such that ΓNG = 1 (Indeed,
one shows inductively that any central series contains the lower central series). The smallest
such N is called the nilpotency class of G. Note that G/Γ2G = Gab. Moreover, the associ-
ation g1, . . . , gn 7→ [. . . [[g1, g2], g3], . . . , gn] taking iterated commutators6 defines a surjective
homomorphism ⊗

n

Gab → ΓnG/Γn+1G

see [War76, Thm. 3.1]. As a consequence, given a morphism G→ H of groups which induces
a surjection Gab → Hab, it also induces a surjection of the associated graded of the respective
lower central series. In particular, in this situation, if G is nilpotent of class N , then H is
also nilpotent and is of class at most N . Moreover, the map G→ H is itself surjective.

We now come to the relative Hurewicz theorem.

2.32. Theorem Let (X,A) be an (n− 1)-connected pair with n ≥ 2 and X connected.

(1) If A is 1-connected, then πn(X,A)→ Hn(X,A;Z) is an isomorphism and πn+1(X,A)→
Hn+1(X,A;Z) is surjective.

(2) If A is connected, then πn(X,A)→ Hn(X,A;Z) is surjective and induces an isomor-
phism πn(X,A)⊗Z[π1(A,a)] Z→ Hn(X,A).

5If Y is a CW complex, one can make Y ∪ {u}[0, 1] into a homotopy equivalent and strictly left-unital
h-space (Exercise)

6Recall that [g, h] = ghg−1h−1 is the commutator of g and h.
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Proof. Again we may assume that (X,A) is a CW inclusion. To prove (1), we apply Theo-
rem 2.23 to the (almost) homotopy pushout square7

A X

∗ X/A

Since A → X is (n − 1)-connected and A → ∗ is 2-connected, we conclude that the induced
map F → ΩX/A is n-connected. Hence, πn(X,A) → πn(X/A) is an isomorphism and that
πn+1(X,A) → πn+1(X/A) is surjective. Now, X/A is itself (n − 1)-connected, so we de-
duce that πn(X/A) → Hn(X/A) is an isomorphism and that πn+1(X/A) → Hn+1(X/A) is
surjective from Theorem 2.27. In total this proves (1).

We prove (2). We denote by F the homotopy fibre of the inclusion A→ X. Then we claim
that the relative Hurewicz homomorphism, under the isomorphism πn(X,A) ∼= πn−1(F ) is
given by the following composite, see Remark 2.20:

(1) πn−1(F )→ πn(ΣF )→ πn(X̃/Ā)→ πn(X/A).

Here, the first map is induced by the unit map F → ΩΣF , the second and third maps are
induced by the commutative diagram

(2)

F Ā A

∗ X̃ X

by passing to vertical (homotopy) cofibres. Now, if n ≥ 3 then two situations simplify: Since
F is (n − 2)-connected, we find from Freudenthal that the map πn−1(F ) → πn(ΣF ) is an
isomorphism if n ≥ 3. Moreover, the composite of the first two maps in (1) identifies with

the relative Hurewicz homomorphism for the pair (X̃, Ā) which is an isomorphism by part
(1) since Ā is simply connected (again this uses n ≥ 3). It then remains to prove that

πn(X̃/Ā) ⊗Z[π1(X)] Z → πn(X/A) is an isomorphism. Again, note that since n ≥ 3 we have
π1(A) ∼= π1(X). In fact, this statement is also correct for n = 2 and we prove it in this
generality.

Indeed, we use the absolute Hurewicz theorem to translate this into the statement that,
equivalently, the map

Hn(X̃, Ā;Z)⊗Z[π1(X)] Z→ Hn(X,A;Z)

is an isomorphism. Now, we use several results from Exercise sheet 14 from the Topology I

course: Note that X̃ → X and Ā→ A are π1(X)-Galois covering spaces. Hence we find that

Csing(X̃;Z) as well as Csing(Ā;Z) are Z[π1(X)]-chain complexes, which are levelwise free, and

that Csing(X;Z) ∼= Csing(X̃;Z) ⊗Z[π1(X)] Z as well as Csing(A;Z) ∼= Csing(Ā;Z) ⊗Z[π1(X)] Z.
We deduce that the canonical map

Csing(X̃, Ā;Z)⊗Z[π1(X)] Z→ Csing(X,A;Z)

is an isomorphism as well. It hence remains to show that the canonical map

Hn(X̃, Ā;Z)⊗Z[π1(X)] Z→ Hn(Csing(X̃, Ā;Z)⊗Z[π1(X)] Z)

7To actually apply this, replace ∗ by C(A). Then X/A and C(i) are homotopy equivalent and all can be
phrased using C(i) instead of X/A.
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is an isomorphism. This is true more generally: Assume R is an associative ring, C is a chain
complex of free (right)R-modules, andM is a (left)R-module. Suppose that C is n-connected,
that is Hk(C) = 0 for k < n. Then we may construct a map C ′ → C such that C ′k = 0 for
k < n, C ′ also consists of free right R-modules, and the map C ′ → C is a quasi-isomorphism
– this is similar to a CW approximation of spaces and does not use that C consists of free
right R-modules. However, if C also consists of free right R-modules, we see that the map
C ′ → C is in fact a chain homotopy equivalence. Consequently, C ′⊗RM → C⊗RM is also a
chain homotopy equivalence. It hence suffices to prove that the comparison map (exchanging
the tensor product and the homology) is an isomorphism in case the chain complex satisfies
Ck = 0 for k < n in which case it simply follows from the right exactness of the functor
−⊗RM . This finishes the proof in case n ≥ 3.

For n = 2, we will now prove that

(a) the map π1(F )→ π2(ΣF ) identifies with π1(F )→ π1(F )⊗Z[π1(F )] Z ∼= π1(F )ab, and

(b) the map π2(ΣF )→ π2(X̃/Ā) is an isomorphism.

In total, this shows that for all n ≥ 2, the composite (1) identifies with the composite

πn−1(F )→ πn−1(F )⊗Z[π1(F )] Z→
[
πn−1(F )⊗Z[π1(F )] Z

]
⊗Z[π1(X)] Z.

Here, the π1(X)-action on πn−1(F ) ⊗Z[π1(F )] Z in the final term is the tautological action
indicated in Remark 2.29. Now, recall that F is connected, so that we have an exact sequence

π1(F )→ π1(A)→ π1(X)→ 1

showing that the above composite is indeed isomorphic to the map

πn−1(F )→ πn−1(F )⊗Z[π1(A)] Z

as claimed. To see (a) above, we consider the commutative diagram

π1(F ) π2(ΣF )

H1(F ) H2(ΣF )

∼=
∼=

whose lower horizontal arrow is the suspension isomorphism and the right vertical map is the
Hurewicz isomorphism for the 1-connected space ΣF . Finally, to see (b), to ease notation,
we assume that (X,A) is a 1-connected pair with π1(X) = 1 and need then to show that
π2(ΣF )→ π2(X/A) is an isomorphism. Note that this map is isomorphic to the map H1(F ) ∼=
H2(ΣF )→ H2(X/A) by the absolute Hurewicz theorem. Let us then consider the homotopy
pushout diagram

F A

∗ ' C(F ) C(i)

j

Now the map j is 1-connected, as is the map F → C(F ) ' ∗, in particular, from Seifert–van
Kampen, we see that π1(C(j)) = 1. From the homotopy excision theorem, we deduce that the
map ΩX ' hofib(j)→ ΩC(j) is 1-connected, i.e. surjective on π1. Note that the equivalence
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ΩxX ' hofib(j) is obtained from the commutative diagram

ΩxX F PxX

∗ A X

in which both squares are pullback squares. Here PxX denotes the space of paths in X which
start at x and the map PxX → X is given by taking the endpoint of the path – this map is
a fibration and hence F really is the homotopy fibre of A→ X.

Now we observe that the map ΩX → ΩC(j) admits a splitting on the level of spaces
induced by the tautological map C(j) → X: Indeed, consider the refinement of the right
upper pullback square

F C(F ) PxX

A C(j) X

which is obtained by showing that the map F → PxX may be extended over the inclusion
F → C(F ) by choosing a null-homotopy of the map F → PxX (which exists certainly as PxX
is contractible). Passing to vertical fibres, we obtain that the composite ΩX → ΩC(j)→ ΩX
is a homeomorphism since big square is a pullback.

Consequently, the map ΩC(j)→ ΩX induces an isomorphism on π1. In particular, π2(X) '
π2(C(j)) and by the absolute Hurewicz theorem, also H2(X) ∼= H2(C(i)). In particular, we
deduce that the upper horizontal sequence in the diagram

H2(A) H2(C(j)) H1(F ) H1(A) H1(C(i)) = 0

H2(A) H2(X) H2(X/A) H1(A) H1(X) = 0

is exact (and the lower one is exact by definition). We claim that all squares commute (one
perhaps only up to sign). For the left most and right most square, this follows immediately
from the factorization of the map A → X through C(i). For the other two squares it is
convenient to rewrite these using the suspension isomorphism as the diagram

H2(C(j)) H2(ΣF ) H2(ΣA)

H2(X) H2(C(i)) H2(ΣA)
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For the right hand side, it is a similar argument as before that ΣF → ΣA canonically factors
through C(i). Indeed, the following diagram commutes up to natural homotopy:

F ∗ ΣF ΣF

A X C(i) ΣA

C(j) X

ΣF ∗

j

i

The upper right most square then shows that the right of the above two squares of homology
groups commutes. To see that also the left one commutes, we have to observe that, up to
homotopy, the composite C(j) → X = X → C(i) factors as C(j) → ΣF → C(i), giving a
diagram (commutative up to homotopy):8

C(j) ΣF

X C(i)

showing that also the left of the two squares of homology groups commute. The 5-lemma
finally finishes the proof of the theorem. �

2.33. Remark An equivalent formulation of Theorem 2.32 is the following. Let f : X → Y
be an (n − 1)-connected map, n ≥ 2 with Y connected. Let F = hofib(f) be its homotopy
fibre and C(f) its homotopy cofibre. Then the Hurewicz homomorphism induces

(1) ifX is 1-connected, an isomorphism πn−1(F )→ Hn(C(f);Z) and a surjection πn(F )→
Hn+1(C(f);Z).

(2) in general, an isomorphism πn−1(F )⊗Z[π1(X)] Z→ Hn(C(f);Z).

As a consequence, we deduce the following version of Whiteheads theorem.

2.34. Corollary Let f : X → Y be a map between connected nilpotent spaces which induces
an isomorphism on singular homology. Then f is a weak equivalence.

Proof. First, we claim that f is 1-connected, i.e. surjective on π1. To see this, we employ the
argument from Addendum 2.31, so it suffices to note that the map π1(X)→ π1(Y ) induces a
surjection on abelianizations. This is true since these abelianizations are isomorphic, by the
Hurewicz homomorphism, to H1(X) and H1(Y ), respectively, and on homology, f induces an
isomorphism (in particular a surjection) by assumption. We now conclude that the homotopy
fibre F of f is connected, so it remains to show that F satisfies πn−1(F ) = 0 for all n ≥ 2.
We will show this by induction on n, but before doing so, we claim that the π1(X)-action on

8That this result is true on the level of homology is more directly implied by inspecting the top left most
square on singular chain complexes, and then expanding out cone sequences.
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πn−1(F ) is nilpotent for all n ≥ 2. To see this, we recall that the long exact sequence of the
homotopy fibre sequence F → X → Y

πn(X)→ πn(Y )→ πn−1(F )→ πn−1(X)→ πn−1(Y )

is one of Z[π1(X)]-modules. Moreover, by assumption, πn(Y ) and πn−1(X) are nilpotent
Z[π1(X)]-modules. As submodules, quotients, and extensions of nilpotent modules are again
nilpotent, the claim follows. Next, we show that if M is equipped with a nilpotent G-action
and M ⊗Z[G] Z = 0, then M = 0.9 To see this, we again argue by induction over the length of
a filtration as in the definition of nilpotent actions. The base case is the case where M itself
is equipped with a trivial G-action. But then we have 0 = M ⊗Z[G] Z ∼= M . Inductively, we
may then assume that there is a short exact sequence

0→M1 →M →M/M1 → 0

of Z[G]-modules with M/M1 having a trivial action and where M1 has a shorter filtration
witnessing the nilpotency of the G-action. From M ⊗Z[G] Z = 0 and the right exactness of

− ⊗Z[G] Z,10 we deduce that (M/M1) ⊗Z[G] Z = 0 and hence that M/M1 = 0 and thus that
M1 = M . Hence we conclude that M1 ⊗Z[G] Z = 0 and by induction that 0 = M1 = M .
Finally, we prove that πn−1(F ) = 0 by induction over n. Indeed, inductively, the relative
Hurewicz theorem provides the following isomorphism.

πn−1(F )⊗Z[π1(X)] Z ∼= Hn(C(f);Z) = 0

so we conclude that πn−1(F ) = 0 by the above argument and hence f is a weak equivalence.
�

3. Eilenberg-Mac Lane spaces and cohomology

We begin with the definition of Eilenberg-Mac Lane spaces.

3.1. Definition Let A be an abelian group and n ≥ 0. A space X is called an Eilenberg-Mac
Lane space of type (A,n) if it is equipped with a specified isomorphism θ : πn(X) ∼= A and
πk(X) = 0 for k 6= n.

We will see later that any two Eilenberg-Mac Lane spaces are homotopy equivalent via
a unique homotopy class of equivalence. Therefore, Eilenberg-Mac Lane spaces of type
(A,n) are often denoted K(A,n), but it is important to remember that the identification
πn(K(A,n)) ∼= A is part of the datum of an Eilenberg-Mac Lane space.

We begin by showing that Eilenberg-Mac Lane spaces exist:

3.2. Lemma Let A be an abelian group an n ≥ 0. There exists an Eilenberg-Mac Lane space
K(A,n).

Proof. When n = 0 we may take the set A with discrete topology as K(A, 0). When n = 1, we
have argued in Topology I that associated to the group A, we may consider the presentation
complex X(A) which comes with a specified isomorphism π1(X(A)) ∼= A. For n ≥ 2, we

9In case n = 2, this is to be read as the coinvariants of the G-action on π1(F ) instead of the displayed
tensor product.

10In case n = 2, the right exactness of the functor of coinvariants of the G-action.
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may perform a similar construction to obtain general Moore spaces for A: Choose short exact
sequence

0 −→
⊕
J

Z f−→
⊕
I

Z −→ A −→ 0

Since n ≥ 2, we may realise the map f as the map induced on πn from a map
∨
J S

n →∨
I S

n and consider its homotopy cofibre M(A,n) which now has a single homology group,
namely A in degree n. By the Hurewicz theorem, we then obtain a specified isomorphism
πn(M(A,n)) ∼= A.

We have now argued that for all pairs (A,n) with n ≥ 1, there exists an (n− 1)-connected
space M(A,n) equipped with an isomorphism πn(M(A,n)) ∼= A. We may now attach cells of
dimension ≥ n + 2 to M(A,n) to keep πn unchanged and to set πk equal to zero for k > n.
The resulting space is then a choice of a K(A,n). �

3.3. Example We have seen that Z → πn(Sn), given by 1 7→ [idSn ] is an isomorphism.
Moreover, πk(S

1) = 0 for k 6= 1 and hence S1, together with the just mentioned isomor-
phism, is a K(Z, 1). Likewise, the map Z ∼= π1(S1) ∼= π1(RP1) → π1(RPn) induces an
isomorphism Z/2Z ∼= π1(RPn) for all n ≥ 2, and Z → π2(S2) ∼= π2(CP1) → π2(CPn) in-
duces an isomorphism for all n ≥ 1. Since πk(RP∞) = 0 for k 6= 1 and πk(CP∞) = 0 for
k 6= 2, we find that RP∞ is a K(Z/2Z, 1) and CP∞ is a K(Z, 2). Here is another model
for K(Z, 2): Consider an infinite dimensional separable complex Hilbert space H. Then its
unitary group U(H) is contractible in the norm topology, this is a theorem of Kuiper. Scalar
multiplication by elements of U(1) = S1 defines a subgroup inclusion U(1) → U(H). The
quotient group PU(H) = U(H)/U(1), called the projective unitary group sits in a fibration
(in fact in a principal U(1)-bundle, we will discuss principal bundles in the next section)
U(1) → U(H) → PU(H), showing that PU(H) can be made into a K(Z, 2). Note that the
space PU(H) is a topological group, whereas it can be shown that CP∞ cannot be made into
a topological group.11

We have also discussed that Z ∼= π4(S4) ∼= π4(HP1) → π4(HP∞) is an isomorphism, but
it is not true that HP∞ is a K(Z, 4): Indeed, for every n ≥ 1, there is a fibration sequence
S3 → S4n+3 → HPn showing that πk(HP∞) ∼= πk−1(S3). We have not yet seen that the latter
groups are not trivial in general when k 6= 4, but this is true: π4(S3) ∼= Z/2Z, as we will
prove in the later stages of this course.

Finally, we discussed that infinite dimensional lens spaces provide models for K(Z/nZ, 1).
We have not found “easy” models for other Eilenberg–Mac Lane spaces.

3.4. Lemma Let A be an abelian group and n ≥ 0. Then the canonical map

Hn(K(A,n);A)→ Hom(A,A)

induced by the universal coefficient theorem is an isomorphism. The unique preimage under
idA will be denoted ιAn .

Proof. The universal coefficient theorem gives an isomorphism

Hn(K(A,n);A) ∼= Hom(Hn(K(A,n);Z), A)

since K(A,n) is (n− 1)-connected and hence the Ext-term vanishes. The Hurewicz theorem
provides a specified isomorphism πn(K(A,n)) ∼= Hn(K(A,n);Z) and the source is identified
with A by definition of K(A,n). �

11It can be made into a topological monoid, but not into a topological group, I believe.
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3.5. Lemma Let A be an abelian group an n ≥ 0. There is a map sn : ΣK(A,n)→ K(A,n+1)
such that under the suspension isomorphism, s∗n(ιAn+1) corresponds to ιAn . The map adjoint to
sn is an equivalence ŝn : K(A,n)→ ΩK(A,n+ 1).

Proof. The Hurewicz theorem (together with the homological suspension isomorphism) im-
plies that πn+1(ΣK(A,n)) comes with a specified isomorphism to A. By attaching higher cells,
we obtain the map sn : ΣK(A,n) → K(A,n + 1), which under the so chosen identifications
of πn+1 with A induces the identity on πn+1. Then we consider the diagram

Hn+1(K(A,n+ 1);A) Hom(Hn+1(K(A,n+ 1);Z), A)

Hn+1(ΣK(A,n);A) Hom(Hn+1(ΣK(A,n);Z), A)

Hn(K(A,n);A) Hom(Hn(K(A,n);Z), A)

which commutes by naturality of the UCT and by compatibility of UCT with the (co)homological
suspension isomorphisms. In each case, the horizontal maps are isomorphisms. The claim
then follows from the construction of the map sn: All homology groups in the right column
are identified with A in a way making the right vertical composite the identity map. Hence,
iAn+1 is sent to iAn under the left vertical composite as claimed. The map ŝn is then given by
the composite

K(A,n)→ ΩΣK(A,n)→ ΩK(A,n+ 1).

Hence to see that it is an equivalence, one only needs to check that it is an isomorphism
on πn. The first map is (2n − 1)-connected by Freudenthal and so induces an isomorphism
on πn if n > 1 and a surjection for n = 1. The second map is an isomorphism on πn
since we have shown that sn induces an isomorphism on πn+1. It remains to show that
the unit map K(A, 1) → ΩΣK(A, 1) is also injective on π1. So suppose it is not and pick
a ∈ A ∼= π1(K(A, 1)) which lies in the kernel. The element a gives rise to a commutative
diagram

S1 K(A, 1)

ΩS2 ΩΣK(A, 1)

The lower horizontal map, under the abstract identification of π1(ΩΣK(A, 1)) with A still
classifies the element a. Hence, it suffices to know that the left vertical map is injective on
π1. But this map is a surjection between finitely generated groups (namely Z) and hence
bijective.12 �

3.6. Definition Let X be a space, A an abelian group and n ≥ 0. We define a map
χAn : [X,K(A,n)]→ Hn(X;A) by sending [f ] to f∗(ιAn ).

Our goal is to prove the following theorem:

12In case A is finitely generated, any surjective self-map is an isomorphism. In general, A is a filtered
colimit of its finitely generated subgroups, and the map K(A, 1)→ ΩΣK(A, 1) is compatible with this filtered
colimit. Since filtered colimits of isomorphisms are isomorphisms, this also gives the claimed bijectivity of the
map under investigation.
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3.7. Theorem For a CW complex X, the map χAn : [X,K(A,n)]→ Hn(X;A) is a bijection.

Exercise. Convince yourself that the above theorem is true for n = 0.

For the proof of Theorem 3.7, we first record a couple of properties of the map χAn .

3.8. Lemma Let X be a space. The diagram

[ΣX,K(A,n+ 1)] Hn+1(ΣX;A)

[X,K(A,n)] Hn(X;A)

χAn+1

χAn

commutes. Here, the right vertical map is the suspension isomorphism and the left vertical
map is the adjunction bijection followed by the equivalence ŝn : ΩK(A,n + 1) ' K(A,n)
constructed above.

Proof. Let f : X → K(A,n) represent an element in the left lower corner. Its image in

the upper left corner is represented by the composite ΣX
Σf−−→ ΣK(A,n)

sn−→. Consider the
commutative diagram

Hn+1(ΣK(A,n);A) Hn+1(ΣX;A)

Hn(K(A,n);A) Hn(X;A)

Σ(f)∗

f∗

induced by the map f and the suspension functor and suspension isomorphism. By Lemma 3.5,
s∗n(ιAn+1), an element of the top left corner, corresponds under the left vertical bijection to ιAn .

Hence Σ(f)∗(s∗n(ιAn+1)) corresponds under the right vertical bijection to f∗(ιAn ). This proves
the corollary. �

3.9. Lemma The set [X,K(A,n)] is a group (in fact an abelian group) and the map χAn is a
group homomorphism.

Proof. Since K(A,n) ' ΩK(A,n + 1), we find that [X,K(A,n + 1)] is π0 of a loop space
and hence a group. In fact, since K(A,n) ' Ω2K(A,n + 2), [X,K(A,n)] is also π1 of a
loop space and hence an abelian group. Let us denote the multiplication map of K(A,n) by
m : K(A,n)×K(A,n)→ K(A,n). Then we find that m∗(ιAn ) is an element of

Hn(K(A,n)×K(A,n);A) ∼= Hom(A⊕A,A).

The fact that the multiplication is left and right unital implies that the resulting homomor-
phism A ⊕ A → A is the fold map, i.e. the identity on each summand of the source. This
implies the equation

m∗(ιAn ) = pr∗1(ιAn ) + pr∗2(ιAn ).

Now, the 0-element in [X,K(A,n)] is represented by the constant map which pulls ιAn back
to 0 as needed. Given two maps f, g : X → K(A,n), their sum in [X,K(A,n)] is represented
by the composite

X
(f,g)−−−→ K(A,n)×K(A,n)

m−→ K(A,n).
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Therefore we find

χAn (f + g) = (f, g)∗(m∗(ιAn ))

= (f, g)∗(pr∗1(ιAn )) + (f, g)∗pr∗2(ιAn ))

= f∗(ιAn ) + g∗(ιAn )

= χAn (f) + χAn (g)

as needed. �

We now treat a first basic case of Theorem 3.7.

3.10. Lemma Let A be an abelian group and n ≥ 0. The map χAn : [Sk,K(A,n)]→ Hn(Sk;A)
is an isomorphism for all k ≥ 0.

Proof. SinceK(A,n) is a loopspace, we find that πk(K(A,n)) ∼= [Sk,K(A,n)]∗ ∼= [Sk,K(A,n)],
see Remark 2.30. In particular, the statement of the lemma holds for trivial reasons when
k 6= n since then, both sides vanish. So let us consider the case k = n. We claim that the
following square commutes.

[Sn,K(A,n)] Hn(Sn;A)

Hom(Hn(Sn), Hn(K(A,n)) Hom(Hn(Sn), A)
∼=

where the left vertical map is induced by the functor Hn(−), the right vertical map is the
canonical map appearing in the universal coefficient theorem, and the lower horizontal map
is induced by the chosen identification Hn(K(A,n);A). Indeed, to see this, consider f : Sn →
K(A,n). Then the composite over the left lower corner is given by the composite Hn(Sn)→
Hn(K(A,n))→ A where the latter map is induced the chosen identification. The image of f
in the upper right corner is given by f∗(ιAn ). Since the right vertical map is natural, we see
that it sends f∗(ιAn ) to the image under f∗ : Hom(Hn(K(A,n)), A)→ Hom(Hn(Sn), A) of the
chosen identification of Hn(K(A,n)) with A, by definition of ιAn . This shows that the upper
square indeed commutes. It then suffices to note that both vertical maps are isomorphisms.
For the right vertical map this is what the universal coefficient theorem implies. Then we
note that the left vertical map, up to identifying the target with Hn(K(A,n)) via evaluation
at 1 ∈ Z and identifying the source with πn(K(A,n)) is the Hurewicz homomorphism, which
we have seen to be an isomorphism. �

3.11. Remark We will need the following observation, which implicitly has appeared in topol-
ogy II. We first observe: Namely, let (B,A) be a relative CW complex with A, B, and B/A
locally compact and consider a basepoint a ∈ A. Then the pushout square of pointed spaces

A B

∗ B/A
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induces, for any pointed space (X,x) a commutative diagram of pointed mapping spaces

Map∗(B/A,X) Map∗(B,X)

∗ Map∗(A,X)
constx

in which the right most vertical map is a Serre fibration: One directly checks that the square

Map∗(B,X) Map(B,X)

Map∗(A,X) Map(A,X)

is a pullback. Hence, it suffices to show that the right vertical map is a Serre fibration. By
adjunction, we wish to show that the left hand lifting problem

[0, 1]n−1 × {0} Map(B,X) [0, 1]n−1 ×B ∪ [0, 1]n ×A X

[0, 1]n Map(A,X) [0, 1]n ×B

can be solved. By adjunction yet again, this lifting problem is equivalent to the right hand
extension problem, which can be solved since the vertical map is a CW inclusion which is
a homotopy equivalence and [Win24, Cor. 5.2.6]. Now we claim that the above square of
pointed (or equivalently unpointed) mapping spaces is a homotopy pullback diagram, that is,
the map from Map∗(B/A,X) to the pullback is a weak equivalence. To do so, we investigate
whether this map is actually a homeomorphism: To do so, we consider a pointed test space
(T, t) and the left commutative diagram of pointed spaces

T Map∗(B,X) T ∧A T ∧B

∗ Map∗(A,X) T ∧ ∗ = ∗ X

which by adjunction and the fact that A and B are locally compact is equivalent to the right
commutative diagram. The right diagram is the same datum as a map from the pushout
to X, and if T is locally compact, e.g. X is a sphere or a disk, then this pushout is given
by T ∧ B/A. Using that B/A is locally compact, we adjoin again to see that this is the
same as a map T → Map∗(B/A,X). It follows that the square under investigation looks
like a pullback when tested only against locally compact spaces. It then follows that it is a
homotopy pullback diagram as claimed. In particular, we deduce that there is a long exact
sequence in homotopy groups for the homotopy fibration sequence

Map∗(B/A,X)→ Map∗(B,X)→ Map∗(A,X)

which looks like

[A,X]∗ ← [B,X]∗ ← [B/A,X]∗ ← [A,ΩX]∗ ← [B,ΩX]∗ ← . . .

In fact, for any map f : A→ B, we may alternatively consider the sequence of maps

A→ B ' Cyl(f)→ C(f)→ ΣA→ ΣB → Σ(C(f))→ Σ2A→ . . .
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which we have also considered in topology I when discussing the long exact sequence of
homology groups of a map of spaces, see [Lan23, Lemma 4.75]. In particular, we have shown
that applying Hn(−) or Hn(−) to this sequence, we obtain an exact sequence of homology
groups, which, together with the suspension isomorphism is the long exact sequence associated
to the mapping cone sequence A → B → C(f) (or rather its portion starting at Hn or Hn).
Using arguments entirely dual to the arguments involved in showing that a fibration induces
a long exact sequence in homotopy groups, one can show that the above sequence also induces
an exact sequence, called the Puppe sequence

[A,X]∗ ← [B,X]∗ ← [C(f), X]∗ ← [ΣA,X]∗ ← [ΣB,X]∗ ← . . .

see [tD08, Theorem 4.6.4] for a proof. This sequence is isomorphic to the one above under
the adjunction bijections [ΣY,X]∗ ∼= [Y,ΩX]∗.

With these preliminaries out of the way, we can prove Theorem 3.7:

Proof of Theorem 3.7. First, we note that both source and target of the map χAn send disjoint
unions of spaces to products. We may hence assume that X is connected and we may also
assume that n ≥ 1 in which case we note by Remark 2.30 that the map [X,K(A,n)]∗ →
[X,K(A,n)] is a bijection, so we may freely used pointed homotopy classes if we wish. Observe
that for k > n, the inclusion Xk → X induces an isomorphism on [−,K(A,n)](∗) as well as on
Hn(−;A): For the latter, we have done this explicitly in [Lan23, Cor. 4.76] and for the former,
it follows inductively from the fact that K(A,n) has trivial homotopy groups in dimension
bigger than n: Indeed, the Puppe sequence discussed in Remark 3.11 gives for each l ≥ k an
exact sequence∏

J

[Sl,K(A,n)]∗ ← [Xl,K(A,n)]∗ ← [Xl+1,K(A,n)]∗ ←
∏
J

[Sl+1,K(A,n)]← . . .

showing that the middle map is an isomorphism. It then follows (exercise) that also the map
[Xk,K(A,n)] → [X,K(A,n)] is an isomorphism. Hence, it suffices to prove the theorem for
finite dimensional and connected X. We will do this by induction over the dimension. The
case dim(X) = 0 is the case X = ∗ where the claim is obvious (both sides vanish for n > 0
and the case n = 0 has been argued earlier). For the inductive step, say from dimension k−1
to dimension k, we consider the Puppe sequence as above and note that, by naturality of the
map under investigation, the following diagram commutes and consists of exact rows.

[ΣXk−1,K(A,n)] [
∨
Sk,K(A,n)] [Xk,K(A,n)] [Xk−1,K(A,n)] [

∨
Sk−1,K(A,n)]

Hn(ΣXk−1;A) Hn(
∨
Sk;A) Hn(Xk;A) Hn(Xk−1;A) Hn(

∨
Sk−1;A)

We observe that since n ≥ 1, the wedge sum’s may be commuted to a direct sum outside of
homotopy classes and cohomology. By Lemma 3.10 the second vertical map from left and the
final vertical map are isomorphisms. Moreover, by induction, the second vertical map from
the right is an isomorphism, and by Lemma 3.8, the same is true for the left most vertical
map. Hence, the 5-lemma implies that the middle vertical map is also an isomorphism. �

3.12. Remark Given an abelian group A and n ≥ 0, we may view Hn(−;A) as a functor
hTopop → Set. Given a space X equipped with a class x ∈ Hn(X;A), the Yoneda lemma
provides a canonical natural transformation [−, X]→ Hn(−;A); it sends a map f : X ′ → X
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to f∗(x). Theorem 3.7 implies that this transformation, for K(A,n) and ιAn is an isomorphism
on CW complexes, so one says that the functor Hn(−;A) is representable on CW complexes,
and a representing object is (K(A,n), ιAn ). Since the Yoneda lemma is fully faithful, any two
representing objects are uniquely isomorphic. For us this means that any two Eilenberg–Mac
Lane spaces (say we require them to be CW complexes) are homotopy equivalent via a unique
homotopy class (which is specified by being compatible with the respective tautological classes
ιAn ).

From Example 3.3 we deduce:

3.13. Corollary There are specified isomorphisms [X,S1] ∼= H1(X;Z) and [X,CP∞] ∼=
H2(X;Z).

3.14. Corollary The canonical map [K(A,n),K(B,n)] → Hom(A,B) obtained by apply-
ing Hn(−) is an isomorphism. For 0 < n < k, we have [K(A, k),K(B,n)] = 0 and
[K(A, k),K(B, 0)] = B when k > 0.

Proof. By representability and the Hurewicz isomorphism, we have isomorphisms

[K(A, k),K(B,n)] ∼= Hn(K(A, k);B) ∼= Hom(Hn(K(A, k)), B)

where the last isomorphism holds, by the universal coefficient theorem, for n ≤ k. All claims
then follow from the fact that K(A, k) is k-connected and the Hurewicz theorem. �

3.15. Corollary If K(A,n) is a locally finite CW complex and n ≥ 1, we have

πk(Map(K(A,n),K(B,n), const) =


Hom(A,B) for k = 0

B for k = n

0 else

and therefore, Map∗(K(A,n),K(B,n)) = K(Hom(A,B), 0).

Proof. Indeed, under the locally finite assumption, we have πk(Map(K(A,n),K(B,n), const) =
[K(A,n),K(B,n − k)] so the above computation yields the result. Moreover, the evalua-
tion map Map(K(A,n),K(B,n)) → K(B,n) induces an isomorphism on πn, since the map
∗ → K(A,n) induces an isomorphism on H0(−;B). Hence, the result follows from the fibre
sequence

Map∗(K(A,n),K(B,n))→ Map(K(A,n),K(B,n))→ K(B,n)

discussed in Remark 3.11. �

3.16. Remark The groups Hn(K(A, k);B) ∼= [K(A, k),K(B,n)] are bijective, by Yoneda’s
lemma (applied in the homotopy category of CW complexes), to the set of natural transfor-
mations Hk(−;A)→ Hn(−;B). The above results therefore say that there are no non-trivial
natural transformations between cohomology functors which lower the degree, and that all
natural transformations which preserve the degree are given simply by the ones induced from
group homomorphisms. We have already seen that there are in fact natural transformations
which raise the degree: The Bockstein map is a natural map

Hn(−;Z/pZ)→ Hn+1(−;Z)

and hence corresponds to a unique homotopy class β : K(Z/pZ, n)→ K(Z, n+ 1). Exercise:
Recall that this map is non-trivial and think about whether you know this map for p = 2 and
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n = 1 (or more generally for any p and n = 1) In general, for n > k, the groups

[K(A, k),K(B,n)] ∼= Hn(K(A, k);B)

are non-trivial in many cases, but it is not an easy argument to see this:13 The simplest case
might be where A is finitely generated and B = Z. By the UCT and by considering A as the
filtered colimit over its finitely generated subgroups, one may hope to evaluate the general
case, although we remark that this filtered colimit translates into a derived inverse limit; these
involve higher derived functors of the inverse limit, and such higher derived functors (unlike
in the colimit case) can be non-trivial in arbitrarily high degrees...! Perhaps even simpler
might be the cases B = Fp and B = Q, i.e. where B runs through the prime fields. In any
event, we observe that for A finitely generated, K(A, k) is a finite product of spaces of the
form K(C, k) where C is cyclic, so one may appeal to the Künneth theorem to argue that
it “suffices” to compute the case where A is cyclic. Later, we will prove some things about
H∗(K(Fp, k);Fp) (perhaps only when p = 2) in particular, that this is non-trivial.

The fact that by Yoneda’s lemma, it is “easy” to describe natural transformations from a
representable functor to an arbitrary functor is something we will come back to in the next
section.

We end with some sample applications one gets from representability and knowing some-
thing about representing objects (you might try to prove the first part of the following corol-
lary by hand):

3.17. Corollary Let X be a topological space and x ∈ H1(X;Z). Then 0 = x2 ∈ H2(X;Z).
Moreover, there every natural transformation H1(−;Z)→ Hk(−;A) for k > 1 is trivial.

Proof. Indeed, the first claim is true in the universal case K(Z, 1) since H2(K(Z, 1);Z) ∼=
H2(S1;Z) = 0, and x2 = f∗(ιZ1 )2 with ιZ1 ∈ H1(S1;Z) for the map f : X → K(Z, 1) classifying
x. To see the second, we recall that the set of such natural transformations is given by
Hk(K(Z, 1);A) = 0. �

In a similar vein, we have (I invite you to think of more immediate such consequences):

3.18. Corollary Let k be an odd number and n an even number. Then every natural trans-
formation H2(−;Z)→ Hk(−;A) and every natural transformation H1(−;F2)→ Hk(−;Z) is
trivial.

Proof. Again, such natural transformations are given by Hk(CP∞;A) and Hk(RP∞;Z), re-
spectively. Both vanish since k is odd. �

Exercise. Describe as explicitly as you can the natural transformations H2(−;Z) →
H2n(−;A) and H1(−;F2)→ H2n−1(−;A) for abelian groups A and natural numbers n ≥ 1.

As indicated above, later in this course we will be very interested in studying natural
transformations Hk(−;F2) → Hk+i(−;F2) for i > 0. We will see that there are many such
operations, called Steenrod operations, and they will be extremely helpful in further studying
obstructions, e.g. for certain spaces to be homotopy equivalent to closed manifolds (the only
obstructions we really know so far are consequences of Poincaré duality, but it turns out that
there are more).

13An exception: If B is a ring, then the cup product gives a natural map Hn(−;B) → H2n(−;B) – this
map will in fact be the source of many non-trivial classes.
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4. Principal bundles, fibre bundles, and fibrations

For the purpose of this section, we will consider a topological group G. For a more thorough
treatment of principal bundles (we try to be quick here) one can consult [tD08, §14].

4.1. Definition Let G be a topological group and E a topological space. A continuous right
action of G on E, i.e. a continuous map E × G → E, (e, g) 7→ eg, is called principal if the
projection map p : E → E/G satisfies the following condition: There exists an open cover
{Ui}i∈I of E/G and G-equivariant homeomorphisms Ui ×G→ p−1(Ui) compatible with the
respective projections to Ui.

A map p : E → B is called a principal G-bundle, if there exists a principal G-action on E
for which p is equivariant (with respect to the trivial G-action on B) and such that p induces
a homeomorphism E/G → B. A map of principal G-bundles p : E → B and p′ : E′ → B
is a G-equivariant map ϕ : E → E′. It is called an isomorphism if it admits an inverse (or
equivalently, if ϕ is a homeomorphism).14

4.2. Remark We note that the definition of a principal G-bundle implies that the projection
map p : E → B is surjective, and a quotient map. Moreover, a principal G-bundle p : E → B
is obviously a fibre bundle (with typical fibre G), and hence also a Serre fibration, see [Win24,
Lemma 5.2.2]. In fact, a numerable fibre bundle is even a Hurewicz fibration. Being numerable
means that there exists a trivializing open cover which admits a subordinate partition of unity.
This is automatic if the base space is paracompact, but not in general.

4.3. Remark Given a principal G-bundle p : E → B, consider a trivializing open cover
{Ui}i∈I . Denote by Uij = Ui ∩ Uj the intersection. Then there are G-homeomorphisms
Uij ×G ∼= p−1(Uij) ∼= Uij ×G, where the first homeomorphism comes from the trivialization
over Ui and the second comes from the trivialization over Uj . This G-equivariant homeomor-
phism is, since it is compatible with the projection p, equivalently given by a continuous map
sij : Uij → G. These maps satisfy cocyle conditions:

(1) sii(u) = 1 for all u ∈ Ui,
(2) sji(u) = sij(u)−1 for all u ∈ Uij , and
(3) sik(u) = sjk(u) · sij(u) for all u ∈ Uijk = Ui ∩ Uj ∩ Uk

and are called the associated cocycles of E → B. Given functions sij : Uij → G satisfying
these conditions, one can construct a principal G-bundle whose associated cocylces are given
by sij . (Exercise. Hint: Use these functions to form a suitable quotient of

∐
i∈I Ui ×G).

4.4. Remark The fibres of a principal G-action on E over p(e) are homeomorphic to G:
Indeed, the map {e}×G→ p−1({e}), g 7→ eg is a homeomorphism. In particular, a principal
action of G on E is free. For any free action, consider the set tG(E) = {(e, eg) | e ∈ E, g ∈
G} ⊆ E ×E of all G-translates of points of E, and the translation map tG(E)→ G, sending
(e, eg) to g.15 For a principal G-action, this translation map is continuous (exercise). Tom
Dieck calls free actions with continuous translation map weakly proper actions. Note that
if the G-action on E is weakly proper, and U ⊆ E/G is open and EU is the preimage of
U under the projection E → E/G, then EU is a G-invariant open subset of E and the G-
action on EU is again weakly proper: Indeed, the translation map is simply the composite

14Indeed, any inverse of ϕ is automatically a bundle map.
15This is well-defined since the action is free.
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tG(EU ) ⊆ tG(E) → G. In Remark 4.14 below, we note under what assumptions free and
weakly proper actions are principal.

4.5. Example Suppose G is a discrete group. Then a principal action is the same as a
covering-like action in the sense of Topology I [Lan23]. In particular, when G is discrete,
principal G-bundles are the same datum as Galois covering spaces whose Deck transformation
group is identified with G.

4.6. Example For any space B, the map B ×G → B is evidently a principal G-bundle and
is called the trivial principal G-bundle; in fact any bundle isomorphic to B ×G→ B will be
called trivial. By definition, any principal G-bundle is locally trivial (on the target) but not
necessarily globally trivial, see the next example.

4.7. Example The projection maps S2n+1 → CPn are principal S1-bundles. Indeed, S1

acts diagonally on S2n+1 ⊆ Cn+1, this action is free. For 0 ≤ i ≤ n, consider the subset
Ui of S2n+1 consisting of points (x0, . . . , xn) ∈ S2n+1 ⊆ Cn+1 with xi 6= 0. Consider the
map Ui → Ui/S

1 × S1 given by the projection in the first product factor and by the map
sending (x0, . . . , xn) to xi

‖xi‖ in the second factor. One checks that this is an S1-equivariant

homeomorphism and concludes that S2n+1 → CPn is a principal S1-bundle. These are all
examples of bundles which are not trivial: S2n+1 is not homeomorphic to CPn×S1 (Exercise:
find all arguments you can for this).

The same arguments apply for RPn, which participates in a principal C2
∼= O(1)-bundle

Sn → RPn, see Example 4.5, and HPn, which participates in a principal S3 ∼= SU(2) ∼= Sp(1)-
bundle S4n+3 → HPn. None of these examples are trivial bundles (same exercise as above).

Exercise. Show that ΩRPn ' C2 ×ΩSn, ΩCPn ' S1 ×ΩS2n+1 and ΩHPn ' S3 ×ΩS4n+3.

4.8. Example Let p : E → B be a principal G-bundle and let f : B′ → B be a map of spaces.
Let p′ : E′ = E ×B B′ → B′ be the pullback of p along f . Then p′ is again a principal
G-bundle. We often write f∗(E) for the pullback principal G-bundle.

4.9. Definition For a topological space B, we denote by BunG(B) the collection of isomor-
phism classes of principal G-bundles.

4.10. Lemma The association B 7→ BunG(B) refines to a functor Topop → Set.

Proof. First, we have to see that BunG(B) is a set: To do so, note that any two principal G-
bundles over B have the same cardinality, namely that of B ×G. In particular, isomorphism
classes of principal G-bundles over B can be thought of as certain topologies on the set B×G,
and there is a set worth of such topologies. Now, for f : B → B′ we need to define an induced
map f∗ : BunG(B′) → BunG(B). We do so by setting f∗[E′ → B′]) = [f∗(E′) → B]. This
indeed provides the claimed functor, since g∗(f∗(E′)) is isomorphic to (gf)∗(E′) and id∗(E)
is isomorphic to E. �

The following is an important concept not only in algebraic topology, but also in (differen-
tial) geometry, and will become crucial in our later investigation of manifolds:
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4.11. Definition Let G be a topological group, A an abelian group and n ≥ 0. A character-
istic class θ of type (A,n) for principal G-bundles is a natural transformation BunG(−) →
Hn(−;A) of functors Topop → Set.

Concretely, a characteristic class θ of type (A,n) therefore gives, for each principal G-
bundle p : E → B, a cohomology class θ(p) ∈ Hn(B;A) satisfying the following compatibility
constraint. For a map f : B′ → B with pullback bundle f∗(p) : f∗(E) → B′, we have the
equation θ(f∗(p)) = f∗(θ(p)). We will study characteristic classes to some extend later in
this lecture course, though only for very specific groups G.

We now come to some basic properties of principal bundles and bundle maps.

4.12. Lemma Let p : E → B and p′ : E′ → B be principal G-bundles and let ϕ : E → E′ be a
map of principal G-bundles. Then ϕ is an isomorphism.

Proof. Let us first argue that ϕ is a bijection. To see surjectivity, for e′ ∈ E′ we can choose
an element e ∈ E such that p(e) = p′(e′). Then ϕ(e) and e′ lie in the same fibre of p′. Since G
acts transitively on the fibres of p′, we see that there exists a g ∈ G such that gϕ(e) = e′. Since
ϕ is G-equivariant, we deduce that ϕ(ge) = e′ so ϕ is surjective. To see injectivity, we argue
similarly. If e0 and e1 satisfy ϕ(e0) = ϕ(e1), then we conclude that p(e0) = p(e1) so e0 and e1

lie in the same fibre of p. But ϕ|p−1(b) is a G-equivariant between free G-spaces, and is hence
injective. Consequently, ϕ is also injective. To see that ϕ is open, we may choose an open
cover {Ui}i∈I such that p and p′ are trivial over each Ui. The restriction of ϕ to p−1(Ui) is
then a map Ui×G→ Ui×G over Ui which is G-equivariant (in particular bijective by what we
have argued before). Such maps are equivalently given by non-equivariant maps Ui → Ui×G,
and being over Ui corresponds to the first map being the identity. Hence the above map is
given by (u, g) 7→ (u, q(u)g). This map has inverse given by (u, h) 7→ (u, q(u)−1h) which is
continuous since the inverse map on G is continuous. Hence, the map ϕ is locally open and
thus open, and consequently a homeomorphism. �

The following is a basic, but important and useful property of principal bundles.

4.13. Lemma Let p : E → B be a principal G-bundle. Then p admits a section if and only if
p is trivial.

Proof. The if assertion is immediate. So let s : B → E be a section to p. We obtain a bundle
map B×G→ E by sending (b, g) to g ·s(b). By Lemma 4.12 this map is an isomorphism. �

4.14. Remark In fact, there is the following strengthening of Lemma 4.13 Let G act (freely
and) weakly properly on E. Then E is G-equivariantly isomorphic to B × G if and only
if E → E/G admits a continuous section. (Exercise. Hint construct an explicit inverse of
the map B × G → E considered in the above proof using the fact that the action is weakly
proper).

In particular, a weakly proper action is a principal action if and only if the projection map
E → E/G has locally on the target continuous sections (recall that the restriction of the
G-action to preimages of opens of E/G is again weakly proper).

4.15. Example We add an example which uses some notions from smooth manifolds (which
we will not address here). Let G be a Lie group and H a closed subgroup. Then H acts by
right multiplication on G and this action is weakly proper. Moreover, G/H is naturally a
smooth manifold and the projection map G → G/H is a submersion. Since any submersion



TOPOLOGY III 31

between smooth manifolds admits local sections (as a consequence of the implicit function
theorem), we deduce that the right multiplication action of H on G is principal and G→ G/H
is a principal H-bundle.

In fact, more generally, if G is a topological group and H ⊆ G is a subgroup, then the right
multiplication action of H on G is weakly proper. Moreover, the projection map p : G→ G/H
is a principal H-bundle if p has a section in a neighborhood of [1] ∈ G/H – in the Lie group
case and when H is closed, this local section exists automatically, but in general it does not.

We will next address the following two important theorems:

4.16. Theorem (Homotopy theorem) The functor BunG : Topop → Set is a homotopy functor
on CW complexes, i.e. its restriction to spaces that admit a CW structure factors through
Top→ hTop.

4.17. Theorem (Classification theorem) The functor BunG(−) : hTopop → Set is repre-
sentable on CW complexes.

4.18. Remark One can avoid the restriction to CW complexes if one replaces BunG(−) by
Bunnum

G (−) which takes isomorphism classes of numerable principal G-bundles. Then both
the homotopy and the classification theorem hold true for all spaces, as we will indicate below.

A representing object is therefore in particular principal G-bundle which we denote by
EG → BG. That this principal G-bundle represents BunG(−) on CW complexes is the
statement that for any CW complex B, the map [B,BG] → BunG(B), f 7→ f∗(EG), is a
bijection. Again, Yoneda’s lemma implies that a universal principal G-bundle is unique up
to unique homotopy classes of homotopy equivalences. We refer to BG as a classifying space
for G or more precisely, for principal G-bundles. A consequence of the above and Yoneda’s
lemma is also given by the following characterization of characteristic classes:

4.19. Corollary A characteristic class of type (A,n) for for principal G-bundles is the same
datum as an element θ ∈ Hn(BG;A).

Therefore, computing the cohomology of classifying spaces is one way to describe charac-
teristic classes.

To establish the above theorems, we will use the following construction which is interesting
in its own right:

4.20. Construction Let E → B be a principal G-bundle and let F be a space equipped with
a continuous left G-action. The associated bundle is the map E ×G F → B. Here the map is
induced by the G-equivariant map F → ∗, and E ×G F refers to the quotient of the diagonal
right G-action on E×F given by g · (e, f) = (eg, g−1f). This associated bundle is now a fibre
bundle with typical fibre F (Exercise. Hint: think about the case where E → B is trivial,
and reduce to this case).

Conversely, given a fibre bundle p : E → B with typical fibre a locally compact space F ,
we construct a principal Homeo(F )-bundle using Remark 4.3 as follows. Pick a trivializing
open cover {Ui}i∈I . Then there are homeomorphisms Uij ×F ∼= p−1(Uij) ∼= Uij ×F over Uij .
These are equivalently given by a continuous map Uij → Homeo(F ) and one checks that they
satisfy the cocycle relations. Therefore one obtains a principal Homeo(F )-bundle.

One can show that these constructions yields a one-to-one correspondence between isomor-
phism classes of fibre bundles with typical fibre a locally compact space F and isomorphism
classes of principal Homeo(F )-bundles.
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4.21. Example Let G → G′ be a continuous group homomorphism and let E → B be a
principal G-bundle. We may view G′ as a left G-space via the map f and form the associated
bundle E×GG′ → B. This turns out to be a principal G′-bundle and in fact, this construction
gives rise to a natural transformation of functors BunG(−)→ BunG′(−).

Consequently, given a locally compact left G-space F , the associated bundle E ×G F can
be factored as follows: From the continuous group homomorphism G → Homeo(F ), we can
construct the principal Homeo(F )-bundle E ×G Homeo(F ) and then form the tautologically
associated bundle [E ×G Homeo(F )]×Homeo(F ) F which is isomorphic to E ×G F .

For a continuous group homomorphism G→ Homeo(F ), one then says that a fibre bundle
X → B with fibre F has structure group reduced to G if this bundle is equipped with an
isomorphism to an associated bundle E×G F for some principal G-bundle E → B, or equiva-
lently, in hopefully evident notation, if the cocycles sij : Uij → Homeo(F ) are equipped with
cocycle lifts ŝij : Uij → G along the map G→ Homeo(F ).

4.22. Example A vector bundle E → B is a fibre bundle with typical fibre Rn together with
a factorization of the maps Uij → Homeo(Rn) =: Top(n) through the inclusion GLn(R) ⊆
Top(n). In particular, by the above, a vector bundle is the associated bundle of a principal
GLn(R)-bundle via the left GLn(R)-space Rn. The same is true for complex or quaternionic
vector bundles; these are equivalently given by GLn(C) and GLn(H)-principal bundles, re-
spectively.

The principal GLn(K)-bundle corresponding to a K-vector bundle is called the frame bundle
or bundle of frames: In each fibre, it is simply given the space of basis on each fibre, and
GLn(K) acts freely and transitively on the space of bases of a fixed n-dimensional vector
space.

Equipping a real vector bundle with a Riemannian metric amounts to reducing the structure
group from GLn(R)-bundle to O(n), and likewise equipping a complex vector bundle with a
hermitian metric amounts to reducing the structure group from GLn(C) to U(n) (Exercise).

4.23. Corollary Theorem 4.17 implies that every fibre bundle (over a CW complex) with typi-
cal fibre F is pulled back from the universal such bundle, which is given by EHomeo(F )×Homeo(F )

F → BHomeo(F ). In particular, fibre bundles over a contractible space are globally triv-
ial. The same is true for the functor taking isomorphism classes of K-vector bundles for
K = R,C,H.

Later, we will be particularly interested in characteristic classes of vector bundles, by which
we mean, characteristic classes of GLn(R)-principal bundles.

4.24. Definition Let p : E → B and p′ : E′ → B′ be principal G-bundles. A bundle map
from p : E → B to p′ : E′ → B is a G-equivariant continuous map E → E′, or equivalently, a
commutative diagram

E E′

B B′

f̄

p p′

f

where f̄ is G-equivariant.
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4.25. Remark The diagram appearing in the definition of bundle maps is a pullback: Indeed,
the commutative diagram induces a map E → f∗(E′) which is a bundle map over the identity
and hence an isomorphism by Lemma 4.12.

The following is a basic, but very useful observation.

4.26. Lemma Let p : E → B and p′ : E′ → B′ be principal G-bundles. Then bundle maps
from p to p′ correspond bijectively to sections of the associated bundle E ×G E′ → B.

Proof. Let f : E → E′ be a bundle map, i.e. a G-equivariant map. Consider then the com-
posite E → E ×E′ → E ×G E′ where the first map is the pair (idE , f) and the second is the
canonical projection. Concretely, this composite is given by e 7→ [e, f(e)]. Observe that for
all g ∈ G, we have eg 7→ [eg, f(eg)] = [eg, f(e)g] = [e, f(e)]. Consequently, as p is isomorphic
to the projection map E → E/G, the just described map descends to a continuous map
s : B → E ×G E′. The composite of this map with the projection E ×G E′, which is given by
[e, e′] 7→ p(e) is then the identity by construction, so s is a section of the associated bundle
as needed.

Conversely, let s : B → E ×G E′ be a section of the associated bundle. Pick a trivializing
open cover {Ui}i∈I of E → B. Then E×GE′ is also trivial over this cover since E|Ui ×GE′ ∼=
(Ui×G)×GE′ = Ui×E. The section s is equivalently described by maps si = s|Ui which can be
regarded as continuous maps Ui → E′. One can then form the maps s̄i : E|Ui

∼= Ui×G→ E′,
induced by sending (x, g) ∈ Ui × G to si(x) · g. All the maps s̄i are continuous and they
agree on intersections (exercise), hence they determine a unique continuous map f : E → E′

which is G-equivariant by construction; concretely, this is given by sending an e ∈ E to the
following point of E′: write s(b) = [s1(b), s2(b)] and observe that p(s1(b)) = b since s is a
section. Since the G-action on E is free, we may represent [s1(b), s2(b)] uniquely by the tuple
(e, e′) and doing so, we have f(e) = e′.

It is then readily checked that these two constructions are inverse to each other. �

We can now prove the homotopy theorem for bundles.

Proof of Theorem 4.16. Let us consider a principal G-bundle E → B× [0, 1] and let us denote
by E0 its pullback to B × {0} and likewise by E1 its pullback to B × {1}. We will construct
a bundle map appearing in the right square of the following diagram

E0 E E0

B × {0} B × [0, 1] B
pr

making both horizontal composites the identity map. By Lemma 4.26, this is equivalent to
constructing an appropriate section of the associated bundle E ×G E0 → B × [0, 1]. The
condition that the above composites ought to be the identity imply that we wish to solve
the following lifting problem, in which the top arrow is given by the tautological section of
E0×G E0 → B, followed by the map E0×G E0 → E ×G E0 induced by the inclusion E0 ⊆ E.

B × {0} E ×G E0

B × [0, 1] B × [0, 1]
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Since the associated bundle is a fibre bundle, it is a Serre fibration, and hence, if B is a
CW complex, a dashed arrow exists.16 Hence, there exists a bundle map E → E0 over
pr : B × [0, 1] → B, and consequently, we find an isomorphism of principal G-bundles E ∼=
E0× [0, 1] = pr∗(E0) over B× [0, 1] as a consequence of Lemma 4.12, and this map restricts to
the identity upon pullback to B×{0}. This isomorphism however also induces an isomorphism
E1
∼= E0 by restricting along B × {1} → B.

We finish by arguing that this implies the theorem: Let f, g : B → B′ be homotopic maps
and E′ → B′ a principal G-bundle. We wish to show that f∗(E′) and g∗(E′) are isomorphic.
To see this, let h : B× [0, 1]→ B′ be a homotopy between f and g and let E = h∗(E′). Then,
on the one hand, f∗(E′) = E0 and g∗(E′) = E1, and on the other we have just constructed
an isomorphism E1

∼= E0 of G-bundles over B, finishing the proof of the theorem. �

To go towards the proof of the classification theorem for principal G-bundles, we will to this
is a two step process: First, we will prove a recognition principle for universality of a principal
G-bundle, and then we will show that such a bundle exists. The recognition principle is the
following analog of a result in covering theory which we have proven in [Lan23].

4.27. Proposition Let p : E → B be a principal G-bundle with E weakly contractible. Then
p is universal on spaces which admit a CW structure.

Proof. We need to show that for all CW complexes B′, the map [B′, B] → BunG(B′) given
by f 7→ f∗(p) is a bijection. To prove surjectivity, let p′ : E′ → B′ be a principal G-bundle.
By Lemma 4.12, it suffices to construct a bundle map E′ → E. By Lemma 4.26 this amounts
to constructing a section of the associated bundle E ×G E′ → B. This is a fibre bundle with
weakly contractible fibre E′, and hence this map is a weak equivalence. Hence, the lifting
problem

∅ E ×G E′

B B

admits a solution as we have shown in topology II [Win24, Prop. 5.2.15]. To see injectivity,
consider two maps f, g : B′ → B and an isomorphism f∗(p) ∼= g∗(p). Equivalently, we may
consider a principal G-bundle p′ : E′ → B′ with two bundle maps E′ → E lying over f and g
respectively. We need to show that these bundle maps are G-equivariantly homotopic, so that
we find that f and g are homotopic in the usual sense. Now one observes that a G-equivariant
homotopy is equivalently a bundle map E′ × [0, 1] → E, where the former is the principal
G-bundle E′× [0, 1]→ B× [0, 1]. By the same argument as in the surjectivity and translating
such a bundle map to suitable sections, it suffices to solve the lifting problem

B′ × {0, 1} (E′ × [0, 1])×G E

B′ × [0, 1] B′ × [0, 1]

which can again be solved by [Win24, Prop. 5.2.15] as the right vertical is still a weak equiv-
alence and Serre fibration, and B′ × {0, 1} → B × [0, 1] is a relative CW complex. �

16The same argument shows the general form of the homotopy theorem: If all bundles are numerable, then
the associated bundle is also numerable, and hence a Hurewicz fibration. The lifting problem can therefore be
solved for all spaces B.
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4.28. Remark Suppose the p : E → B is a numerable principal G-bundle with E contractible.
Then p is in fact universal on all spaces, and the exact same proof strategy as above works: In
the case at hand, E×GE′ is a numerable fibre bundle with contractible fibre, such bundle pro-
jections are homotopy equivalences, see e.g. [Dol63, Corollary 3.2]17, and Hurewicz fibrations
as we have claimed earlier. Moreover, homotopy equivalences that are also Hurewicz fibrations
have the RLP against all closed cofibrations such as ∅ → B′ and B′ × {0, 1} → B′ × [0, 1],
see e.g. [Str66, Str68].

Consequently, to finish the proof of the classification theorem, we need to show the ex-
istence of principal G-bundles with (weakly) contractible total space. We will outline two
approaches for this, one based on Milnor’s infinite join construction, and one based on the
Bar construction. In fact, these two turn out to be quite related; see [Seg68].

4.29. Theorem Let G be a topological group. There exists a principal G-bundle EG → BG
with EG contractible.

4.30. Corollary Let G be a topological group. Then there exists a principal G-bundle ẼG→
B̃G with ẼG weakly contractible and B̃G a CW complex.

Proof. Pick a CW approximation B̃G → BG and let ẼG = EG ×BG B̃G. Exercise: Show
that ẼG→ EG is a weak equivalence. �

Before coming the constructions of EG→ BG, let us contemplate the situation.

4.31. Remark Suppose that EG → BG is any principal G-bundle with EG contractible.
Then BG is canonically pointed and ΩBG ' G are weakly equivalent (Exercise). In partic-
ular, we have πn(BG) ∼= πn−1(G) As indicated above, the operation G 7→ BG can be chosen
functorially. In particular, we may think of B as a functor which takes a topological group
G as input and gives as output a (pointed) space BG which is a delooping of G, i.e. a space
such that Ω of it is equivalent to G. One can show that such deloopings exist more generally
than for topological groups (a grouplike E1-space in the∞-categorical sense is sufficient). We
will later make use of this fact later, but we will not prove it in this generality in this course.

Finally, we note that if A is a discrete abelian group, and we assume that the functor B
preserves finite products, then it follows formally that BA is again a topological abelian group
(since both the inversion map and the addition are group homomorphisms) and in particular,
we may iterate this construction: The above argument then shows that Bn(A) is a functorial
construction of K(A,n). In general, the functorial constructions of B we indicate below do
not preserve products, but they do if the topological group is nice enough, and inductively,
it turns out that for discrete abelian groups A and any n ≥ 1, the group Bn−1(A) is nice
enough.

4.32. Remark Let ϕ : G → G′ be a group homomorphism. As indicated in Example 4.21,
forming the associated bundle provides a natural map BunG(−) → BunG′(−), which by
the classification theorem is induced by a unique homotopy class Bϕ : BG → BG′. One
can show that this provides the association B(−) with a functor from topological groups to
hTop∗, the homotopy category of pointed spaces; In fact, we will show that one can find a

17Warning: It is not true that Hurewicz fibrations with contractible fibre are homotopy equivalences, see
https://math.stackexchange.com/questions/2802883/fibration-with-contractible-fibre for a coun-
terexample using the Warsaw circle.

https://math.stackexchange.com/questions/2802883/fibration-with-contractible-fibre
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model for B which is strictly functorial, i.e. gives rise to a functor from topological groups to
pointed topological spaces. As a consequence of this and Remark 4.31, we deduce that the
isomorphism πn(BG) ∼= πn−1(G) is natural with respect to group homomorphisms. Indeed,
we need to construct only a commutative diagram

G EG BG

G′ EG′ BG′

whose vertical maps are induced by G → G′. To see this, simply observe that there is a
canonical map EG→ EG×GG′ and that the latter is the pullback of the span BG→ BG′ ←
EG′.

In particular, suppose G → G′ is a group homomorphism which is a weak homotopy
equivalence. We then conclude that the induced map BG→ BG′ is again a weak homotopy
equivalence. Consequently, there is a canonical bijection BunG(B) ∼= BunG′(B) between
isomorphism classes of principal G- and principal G′-bundles over a CW complex B.

4.33. Example Let H be a subgroup of a topological group G such that G → G/H is a
principal G-bundle, e.g. G a Lie group and H a closed subgroup. We obtain a commutative
diagram of pullback squares

H EH

G EH ×H G EG

∗ BH BG

in which the map H → G is the canonical inclusion and the map BH → BG is the induced
map as in Remark 4.32. Moreover, the map EH → ∗ induces a homotopy equivalence
EH×HG→ G/H (Exercise), so we obtain a homotopy fibration sequence G/H → BH → BG
in which the map G/H → BH classifies the principal H-bundle G→ G/H.

4.34. Example Suppose G is a discrete group. Then we may consider the space K(G, 1)
considered earlier. Choosing a CW model, we may assume that it has a universal cover,
which is then weakly contractible and hence contractible by Whitehead’s theorem. In other
words, we have already proven Theorem 4.29 in case G is discrete; K(G, 1) is indeed a choice
of a BG.

We add here the following lemma, which is new only for non-abelian groups.

4.35. Lemma Let G and H be discrete groups. Then the canonical map [BG,BH]∗ →
HomGrp(G,H) is bijective. Moreover, [BG,BH] ∼= HomGrp(G,H)/H, where H acts by conju-
gation on group homomorphisms. If BG is a locally finite CW complex, then Map∗(BG,BH) '
HomGrp(G,H), that is, all components of this pointed mapping space are contractible.

Proof. Let X(G) be a presentation complex for G. Then BG can be built from X(G) by
attaching cells of dimension ≥ 3. The Puppe sequences from Remark 3.11 imply that there-
fore the map [BG,BH]∗ → [X(G), BH]∗ is bijective. Moreover, another application of the
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Puppe sequence, together with the fact that X(G) = C(f :
∨
J S

1 →
∨
I S

1) gives the upper
horizontal exact sequence in the diagram

[
∨
J S

1, BH]∗ [
∨
I S

1, BH]∗ [X(G), BH]∗ [
∨
J S

2, BH]∗ = 0

HomGrp(FJ , H) HomGrp(FI , H) HomGrp(G,H) 0

where the vertical maps are given by applying the functor π1(−) and the lower horizontal
map is also exact since G = coker(FJ → FI). The left two vertical maps are bijective, and
hence so is the map [X(G), BH]∗ → HomGrp(G,H).

Then we recall from Remark 2.30 the exact sequence

· · · → π1(BH)→ [BG,BH]∗ → [BG,BH]→ 0

and use that π1(BH) = H, and the resulting H-action on [BG,BH]∗ ∼= HomGrp(BG,BH) is
given by conjugation of group homomorphisms. This requires unravelling of the definitions,
I leave it as an exercise.

The final claim can be proven as follows. Pick a pointed map f : BG→ BH. To calculate
πn(Map∗(BG,BH), f) for n ≥ 1, consider a representative as a map Sn×BG→ BH with the
property that its restriction to {1}×BG→ BH is f and that its restriction to Sn×{x} → BH
is constant at the basepoint y of BH, x being the basepoint of BG. Consider the diagram

Sn ×BG ∪Dn+1 × {x} BH

Dn+1 ×BG

and observe that the vertical map is an inclusion, where the codomain is obtained from the
domain by attaching cells of dimension ≥ 3. In particular, since BH has only π1 non-trivial,
an extension exists, showing the triviality of πn(Map∗(BG,BH), f) as needed. �

4.36. Remark In particular, this result and the sequence from Remark 2.30 implies that
πn(Map(BG,BH), f) = 0 for n ≥ 2, and all (pointed) maps f : BG → BH. Moreover,
π1(Map(BG,BH), f) identifies with the stabiliser of the H-action on f , i.e. all those h ∈ H
such that ch(f) = f , where ch(f)(g) = hf(g)h−1.

4.37. Example We have that CP∞ is a choice of BS1 where S1 ⊆ C is the unit circle. Indeed,
from Example 4.7 and by passing to the colimit over n, we find that S1 → S2∞+1 → CP∞ is
indeed a principal S1-bundle, and S2∞+1 is contractible. Since S1 = U(1), we find that CP∞
equivalently classifies complex vector bundles of rank 1 (such vector bundles are called line
bundles) which are equipped with a hermitian metric. In particular, CP∞ carries itself such
a line bundle, it is called the tautological line bundle: We may think of a point of CP∞ as a
complex line L ⊆ C∞ and may then form the set

γ = {(L, x) | L ∈ CP∞, x ∈ L} → CP∞

which one checks to be the vector bundle associated bundle S2∞+1 ×U(1) C→ CP∞.

Recall that H2(CP∞;Z) ∼= H2(CP1;Z) ∼= Z via a specific isomorphism. The element
corresponding to 1 ∈ Z is often written c1 = c1(γ), the first Chern class of the tautological
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bundle γ.18 Given a complex line bundle E → X, define c1(E) := f∗(c1(γ)) for f : X →
CP∞ the map classifying E. This is then a characteristic class of line bundles in the sense
of Definition 4.11. Since CP∞ is a K(Z, 2), we conclude that complex line bundles are
equivalently classified by their first Chern class: That is, two line bundles are isomorphic
if and only if their first Chern classes agree, and every element in H2(X;Z) arises as the first
Chern class of a complex line bundle on X.

4.38. Example We have that RP∞ is a choice of BO(1), which carries the universal (tauto-
logical) real line bundle γR → RP∞ (same formulas as in the complex case). Denoting the
non-trivial element of H1(RP∞;F2) by w1 = w1(γR) we arrive at the same results as above:
Associating to a real line bundle E → X the element w1(E) = f∗(w1) where f : X → RP∞
classifies E defines a characteristic class w1(−) called the first Stiefel–Whitney class. Again,
since RP∞ ' K(F2, 1), we see that two real line bundles are isomorphic if and only if their
first Stiefel–Whitney classes agree, and that every element in H1(X;F2) arises as the first
Stiefel–Whitney class of a real line bundle on X.

4.39. Example We have that HP∞ is a choice of BSp(1), so that it again carries the universal
tautological quaternionic line bundle γH → HP∞ (same formulas as above). Denoting a gener-
ator of H4(HP∞;Z) by q1, we obtain the following: Associating to a quaternionic line bundle
E → X the element q1(E) = f∗(q1) where f : X → HP∞ classifies E defines a characteristic
class q1.19 However, since HP∞ is not equivalent to K(Z, 4), we do not arrive at the statement
that two quaternionic line bundles are isomorphic if and only if their characteristic class q1

agrees, and also not that every element in H4(X;Z) arises as q1(E) for some quaternionic
line bundle E.

4.40. Remark Let G be a topological group and EG → BG a principal G-bundle with EG
contractible. Let H be a subgroup of G such that G → G/H is a principal H-bundle, i.e.
such that the projection G→ G/H has a section in a neighborhood of the [1] ∈ G/H. Then
the restricted H-action on EG is principal (exercise), so that EG/H is a valid choice for BH.

This can be used efficiently for compact Lie groups as follows: Any such group is a sub-
group of U(n) for some n as a consequence of the Peter–Weyl theorem (in particular, this
says that any compact Lie group admits a faithful and unitary finite dimensional complex
representation). Hence it suffices to construct classifying spaces for U(n), which can be done
very geometrically, similar to the case of U(1) above, see Example 4.41 below. Moreover,
any connected Lie group is homotopy equivalent to a compact Lie group (to so-called max-
imal compact subgroups), so the above remark implies that there are classifying spaces for
arbitrary connected Lie groups.

4.41. Example We describe geometric models for classifying spaces for GLn(K) where K =
R,C,H. Indeed, similar to KPn, one may consider the space Grk(Kn) of k-dimensional sub-
spaces of of Kn, this is called the Grassmannian of k-planes in Kn.20 Passing to the colimit
over n, one arrives at Grk(K∞), the Grassmannian of k-planes in K∞, topologized as the
indicated colimit. This again carries a tautological K-vector bundle γkK of rank k given by

18Actually, there is no uniform convention regarding the signs here.
19This does not have a name as prominent as in the real and complex cases.
20These are smooth manifolds which admit explicit CW structures based on Schubert cells.
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the colimit over n of the spaces γn whose points are pairs (E, x) where E ∈ Grk(K∞) is a
k-dimensional subspace of K∞ and x ∈ E. One can then show that the associated frame
bundle has contractible total space, so γkK → Grk(K∞) models EGLn(K) → BGLn(K); see
below for a possible argument.

There is a description of these Grassmannians by means of homogenous spaces, i.e. quotients
of Lie groups: To see this, we first note that if H × K ⊆ G is a closed subgroup of a Lie
group, then K acts principally on G/H and we obtain that G/H → G/H ×K is a principal
K-bundle.

(1) There are homeomorphisms O(n)/O(n−k)×O(k) ∼= Grk(Rn); the tautological bundle
is then associated to the principal O(k)-bundle O(n)/O(n − k) → O(n)/O(n − k) ×
O(k). Indeed, O(n) acts on Grk(Rn) as by sending (A, V ) ∈ O(n) × Grk(Rn) to
A(V ). We learn in linear algebra that this action is transitive, that is, for any two
k-dimensional subspaces V, V ′ there exists an orthogonal matrix A with A(V ) = V ′.
Now consider the standard k-dimensional subspace Rk × 0 ⊆ Rn. The stabilizer of
the O(n)-action on Grk(Rn) at the point Rk is given by O(k)×O(n− k), giving the
claimed description.

(2) There are homeomorphisms U(n)/U(n−k)×U(k) ∼= Grk(Cn); the tautological bundle
is then associated to the principal U(k)-bundle U(n)/U(n − k) → U(n)/U(n − k) ×
U(k). As before, U(n) acts transitively on Grk(Cn) and the stabilizer of Ck ⊆ Cn is
U(k)×U(n− k).

(3) There are homeomorphisms Sp(n)/Sp(n − k) × Sp(k) ∼= Grk(Hn); the tautolog-
ical bundle is then associated to the principal Sp(k)-bundle Sp(n)/Sp(n − k) →
Sp(n)/Sp(n− k)× Sp(k).

In all of the above examples, we may increase n and obtain comparison maps whose colimit
is then Grk(K∞) with its tautological bundle. Exercise: Show that colimn O(n)/O(n − k),
colimn U(n)/U(n − k), and colimn Sp(n)/Sp(n − k) are weakly contractible. Hint: If k = 1,
these spaces are spheres of suitable dimension. This verifies the claim that Grk(K∞) indeed
models the classifying spaces of O(k), U(k), and Sp(k) when K = R,C, and H, respectively.

4.42. Remark We will argue here that O(n)/O(n−k) is (n−k−1)-connected. Passing to the
colimit over n then shows that colimn O(n)/O(n−k) is∞-connected, i.e. weakly contractible.
To do this, observe that there is a fibre sequence O(n − k) → O(n) → O(n)/O(n − k) and
that the first map in this fibre sequence can be written as the composite

O(n− k)→ O(n− k + 1)→ · · · → O(n).

Now, for every l ≥ 1, we have O(l)/O(l − 1) ' Sl−1. This implies that the first map of the
above composite has the lowest connectivity, and this connectivity is given by (n − k − 1)
since Sn−k is (n− k − 1)-connected as claimed.

Since U(l)/U(l − 1) ∼= S2l−1 and Sp(l)/Sp(l − 1) ∼= S4l−1, a similar argument applies to
show that colimn U(n)/U(n− k) and colimn Sp(n)/Sp(n− k) are weakly contractible.

We finish by proving the existence of contractible principal bundles. We begin with Milnor’s
construction [Mil56a, Mil56b], since it works for all topological groups and also refer to [Dol63,
§8] as well as [tD08, §14.4].
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4.43. Definition Let I be a set and for all i ∈ I, let Xi be a non-empty topological space.
We define a new space, the join ?IXi of the Xi’s to be a the quotient of the set

{(ti, xi) ⊆ ([0, 1]×X)I | almost all ti = 0, xi ∈ Xi,
∑
i∈I

ti = 1}

where two elements (ti, xi)i∈i and (si, yi)i∈I represent the same element of ?IXi if ti = si
for all i ∈ I and xi = yi whenever ti (or equivalently si) is non-zero. In particular, we
have [0, xi]i∈I = [0, yi]i∈I . For each j ∈ I, we have maps tj : ?I Xi → [0, 1] induced by the
projection to the jth factor of [0, 1]×X and then further projecting to [0, 1], as well as a maps
pj : t−1

j (0, 1] → Xj , sending (ti, xi)i∈I to xj . Define the strong topology on ?IXi to be the

coarsest (that is the one with fewest open sets) for which the maps tj and pj are continuous.
Hence, a map Y → ?IXi is continuous if and only if its compositions with tj and pj (on the
subspace of Y where it is defined) is continuous.

4.44. Remark If Xi is T1 for all i, then ?IXi is T1 in the strong topology. Indeed, we first
note that the map

colim
J⊆I finite

?JXj → ?IXi

is a continuous bijection. Unfortunately, I am not sure whether it is a homeomorphism at
this point. In particular ?IXi also comes with what we shall refer to as the colimit topology,
i.e. just the left hand side of the above map.

Regardless of whether the strong and the colimit topologies agree, we see that for any finite
subset J ⊆ I, the inclusion ?JXj → ?IXi is closed in the strong topology: The complement

is given by the union of the open sets t−1
i (0, 1] where i ∈ I \ J .

We will give some perspective on the following result; see [Mil56b] for details and general-
isations.

4.45. Lemma Let G be a locally compact Hausdorff topological group. Then ?NG is weakly
contractible in the colimit topology.21

Proof. Note that the inclusion ?nG→ ?n+1G is closed as its complement is given by t−1
n+1(0, 1]

which is open by definition. As above, we deduce from this that ?nG is also T1. Furthermore,
we claim that the inclusion ?nG→ ?n+1G is null-homotopic. Indeed, we factor the inclusion
as follows:

?nG = (?nG) ?∅→ (?nG) ? {∗} → (?nG) ? G = ?n+1G.

It then suffices to observe that for any space X, X ? {∗} ∼= [0, 1] × X/{0} × X ∼= C(X) is
contractible.

It now follows that for every compact space Y , the canonical map colimn HomTop(Y, ?nG)→
HomTop(Y, ?NG) is bijective, and in particular, we deduce that any map Sk → ?NG factors
through a null-homotopic map and is hence itself null-homotopic, so ?NG is weakly con-
tractible. �

In fact, Dold shows that ?NG is contractible in the strong topology, see [Dol63, Proof of
Thm. 8.1].

21We should also note that ?nG ⊆ ?n+1G admits an open thickening, that is, there is an open neighborhood
which deformation retracts back to ?nG; this does not use that G is Hausdorff. It is well possible that the same
is true for ?nG ⊆ ?NG, in which case one can conclude that ?NG is weakly contractible without the Hausdorff
assumption.
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4.46. Lemma Let {Xi}i∈I be a family of spaces equipped with a continuous right G-action.
Then there is an induced continuous right G-action on ?IXi in the strong topology.

Proof. Define (ti, xi)·g := (ti, xi·g), note that it is well-defined. Moreover, the map ?IXi×G→
?IXi is continuous: Its composition with tj is the projection, and the “composition” with pj
is given by first applying pj (which is continuous) and then the G-action on Xj (which is also
continuous). �

4.47. Remark In the above situation, if G is locally compact, then G also acts continuously
on ?IXi in the colimit topology. Indeed, since G is locally compact, the functor G × −
preserves colimits, so G × ?IXi has the colimit topology along the subspaces G × ?JXj for
J ⊆ I. Continuity of G× ?IXi → ?IXi therefore follows from the the case of finite I’s where
the topology is the strong topology and hence the above argument applies.

4.48. Lemma Let G be a topological group. Then the G-action on ?NG is principal for the
strong topology.

Proof. The functions tn : ?N G → [0, 1] are G-invariant and hence descend to functions
t̄n : (?NG)/G → [0, 1]. Consider the open subsets Ūn = t̄−1

n (0, 1] ⊆ (?NG)/G, denote by p
the projection ?NG→ (?NG)/G, and let Un = p−1(Ūn) = t−1

n (0, 1], so that Ūn = p(Un). Then
there is a continuous map

(p, pn) : Un → Ūn ×G
which we claim is a G-equivariant homeomorphism. To see this, consider the map ϕ : Un → Un
sending (ti, gi)i≥0 to (ti, gig

−1
n )i≥0. It satisfies

ϕ[(ti, gi)i≥0 · g] = ϕ(ti, gig)i≥0 = (ti, (gig)(gng)−1)i≥0 = (ti, gig
−1
n )i≥0.

Consequently, it induces a continuous map ϕ̄ : Ūn → Un. The continuous map

Ūn ×G
ϕ̄×id−−−→ Un ×G→ Un

whose final map is the G-action is then G-equivariant and an inverse of (p, pn). Since the
open sets Ūn cover (?NG)/G, this shows that the G-action on ?NG is principal as claimed. �

4.49. Remark If G is locally compact, so that the G acts continuously on ?NG in the colimit
topology, then this action is again principal. Indeed, there is a continuous bijection

[colim
n≥0

?nG]/G→ (?NG)/G

so that the subsets Ūn are also open in the colimit topology, and the restriction of the quotient
map to these Ūn is again trivial by the same argument as above.

Combining Dold’s argument and the above shows that ?NG, with strong topology, gives
rise to a principal G-bundle with contractible total space, proving Theorem 4.29. Combin-
ing our arguments above shows that for G locally compact Hausdorff, ?NG with the colimit
topology, gives rise to a principal G-bundle with weakly contractible total space. This suffices
for representability of BunG(−) on CW complexes.

We finally mention another attempt to construct a principal G-bundle with (weakly) con-
tractible total space, and refer to [Seg68] for details. We do so mainly, since in the ∞-
categorical world, this construction always provides a delooping of a grouplike monoid in
spaces. First, we digress:
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4.50. Definition A small topological category C consists of a space of objects ob(C) and a
space of morphisms mor(C), such that the formation of unit morphisms, as well as source and
target, and composition amount to continuous maps

ob(C)→ mor(C), mor(C)→ ob(C)× ob(C), and mor(C)×ob(C) mor(C)→ mor(C).

Considering the usual nerve construction, i.e. sending [n] ∈ ∆op to Fun(∆op,C) gives a sim-
plicial space N(C).

Now, let G be a topological group and X a topological space equipped with a continuous
left action of G.

4.51. Definition When G acts continuously on X, we may define a category Gy X with

(1) ob(Gy X) = X, and
(2) mor(Gy X) = G×X

with identity morphisms given by (1, x), source and target maps are given by s(g, x) = x and
t(g, x) = gx and composition given by (h, gx) ◦ (g, x) = (hg, x). Its nerve N(Gy X) is then
a simplicial space, functorial in the G-space X.

4.52. Remark In particular, if a left G-space is acted upon continuously and compatibly from
the right by H, then N(Gy X) is equipped with a continuous H-action from the right. This
is the case for X = G and H = G, where G acts both from the left and the right on itself by
left and right multiplication, respectively.

4.53. Remark The formula for geometric realizations of simplicial sets makes sense verbatim
for simplicial spaces. This defines a functor | − | : Fun(∆op,Top)→ Top which is left adjoint
to functor sending X to the cosimplicial space Map(∆•top, X). Likewise, the underlying semi-
simplicial space has a geometric realization (by forgetting all non-injective morphisms in ∆).

4.54. Corollary The geometric realization |N(G y G)| admits a continuous G-action from
the right, with quotient given by |N(Gy ∗)|. Moreover, |N(Gy G)| is contractible.

Proof. The first statement is a direct check. The second follows since the realization commutes
with quotients, as does the formation of the category out of a G-space, so the claim is reduced
to the obvious fact that G/G = ∗. To see that |N(G y G)| is contractible, it is enough to
find a continuous natural transformation between the identity and the constant functor on
the topological category G y G. Exercise: Show that the morphisms (g, 1) provide such a
continuous natural transformation. �

We may therefore try to define EG = |N(Gy G)| and BG = |N(Gy ∗)|. What remains
for this to be a principal G-bundle is the the projection map EG → BG needs to be locally
trivial. This is, however, not always the case, but it is under suitable hypothesis on G, for
instance if the underlying topological space of G is an ANR (absolute neighborhood retract),
examples of which are discrete groups or Lie groups, again we refer to [Seg68]. Moreover, there
is a canonical map (?NG)/G → |N(G y ∗)| which is a quotient map; it collapses degener-
ate simplices. Finally, (?NG)/G can also be described via simplicial spaces as Segal points out.

We finish this section with the construction of homotopy orbits which we will mainly (but
not exclusively) use in the case of discrete groups.
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4.55. Definition Let X be a left G-space. We define the homotopy orbits XhG of X to be
the associated bundle EG ×G X. In particular, we find that there is a fibration sequence
X → XhG → BG and BG = ∗hG.

4.56. Remark The weak homotopy type of XhG is independent of the choice of EG: Given
EG→ BG and ẼG→ B̃G be two choices. Then EG and ẼG are G-equivariantly homotopy
equivalent. Such a homotopy equivalence induces a homotopy equivalence EG ×G X →
ẼG×GX, showing that XhG, up to homotopy equivalence, does not depend on the choice of
EG.

4.57. Example Suppose X is a space with trivial G-action. Then XhG = X × BG. On the
other hand, suppose that X has a principal G-action. Then we may view XhG = EG×GX →
X/G is a fibre bundle with contractible fibre and hence a homotopy equivalence. In particular,
XhG and X/G are homotopy equivalent in the case of principal actions (i.e. free actions in
case G is a finite group).

4.58. Lemma The association X 7→ XhG refines to a functor GTop→ Top and it sends weak
equivalences to weak equivalences.

Proof. Let X → Y be G-equivariant. Then we obtain an induced map EG×GX → EG×GY
which gives the necessary functoriality. Observe then that there is a commutative diagram

X XhG BG

Y YhG BG

The claim about weak equivalences then follows from the 5-lemma (plus explicit low degree
considerations). �

4.59. Remark Let G be a discrete group acting on a space X. The projection map EG×X →
X is then G-equivariant and a homotopy equivalence, and G acts covering-like on the source.
Hence, for finite groups acting on X, the formation of homotopy orbits amounts to replacing,
up to homotopy equivalence, the action by a free action, and then simply taking strict orbits.
In particular, if N is a normal subgroup of G, and the action of G on X is free, the restricted
action of N on X is also free, and we have that X/N → X/G is a G/N -Galois covering. In
particular, XhG ' X/G = (X/N)/(G/N) ' (X/N)hG/N ' (XhN )hG/N .

5. Obstruction theory

The purpose of this section is to treat the following question: Suppose given the solid part
of the diagram

(3)

A X

B Y

g

i f

k

which commutes up to specified homotopy h : A×[0, 1]→ Y (this specified homotopy may well
be constant if the diagram strictly commutes). We may then wonder whether a dashed arrow
exists, making both small triangles commute up to homotopies h0 : A× [0, 1]→ X witnessing
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g ' ϕi, and h1 : B×[0, 1]→ Y , witnessing fϕ ' k, so that the combined homotopy witnessing
fg ' fϕi ' ki is homotopic to the given homotopy h. We call such a lift a lift up to compatible
homotopy.

5.1. Lemma Suppose that the solid part of (3) commutes with constant homotopy witnessing
the strict commutativity. If i : A → B is a relative CW complex and f : X → Y a Serre
fibration, and one can lift up to compatible homotopy, one can also find a lift making both
triangles commute strictly.

Proof. Let h0 : A × [0, 1] → X be a homotopy from ϕi to g, h1 : B × [0, 1] → Y a homotopy
from fϕ to k, and H : A×[0, 1]×[0, 1]→ Y a homotopy from the combined homotopy h1i?fh0

to the constant homotopy A× [0, 1]→ A
fg=ik−−−−→ Y . First, we consider the extension problem

B × {0} ∪A× [0, 1] X

B × [0, 1]

ϕ∪h0

h

which can be solved since i is a cofibration. Then h is a homotopy from ϕ to a map ϕ′ which
makes the upper triangle commute strictly. Moreover, the combined homotopy h1 ? fh : B ×
[0, 1] is a homotopy between fϕ′ and k. Restricting this homotopy along A× [0, 1]→ B× [0, 1]
yields h1i ? fhi = h1i ? fh0 so that we obtain an extension problem

A× [0, 1]× [0, 1] ∪B × [0, 1]× {0} Y

B × [0, 1]× [0, 1]

H∪h1?fh

H′

for which a dashed arrow H ′ can be found again since A→ B is a cofibration.
The map H ′(−,−, 1) is then a map satisfying the following properties: restricted to A×[0, 1]

it given by A× [0, 1]→ A
fg=ik−−−−→ Y , and it is a homotopy from h(−, 0, 1) =: ϕ̂ to h(−, 0, 0) =

ϕ′. Therefore, we may replace ϕ′ by ϕ̂ and have then achieved that the upper triangle
commutes strictly, and the lower triangle commutes up to a homotopy which is constant on
A× [0, 1]. Finally, we can then consider the lifting problem

B × {0} ∪A× [0, 1] X

B × [0, 1] Y

ϕ∪gpr

f

which can be solved since A → B is a relative CW complex and f is a Serre fibration, see
[Win24, Lemma 5.2.5] �

Obstruction theory, as we will prove in this section, says that this question can be iteratively
treated using cohomological invariants. To set the stage we begin with Moore–Postnikov
factorizations of maps.
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5.2. Definition Let f : X → Y be a map between path connected spaces and n ≥ 1. The
nth Moore–Postnikov stage of f consists of a space Zn together with maps an : X → Zn and
pn : Zn → Y such that

(1) pnan = f ,
(2) an is an isomorphism on πk for k < n and surjective on πn, and
(3) pn is an isomorphism on πk for k > n and injective on πn,

If need be, we may factor the map pn : Zn → Y as a homotopy equivalence followed by a
fibration, so we may assume that pn is a fibration.

5.3. Lemma Let f : X → Y be a map between path connected spaces and n ≥ 1. Then an nth
Moore–Postnikov stage Zn of f exists. Moreover, there are fibrations qn : Zn → Zn−1 with
qnan = an−1 and such that the induced map X → limn Zn is a weak equivalence.

Proof. Fix n ≥ 1 and let K = ker(πn(f)) ⊆ πn(X). Choose generators of K, say {αi}i∈I .
Consider the pushout ∐

I S
n X

∐
I D

n+1 X ′

so that we obtain a factorization of f through X ′ and induces on πn the canonical epi-mono
factorization as the surjection onto the image and the inclusion of the image. Then pick
generators of πn+1(Y ) and consider the map X ′∨

∨
Sn+1 → Y by extending the map X ′ → Y

tautologically on the sphere summands. The resulting map is then surjective on πn+1. Again
considering generators of the kernel of this map, we may attach n+ 2-cells to make the map
injective on πn+1. Continuing in this fashion, we build a factorization X → Zn → Y as
claimed, here we use cellular approximation to ensure that in the iterative process, we never
change the low homotopy groups. As indicated above, upon replacing Zn with a homotopy
equivalent space, we may assume that Zn → Y is a fibration.

Now let Z1 be the connected covering of Y 22 with characteristic subgroup Im(π1(f)) ⊆
π1(Y ). By covering theory, there exists a factorization X

a1−→ Z1
q1−→ Y with all required

properties. Consider then the map a1 : X → Z1. Using the above argument, we may factor it

as the composite X
a2−→ Z2

q2−→ Z1 and we define p2 = q1q2. Then p2a2 = q1q2a2 = q1a1 = f
so point (1) of Definition 5.2 is valid, as is point (2), by construction. It remains to verify
part (3), i.e. that p2 induces an isomorphism on πk for k > 2 and an injection on π2. By
construction, we know that q2 has these properties. Moreover, q1 induces an isomorphism
on πk for k ≥ 2, so the result follows. We may then construct Z3 by appropriately factoring
a2 : X → Z2 and continue like this iteratively.

Now, considering the inverse limit Z = limn Zn along the fibrations Zn+1 → Zn we observe
that the induced diagram on πk eventually becomes one consisting of isomorphisms. This
implies that the composite

πk(X)→ πk(Z)→ lim
n
πk(Zn)

is an isomorphism. We now show that also the second map is an isomorphism, this implies
the remaining claim. We prove by hand that the map πk(Z)→ limn πk(Zn) is surjective and
injective. For surjectivity, take an element in the codomain, given by a compatible family of

22We may assume that Y is so nice that covering theory applies.
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elements [αn] ∈ πk(Zn). Concretely, compatibility means that qnαn is homotopic to αn−1.
Inductively, let us assume that we have qnαn = αn−1. Then we consider the lifting problem

Sk × {0} ∪ {∗} × [0, 1] Xn+1

Sk × [0, 1] Xn

H

where the bottom horizontal map witnesses that qn+1αn+1 is (pointed) homotopic to αn.
Since the right hand vertical map is a fibration, this lifting problem can be solved. Denote by
α′n+1 the map H(−, 1). Then [α′n+1] = [αn+1] ∈ πk(Zn) and qn+1α

′
n+1 = αn. It follows that

we may represent the compatible family [αn] to satisfy qnαn = αn−1 for all n. In particular,
the maps αn give rise to a map α : Sk → limn Zn representing a lift of the compatible family
[αn]n≥0 along the map πk(limn Zn)→ limn πk(Zn).

To prove injectivity, consider a map α : Sk → limn Zn representing an element in the kernel
of the map πk(Z) → limn πk(Zn). Then for all n ≥ 0, the induced map αn : Sk → Zn is
(pointed) nullhomotopic. Again, we want to construct an extension of α over Dk+1. To do
so, consider (again inductively) the lifting problem

Sk Zn+1

Dk+1 Zn

which can be solved for n sufficiently large (recall that the fibre of the right vertical map is
given by K(πn(F ), n)), again using [Win24, Prop. 5.2.15]. �

We depict a Moore–Postnikov factorization as follows

...

Zn

Zn−1

...

X Z1 Y

and therefore also call it a Moore–Postnikov tower.

5.4. Remark In this remark, we record some things about Milnor’s lim-lim1-sequence which
provides a general formula for the homotopy groups of the inverse limit of a tower (of fibra-
tions). So assume for the moment given a tower

· · · → Xn
fn−→ Xn−1 → · · · → X1

f1−→ X0
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of topological spaces. Recall that the limit of this diagram in Top can be described as the
pullback of the left hand square

lim
n≥0

Xn
∏
n≥0

Xn holim
n≥0

Xn
∏
n≥0

Map([0, 1], Xn)

∏
n≥0

Xn
∏
n≥0

Xn ×Xn
∏
n≥0

Xn
∏
n≥0

Xn ×Xn

∆ (ev0,ev1)

whereas what is called the homotopy limit is given by the pullback of the right hand square
above. In both diagrams the lower horizontal map is given by sending a sequence (xn)n≥0

of points in Xn’s to the sequence (xn, fn+1(xn+1)). Now, if all maps fn : Xn → Xn−1 are
fibrations, one can show that the map limnXn → holimnXn induced by the constant path
maps Xn → Map([0, 1], Xn) is a weak equivalence, so to compute homotopy groups of the
limit, we may as well compute homotopy groups of the homotopy limit. Then we observe
that the right vertical map in the right above square is a fibration whose fibre is

∏
n ΩXn.

Therefore, there is a fibration sequence∏
n≥0

ΩXn → holim
n≥0

Xn →
∏
n≥0

Xn

and consequently a long exact sequence in homotopy groups

· · ·
∏
n≥0

πk+1(Xn)
∂−→
∏
n≥0

πk(ΩXn)→ πk(holim
n≥0

Xn)→
∏
n≥0

πk(Xn)
∂−→
∏
n≥0

πk−1(ΩXn)→ . . .

Under the isomorphisms πl(ΩXn) ∼= πl+1(Xn) the maps ∂ in this sequence are given as follows:
They are induced by the pairs (id,−(fn)∗). It follows that for k ≥ 2, there is a short exact
sequence (this is in fact one way to define lim1)

0→ lim
n≥0

1πk+1(Xn)→ πk(holim
n≥0

Xn)→ lim
n≥0

πk(Xn)→ 0

whereas for low degree homotopy, the notation lim1 is perhaps not quite appropriate.
If for fixed k, there exists an N such that for all n ≥ N , we have that πk(Xn)→ πk(Xn−1)

is surjective (e.g. an isomorphism), it is not too difficult to show that the term we denoted by
lim1 vanishes; this then recovers our previous result that X → limn Zn is a weak equivalence
whenever {Zn} is a Moore–Postnikov tower for a map X → Y .

5.5. Remark Applied to the map X → ∗, a Moore–Postnikov tower is simply called a Post-
nikov tower for X and we write suggestively X≤n for Zn+1: Indeed, Zn+1 has the same
homotopy groups as X in degrees ≤ n and trivial homotopy groups above degree n. Con-
versely, applied to the map ∗ → X, a Moore–Postnikov tower is called a Whitehead tower.
We write X≥n+1 for Zn: Indeed, Zn has trivial homotopy groups in degrees ≤ n and the same
homotopy groups as X above degree n.

5.6. Remark Consider a pullback diagram with f a fibration.

X ′ X

Y ′ Y

f ′ f
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Let {Zn} be a Moore–Postnikov tower for f . Then {Y ′ ×Y Zn} forms a Moore–Postnikov
tower for f ′ (Exercise). In particular, applying this to Y ′ = ∗ in which case X ′ = F is the
homotopy fibre of the map f , we obtain the following (homotopy) pullback diagrams:

K(πn(F ), n) F≤n Zn+1

∗ F≤n−1 Zn

∗ Y

In particular, the (homotopy) fibres of the maps Zn+1 → Zn are Eilenberg–Mac Lane spaces
of type (πn(F ), n).

5.7. Remark Moore–Postnikov towers are unique up to weak equivalence. Indeed, assume
that {Zn}n≥1 and {Z ′n}n≥1 are two Moore–Postnikov towers for a map f : X → Y . As
indicated above, we may assume that the maps Z ′n → Z ′n−1 are fibrations for all n ≥ 1 where
we interpret Z ′0 as Y . Similarly, we may assume that the maps X → Zn are cofibrations for all
n ≥ 1. Moreover, since X → Zn induces an isomorphism on πk for k < n and a surjection for
k = n, we may assume that (Zn, X) is a CW pair with relative cells of dimension ≥ n+1. We
will now inductively show that there are maps ϕn : Zn → Z ′n making all diagrams commute.
To do so, we begin with the following diagram:

X Z ′1

Z1 Y

ϕ1

We claim that a dashed arrow exists, making both triangles commute. Indeed, as mentioned
above, we are in the situation that the relative cells of (Z1, X) are in dimensions ≥ 2, so in
order to apply [Win24, Prop. 5.2.15], we need to know that πk(hofib(Z ′1 → Y )) vanishes for
all k ≥ 2 and by definition of Moore–Postnikov sections, we even have that these homotopy
groups vanish whenever k ≥ 1.23 Now let us inductively assume that we have constructed a
map ϕn−1 : Zn−1 → Z ′n−1 participating in a commutative diagram with ϕn−2 : Zn−2 → Z ′n−2.
Then we consider the lifting problem

X Z ′n

Zn Z ′n−1

whose lower horizontal map is the composite Zn → Zn−1 → Z ′n−1. Again we want to appeal
to [Win24, Prop. 5.2.15] to find a dashed arrow making both triangles commute, and again
this amounts to showing that the homotopy fibre of Z ′n → Z ′n−1 has trivial homotopy groups
in degrees ≥ n + 1. By Remark 5.6 this homotopy fibre is given by K(πn−1(F ), n − 1),
where F = hofib(f : X → Y ). We have therefore constructed a map of towers ϕ : {Zn}n≥1 →
{Z ′n}n≥1 and it remains to argue that each of the maps ϕn : Zn → Z ′n is a weak equivalence.

23This implies that the dashed arrow is in fact unique up to homotopy.
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To prove this, we note that, by construction, these maps participate in the left of the following
commutative diagram

X Z ′n πk(X) πk(Z
′
n)

Zn Y πk(Zn) πk(Y )

Applying πk to this diagram we now observe the following: If k < n, then both maps eminating
from πk(X) are isomorphisms, so we deduce that πk(ϕ) is an isomorphism. If k > n, then both
maps with target πk(Y ) are isomorphisms, so again we deduce that πk(ϕ) is an isomorphism.
Finally, for k = n, we find that πk(ϕ) is surjective because the top horizontal map is surjective,
and πk(ϕn) is injective because the bottom horizontal map is injective.

In the situation of the beginning of this section, when considering a lifting problem as in
(3)

A X

B Y

f

with A → B an inclusion of a sub CW complex and X → Y a fibration,24 we may consider
the Moore–Postnikov factorization of f and deduce that if this lifting problem can be solved,
also the lifting problems

A Zn+1

B Y

can be solved. Consersely, if we can inductively solve the lifting problems

A Zn+1

B Zn

for all n ≥ 0, then we can also solve the lifting problem

A limn Z

B Y

Using that A and B are CW complexes and that X → limn Zn is a weak equivalence, it then
follows that the original lifting problem

A X

B Y

f

24We will from now on restrict to these cases.
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can be solved up to compatible homotopy (exercise) and hence can be solved according to
Lemma 5.1. We will therefore be interested in solving the lifting problems

(4)

A Zn+1

B Zn

inductively.

5.8. Example Let us discuss the first step in the above inductive approach, i.e. the lifting
problem

A Z1

B Y

g

i p1

k

in some detail. In this case, we have arranged the right vertical map is a covering map. We
claim that this lifting problem admits a solution if and only if for all basepoints b ∈ B, there
exists a point z ∈ p−1

1 (k(b)) such that the diagram of fundamental groups

π1(Z1, z)

π1(B, b) π1(Y, k(b))

admits a solution (since the right vertical map is an injection, this is really just a property of
the given situation, the lift itself either does not exist, or it exists uniquely). The only if part
is clear (apply π1(−) to a solution of the lifting problem) and the if part follows from covering
theory: Indeed, under the above assumption on π1(−), we obtain a map B → Z1 making the
lower right triangle commute. Then upper triangle then commutes again by covering theory
and the fact that the square commutes.

As a conclusion, the first step in our inductive approach is completely determined by
studying the induced map on fundamental groups. In all lifting problems that arise next, we
will aim to characterize solvability by means of cohomological invariants. In the following
special case of the above situation, this is also the case here. Namely, let us first assume that
Z1 → Y is a Galois covering, that is, that the image of the map π1(X)→ π1(Y ) is a normal
subgroup. Denoting the quotient group π1(Y )/Im(π1(f)) by G, we obtain that Z1 → Y is
a G-Galois covering, or in other words, a principal G-bundle. Consequently, there is a map
Y → BG and a pullback diagram

Z1 EG

Y BG

We deduce that the map B → Y lifts along Z1 → Y if and only if the composite

B → Y → BG

is (pointed) null-homotopic. Note that we have argued earlier that the map induced by π1(−)

[B,BG]∗ → HomGrp(π1(B), G)
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is a bijection. Now if we in addition assume that G is abelian, then we find that the composite
B → Y → BG classifies an element θ in H1(B;G) by representability of cohomology using
that BG is a K(G, 1). This element θ then vanishes if and only if there exists a lift of B → Y
along Z1 → Y . Note also that the image of θ in H1(A;G) vanishes since the map A→ B → Y
does lift along Z1 → Y . This implies that there exists a refined element θ′ ∈ H1(B/A;G)
whose image under the map H1(B/A;G)→ H1(B;G) is θ. Now, above we have argued that
it suffices to find any lift B → Z1 making the triangle with Y commute; the triangle with
A will commute automatically by covering theory. The cohomological interpretation of this
result is the following: In general, finding a lift of B → Y along Z1 → Y amounts to the
condition that 0 = θ ∈ H1(B;G). Finding a lift that also makes the upper triangle commute
will amount to the condition the refined element θ′ vanishes in H1(B/A;G). Considering the
long exact sequence

H0(B;G)→ H0(A;G)→ H1(B/A;G)→ H1(B;G)

and the fact the first map in this sequence is surjective (exercise!) we find that the last map
is injective. In particular, θ′ vanishes if and only if θ vanishes as needed.

It remains to understand when the lifting problem (4) can be solved for n ≥ 1. To study
this case, we will use the following theorem. It is an analog of the classification theorem
of principal G-bundles in the context of fibrations, and is (for instance) a consequence of
the straightening-unstraightening equivalence we have discussed in the seminar and is a vast
refinement of what we have discussed in Lemma 2.28.

5.9. Theorem (Classification of fibrations) Let E → B be a fibration with B connected and
typical fibre a locally finite connected CW complex F . Then there is a homotopy pullback
diagram

E BhAut∗(F )

B BhAut(F )

Here, we agree on the convention that the right hand vertical map in the above diagram is
a fibration. That the square is a homotopy pullback diagram then means that the diagram
commutes and the induced map on vertical (homotopy) fibres is a weak equivalence. To see
that this is reasonable, let us convince ourselves that the right hand vertical (homotopy) fibre
indeed ought to be equivalent to F . To that end, note that the right hand vertical map
is a delooping of the map of “groups up to homotopy” hAut∗(F ) → hAut(F ). Recall that
this map sits in a fibration sequence hAut∗(F ) → hAut(F ) → F by evaluating a homotopy
equivalence on a basepoint of F . As in principal G-bundles, this is in fact induced by a
homotopy fibration sequence F → BhAut∗(F ) → BhAut(F ), so that the homotopy fibres
indeed match up.

Now, we recall that the (homotopy) fibre of the fibration Zn+1 → Zn is a K(πn(F ), n),
where F is the (homotopy) fibre of the map f : X → Y . Therefore we obtain the following.
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5.10. Corollary Let X → Y be a map with Moore–Postnikov tower {Zn}n. Then for all
n ≥ 1, there are homotopy pullback diagrams

Zn+1 BhAut∗(K(πn(F ), n))

Zn BhAut(K(πn(F ), n))

5.11. Lemma For every abelian group A and n ≥ 1, there is a homotopy fibration sequence

K(A,n+ 1)→ BhAut(K(A,n))→ BAut(A).

Proof. We have calculated the homotopy groups of hAut(K(A,n)) implicitly in Corollary 3.15,
they are given by Aut(A) in degree 0 and A in degree n. Hence, for BhAut(K(A,n)) we have
π1 equal to Aut(A) and πn+1 equal to A. Therefore, the homotopy fibre of the canonical map
BhAut(K(A,n))→ BAut(A) is given by K(A,n+ 1) as claimed. �

5.12. Corollary For every abelian group A and n ≥ 1, the diagram

∗ BhAut∗(K(A,n))

K(A,n+ 1) BhAut(K(A,n))

is a homotopy pullback diagram.

Proof. Recall that we have already argued that the right hand vertical (homotopy) fibre is
given by K(A,n). Therefore, on vertical homotopy fibres, the above diagram induces a map
ΩK(A,n+1)→ K(A,n) which we need to show is a weak equivalence. Equivalently, we need
to show that it induces an isomorphism on πn. To do so, consider the commutative diagram

πn+1(K(A,n+ 1)) πn+1(BhAut(K(A,n)))

πn(ΩK(A,n)) πnK(A,n)

∼=

∼=

arising from the boundary maps (vertically) in both vertical long exact homotopy sequences.
By Lemma 5.11, the top horizontal map is an isomorphism since n ≥ 1 and BAut(A) only
has π1 non-trivial. It the remains to argue that the right vertical map is also an isomorphism.
It is injective since n ≥ 1 and BAut(A) therefore does not have πn+1, and it is surjective
because A is abelian, so that in the extreme case n = 1, the map A→ Aut(A), which is given
by sending an element to its conjugation endomorphism, is trivial as A is abelian. �

Now, the map Zn → BhAut(K(πn(F ), n)) factors up to homotopy through as a composite

Zn → K(πn(F ), n+ 1)→ BhAut(K(πn(F ), n))

if and only if the the composite

Zn → BhAut(K(πn(F ), n))→ BAut(πn(F ))

is trivial. This is the case if and only if the induced map π1(Zn)→ Aut(πn(F )) is trivial. Since
X → Zn is π1-surjective, this amounts to asking that the π1(X)-action on πn(F ) discussed
in Remark 2.29 is trivial for all n ≥ 1. We therefore make the following definition.



TOPOLOGY III 53

5.13. Definition A fibration f : X → Y between path connected spaces is called simple, resp.
nilpotent, if the π1(X)-action on πn(F ) is trivial, resp. nilpotent, for all n ≥ 1.25

We arrive at the following corollary:

5.14. Corollary Let f : X → Y be a simple fibration between path connected spaces. Then
for all n ≥ 1, the stages in the Moore–Postnikov tower appear in homotopy pullback diagrams
as follows:

Zn+1 ∗

Zn K(πn(F ), n+ 1)
θn

The maps θn are called the obstruction classes for the map X → Y .

Proof. By assumption, there is a map Zn → K(πn(F ), n+ 1) such that the composite

Zn → K(πn(F ), n+ 1)→ BhAut(K(πn(F ), n))

is given by the lower horizontal map appearing in Corollary 5.10. To compute the homotopy
pullback along the right vertical map in Corollary 5.10, we may use Corollary 5.14 and arrive
at the claimed statement. �

5.15. Remark Suppose more generally that the π1(X)-action on πn(F ) is nilpotent. Pick a
π1(X)-equivariant central series on πn(F ) for all n ≥ 1 witnessing the nilpotency of the action.
Then one can construct a refined Moore–Postnikov tower {Zn,k} where the map Zn+1 → Zn
is again factored as a sequence of maps Zn+1 → Zn,0 → Zn,1 → · · · → Zn such that the fibres
of the map Zn,k → Zn,k+1 are Eilenberg–Mac Lane spaces of type (A,n) with A being the
associated graded of the chosen central series on πn(F ). In particular, the π1(X)-action on
A is trivial, and one arrives at a similar conclusion as in Corollary 5.14 but the groups πn(F )
have to be replaced by the associated graded of a chosen central series and there are now
(possibly) several obstruction classes in a single cohomological degree.

5.16. Remark The obstruction classes θn : Zn → K(πn(F ), n+ 1) are not a priori unique (up
to homotopy). Indeed, any two null-homotopies of the composite Zn → BAut(πn(F )) differ by
a map Zn → Aut(πn(F )) via the action of [Zn,ΩBAut(πn(F ))] on [Zn,K(πn(F ), n+1)]. This
action is, however, trivial: This is because the map ΩBhAut(K(πn(F ), n)) → BAut(πn(F ))
admits a section; see the similar discussion in Remark 2.30.

In conclusion, if the π1(X)-action on πn(F ) is trivial (or nilpotent) then the obstruction
classes θn ∈ [Zn,K(πn(F ), n+ 1)] are independent of any further choices.

We come back to our main situation at hand and consider the commutative diagram as
in (4). We continue to assume that A and B are CW complexes. By assumption, we may
expand it as follows

A Zn+1 ∗

B Zn K(πn(F ), n+ 1)

i

ϕ θn

25Recall that this implies that F is simple, resp. nilpotent, since the restricted π1(F )-action on πn(F ) is
the one appearing in the definition of simple and nilpotent spaces.
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where the right square is a homotopy pullback diagram. That the outer large diagram com-
mutes up to specified homotopy implies that the maps ϕ∗(θn) factors through C(i), that is,
there is a commutative diagram

B Zn

C(i) K(πn(F ), n+ 1)

ϕ

θn

ϕ∗A(θn)

Now C(i) is again a CW complex, so we may view the elements ϕ∗A(θn) as elementsHn+1(C(i);πn(F )).
If i is an inclusion of a subcomplex, then C(i) ' B/A. We conclude the main theorem of
obstruction theory.

5.17. Theorem Let f : X → Y be a simple map26 between path connected spaces and consider
a lifting problem as in (3) with i an inclusion of a subcomplex and f a fibration. Then, for
n ≥ 1, there are inductively defined obstruction classes ϕ∗A(θn) ∈ Hn+1(B/A;πn(F )), with the
property that

(1) ϕ∗A(θ1) is defined provided a solution on the level of π1 exists.
(2) if ϕ∗A(θn) is defined and vanishes, then ϕ∗A(θn+1) is defined.
(3) if ϕ∗A(θn) is defined and vanishes for all n ≥ 1, then the lifting problem has a solution.

Proof. We have already argued (1) and (3), so it remains to prove (2). For this, we need to
argue that finding lifts up to compatible homotopy in a (homotopy commutative) diagram of
the form

A ∗

B C

is equivalent to finding null-homotopies of the induced map C(i) → C; we leave this as an
exercise. �

5.18. Remark Some textbooks add further assumptions on the map f , e.g. in particular so
that πn(F ) is naturally an abelian group also for n = 0 and so that the first step in our ob-
struction theory (which we decided to phrase in terms of covering theory, i.e. in terms of funda-
mental groups) is given by a cohomological obstruction class, namely one in H1(B/A;π0(F ))
as we also argued in Example 5.8.

We finish this section with some applications.

5.19. Corollary (Whitehead’s theorem) Let f : X → Y be a weak equivalence between con-
nected CW complexes. Then f is a homotopy equivalence.

Proof. Consider the following diagram

X Ef

Cyl(f) Y

'

'

26As in Remark 5.15, a similar conclusion holds for nilpotent maps.
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The right hand square is obtained by factoring the map X → Y both as a homotopy equiva-
lence followed by a fibration (the upper right composite, see e.g. [Win24, Construction 5.2.10])
and by a cofibration followed by a homotopy equivalence (the lower left composite). Note
that the map Ef → Y is a simple map, for the simple reason that it is a weak equivalence
(since f is a weak equivalence) and hence its homotopy fibre has trivial homotopy groups.

We are looking to show that we can find a dashed arrow making both small triangles
commute, and will use the above developed obstruction theory to show that this is the case.
Indeed, it is readily checked that such a map provides a homotopy inverse of f , by considering
the composite Y ' Cyl(f) → Ef ' X. By Theorem 5.17 the obstructions to finding such a
dashed arrow are controlled by π1 (where it is trivial that a lift exists since a weak equivalence
induces an isomorphism on π1), and by elements in Hn+1(C(f);πn(F )), where F is the
homotopy fibre of f . These obstruction groups vanish since f is a weak equivalence. �

5.20. Corollary Let n ≥ 1 and f : X → Y be (n+ 1)-connected nilpotent map and let A be a
CW complex with Hk(A;M) = 0 for all abelian groups M and all k ≥ n+ 1. Then the map
f∗ : [A,X]→ [A, Y ] is a bijection.

Proof. We may assume that f is a fibration. To see injectivity, assume ϕ,ϕ′ : A → X are
maps such that fϕ and fϕ′ are homotopic. Choosing a homotopy gives rise to the following
commutative diagram.

A× {0, 1} X

A× [0, 1] Y

Pick a point a ∈ A and consider the restricted lifting problem with A replaced by {a}. This
can be solved by [Win24, Prop. 5.2.15]. Therefore, we may consider the slightly improved
commutative diagram

A× {0, 1} ∪ {a} × [0, 1] X

A× [0, 1] Y

The obstructions to finding a dashed arrow (which would give that ϕ and ϕ′ are homotopic),
making the diagram commute are controlled firstly by π1 which is no problem as π1(X) →
π1(Y ) is an isomorphism (recall that we assume n ≥ 1). Then, the further obstructions are
controlled by elements Hk+1(ΣA;πk(F )) ∼= Hk(A;πk(F )), where F is the homotopy fibre of
f . Now, since f is (n+1)-connected, we find that F is n-connected, so all of these cohomology
groups vanish by assumption. Similarly, for surjectivity, we consider the diagram

∅ X

A Y

Again, there is no issue with finding a lift on π1. For the further obstructions, we use that
the groups Hk+1(A;πk(F )) also vanish (in fact, here, it suffices that the map is n-connected,
as long as n ≥ 2). �
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Next, we prove the classical theorem of Hopf (which Hopf initially proved geometrically).
We use here that closed manifolds have the homotopy type of CW complexes.27

5.21. Corollary Let M be a closed connected n-manifold. Then

deg : [M,Sn]→

{
Z if M is orientable

Z/2 if M is not orientable

are bijective. In both cases, a generator is given by the collapse map M →M/(M \ D̊n) ∼= Sn

for some embedding of Dn ⊆M .

Proof. Recall that the map Sn → K(Z, n) is (n + 1)-connected. By Corollary 5.20, it hence
induces an isomorphism on [M,−]. It follows that the sets are as claimed. That the collapse
map are generators is then an explicit computation. �

5.22. Corollary Let M be a connected closed n-dimensional manifold with n ≥ 2. Then
[M,Sn−1] sits inside an exact sequence

Hn−2(M ;Z)→ Hn(M ;πn(Sn−1))→ [M,Sn−1]→ Hn−1(M ;Z)→ 0

Proof. If n = 2, then Sn−1 = K(Z, 1) and the result follows immediately from the repre-
sentability theorem. So assume that n ≥ 3 and let F be the homotopy fibre of the map
Sn−1 → K(Z, n− 1). By the final observation in the proof of Corollary 5.20, we deduce that
the map [M,Sn−1] → [M,K(Z, n − 1)] is surjective. Moreover, from the fibration sequence
defining F we obtain an exact sequence (of sets)

[M,ΩK(Z, n− 1)]→ [M,F ]→ [M,Sn−1]→ [M,K(Z, n− 1)]→ 0

Moreover, notice that πn(F ) → πn(Sn−1) is an isomorphism, and therefore that the map
F → K(πn(Sn−1), n) is (n+1)-connected, so the induced map [M,F ]→ [M,K(πn(Sn−1), n)]
is bijective again by Corollary 5.20, giving the exact sequence of the corollary. �

5.23. Remark If n ≥ 4, using the results of the next section, we have πn(Sn−1) ∼= Z/2Z; so
far, we know that there is a surjection Z/2Z → πn(Sn−1). Hence, if M is simply connected
and n ≥ 4 we have that [M,Sn−1] is a quotient of Hn(M ;Z/2Z) and hence has either two
elements, or one element. In fact, we will see later in this course, that [M,Sn−1] has two
elements if and only if a certain characteristic class w2(M) of M vanishes.

In addition, one can show that the map [M,Sn] → [M,Sn−1] induced by the appropriate
suspension of the Hopf map η : S3 → S2 induces a surjection (in case M is simply connected),
so that we also find explicit representatives of the non-trivial homotopy classes.

6. Steenrod operations

In this section we aim to construct and study certain cohomology operations called Steenrod
squares. They are operations

Sqi : Hn(−;F2)→ Hn+i(−;F2), for i ≥ 0

satisfying various relations and properties. We will see that, essentially, they are induced
by the cup square operation x 7→ x2. Let us contemplate the following description of this

27This is not a priori obvious and we will not give a proof in this course.
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operation; we write ιn ∈ Hn(K(F2, n);F2) for the tautological class. Then the cross product
ιn × ιn ∈ H2n(K(F2, n)×K(F2, n);F2) is the image of ιn ⊗ ιn under the map

Hn(K(F2, n);F2)⊗Hn(K(F2, n);F2)→ H2n(K(F2, n)×K(F2, n);F2)

appearing in the Künneth theorem. By the representability theorem, we may think of ιn× ιn
as a map K(F2, n)×K(F2, n)→ K(F2, 2n) which becomes null homotopic when restricted to
K(F2, n) ∨K(F2, n), by naturality of the Künneth map. Hence, we really may think of it as
a map

ιn × ιn : K(F2, n) ∧K(F2, n)→ K(F2, 2n).

Likewise, we may consider the k-fold cross product ι×kn as a map

ι×kn :
∧
k

K(F2, n)→ K(F2, kn).

6.1. Remark There is no reason to believe that this map is equivariant for the Σk-action
via permutations on the source and the trivial source on the target. In fact, the Steenrod
operations we will construct turn out to be obstructions for this. In particular, since we will
show that the Steenrod squares are non-trivial, it follows that there is no representative of
the homotopy class of ι×kn which is equivariant for the above mentioned Σk-action.

However, it is true that for any permutation σ ∈ Σk, thought of as a self-map of
∧
kK(F2, n)

by permuting the factors, we have that the two maps

ι×kn ◦ σ and ι×kn

are homotopic. Indeed, this is simply because σ induces an isomorphism on cohomology and
Hnk(

∧
kK(F2, n);F2) ∼= F2.

It turns out that more is true, and this is the basis for the existence of the Steenrod squares.
though. To formulate it, fixing a basepoint in K(F2, n), let us recall that

∧
kK(F2, n) is the

quotient of
∏
kK(F2, n) by those tuples where at least one entry is the basepoint. In particular∧

kK(F2, n) is canonically pointed, let us denote this basepoint simply by ∗. Then we observe
that the Σk-action by permutations preserves this basepoint. In particular, the inclusion of
the basepoint is Σk-equivariant.

For a general pointed space (X,x) equipped with a basepoint preserving G-action, G a
finite group say, let us then set

(X,x)hG := C({∗}hG → XhG).

With this notation established, the following lemma is at the heart of the construction of the
Steenrod squares we will present here.28

6.2. Lemma There is a, unique up to homotopy, extension up to homotopy of the map ι×kn
to a map (

∧
kK(F2, n), ∗)hΣk → K(F2, nk).

Proof. To ease notation, let us write X for
∧
kK(F2, n). We may assume that X is a CW

complex and that EΣk is a CW complex. The task is to show that the canonical projection
map X → (X, ∗)hΣk induces an isomorphism on Hnk(−;F2). Now, the map X × EΣk →
(X×EΣk)/Σk = XhΣk , as well as the map EΣk → BΣk are covering maps. In the composite

Csing
• (X × EΣk, ∗ × EΣk)⊗Z[Σk] Z→ Csing

• (XhΣk , {∗}hΣk)→ Csing
• ((X, ∗)hΣk)

28I learned this perspective in a lecture of Stefan Schwede in Bonn.
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the first map is an isomorphism and the second one is a chain homotopy equivalence. Indeed,
for the latter see [Lan23, Lemma 4.58] together with Exercise 1 (e) of Exercise Sheet 14 from
Topology 1. The former is argued similarly as in our proof of the Hurewicz Theorem 2.32.

Moreover, again as in the proof of the Hurewicz theorem, since the chain complex Csing
• (X ×

EΣk, ∗×EΣk) is (nk−1)-connected and consists of levelwise free Z[Σk]-modules, we can find a
Z[Σk]-chain homotopy equivalence to a chain complex M which is levelweise free (over Z[Σk])
and with Ml = 0 for l < nk. We deduce that there is also a chain homotopy equivalence

M ⊗Z[Σk] Z ' Csing
• ((X, ∗)hΣk).

Therefore, to compute H∗((X, ∗)hΣk ;F2), we may compute the homology of the chain complex

HomZ(M ⊗Z[Σk] Z,F2) ∼= HomZ[Σk](M,F2)

where F2 is viewed as trivial Σk-representation (there is no other way, in fact). Writing this
complex out gives

· · · ← HomZ[Σk](Mnk+1,F2)← HomZ[Σk](Mnk,F2)← 0

where the first non-trivial term appears in homological degree −nk. Since the Σk-action on
F2 is trivial, this complex is isomorphic to

· · · ← HomZ(Mnk+1,F2)Σk ← HomZ(Mn,F2)Σk ← 0

Since the functor (−)Σk is a right adjoint, it preserves kernels and hence we obtain that the
−nkth homology of the above complex is given by

ker[HomZ(Mnk+1,F2)→ HomZ(Mnk,F2)]Σk .

Now, before taking Σk-fixed points, this kernel is (again using that M is chain homotopy

equivalent to Csing
• (X, ∗) since EΣk is contractible) isomorphic to Hnk(X;F2). By Künneth,

this group is isomorphic to F2, generated precisely on the element ι⊗kn . The Σk-action on this
F2 is necessarily trivial, and we arrive at the desired result. �

6.3. Construction Let X be a topological space and x ∈ Hn(X;F2). Consider the the
diagram composite

X → X ×X → K(F2, n)×K(F2, n)→ K(F2, 2n)

and note that this map classifies the element x2. By Lemma 6.2, the latter map in the above
composite factors as a composite

[K(F2, n)×K(F2)]hΣ2 → [K(F2, n) ∧K(F2, n)]hΣ2 → K(F2, 2n)

since there is a tautological map XhΣ2 → X∗hΣ2 for any pointed space with Σ2-action. In
particular, the above composite refines to a composite

X × RP∞ = XhΣ2 → (X ×X)hΣ2 → (K(F2, n)×K(F2, n))hΣ2 → K(F2, 2n)

in other words, gives an element of H2n(X × RP∞;F2). Now recall that by the Künneth
theorem, we have an isomorphism

H∗(X × RP∞;F2) ∼= H∗(X;F2)⊗F2 H
∗(RP∞;F2) = H∗(X;F2)[t]

where |t| = 1, since H∗(RP∞;F2) ∼= F2[t]. We denote the above composite by Pt(x). Here,
the P stands for Power operation, the t for the fact that we obtain a polynomial in t.
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6.4. Definition We define the Steenrod squares Sqi(x) ∈ Hn+i(X;F2) on x ∈ Hn(X;F2) to
be the coefficient of tn−i of Pt(x), that is, we have

Pt(x) =

n∑
i=−n

Sqi(x) · tn−i.

We now aim to prove several structural results about these elements summarized in the
following theorem.

6.5. Theorem For x ∈ Hn(X;F2) and y ∈ Hm(X;F2), the operations x 7→ Sqi(x) satisfy the
following properties:

(1) Naturality: That is, if x = f∗(y), then Sqi(x) = f∗(Sqi(y)).
(2) Triviality: We have Sqi(x) = 0 for i > n and for i < 0.
(3) Square-likeness: We have Sqn(x) = x2.
(4) Cartan formula: Sqi(x × y) =

∑
k+l=i Sqk(x) × Sql(y) in Hn+m+i(X × Y ;F2); same

for ∧ in place of ×.
(5) Stability: We have Sqi(σ(x)) = σ(Sqi(x)) where σ is the suspension isomorphism.
(6) Unitality: We have Sq0(x) = x.
(7) Adem relations: For i < 2j, we have

SqiSqj(x) =

bi/2c∑
k

(
j − k − 1

i− 2k

)
Sqj+i−kSqk(x).

where the binomial coefficient is to be interpreted in F2.

6.6. Remark By representability and naturality, we may think of the Steenrod squares as

follows: For each n ≥ 0 and 0 ≤ i ≤ n, there is a unique map Ŝq
i
: K(F2, n) → K(F2, n + i)

with the property that for x ∈ Hn(X;F2) with classifying map x : X → K(F2, n), we have
that Sqi(x) is classified by the composite

X
x−→ K(F2, n)

Ŝq
i

−−→ K(F2, n+ i).

Exercise: The stability property (5) in the above theorem translates to the statement that
the map

ΩŜq
i
: ΩK(F2, n+ 1)→ ΩK(F2, n+ 1 + i)

corresponds under the identifications ΩK(F2, k + 1) ' K(F2, k) to the map Ŝq
i
: K(F2, n)→

K(F2, n + i). In particular, we deduce that the maps Ŝq
i

are (infinite) loop maps, and
hence their effect on cohomology is a group homomorphism. That is, we have Sqi(x+ x′) =
Sqi(x) + Sqi(x′).29 Note that this, together with Sqn(x) = x2 looks cumbersome at first
glance, until we recall that x 7→ x2 is indeed additive (as we are working in characteristic 2).

6.7. Remark The Cartan formula (4) as above is equivalent to the following statement also
often referred to as the Cartan formula (exercise). Let x, x′ ∈ H∗(X;F2). Then

Sqi(x · x′) =
∑
k+l=i

Sqk(x) · Sql(x′).

29One can also show this property more directly by definition of Sqi(x+ x′), contemplating the behaviour
of (−)hΣ2 on wedges of spaces.
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6.8. Remark The Steenrod squares are uniquely determined by properties (1), (2), (3), (4),
and (6). It is worth noting that we will prove (5) as a consequence of these axioms. However,
the Adem relations will be shown to be a consequence of the construction, not a consequence
of these properties alone. See Remark 6.21 for a sketch of the argument.

We now prove each of these properties step by step. The first ones are rather easy.

6.9. Lemma (Naturality) Let f : X → Y be a map and y ∈ Hn(X;F2). Then Sqi(f∗(y)) =
f∗(Sqi(y)).

Proof. We consider the diagram commutative diagram

X X ×X K(F2, n)×K(F2, n) K(F2, 2n)

Y Y × Y K(F2, n)×K(F2, n) K(F2, 2n)

f

f∗(y)×f∗(y)

f×f

y×y

Here, the lower composite classifies y2, and the upper composite classifies f∗(y2) = f∗(y)2.
Since the left two squares are equivariant with respect to the evident Σ2-actions, we obtain
the commutative diagram

X × RP∞ (X ×X)hΣ2 (K(F2, n)×K(F2, n)hΣ2 K(F2, 2n)

Y × RP∞ (Y × Y )hΣ2 (K(F2, n)×K(F2, n)hΣ2 K(F2, 2n)

f×id

The upper horizontal composite is Pt(f
∗(y)), by definition. The composite going through

the lower left corner is (f × id)∗Pt(y). The commutativity of the diagram hence implies that
Pt(f

∗(y)) = (f × id)∗(Pt(y)), and in particular the lemma. �

6.10. Lemma (Triviality) For x ∈ Hn(X;F2) we have Sqi(x) = 0 if i > n or i < 0.

Proof. Recall that Sqi(x) is the coefficient of tn−i in Pt(x) ∈ H2n(X × RP∞;F2). Hence, if
i > n, then Sqi(x) must be zero because H∗(RP∞) = 0 for ∗ < 0. Now consider the case
i < 0. We may, by abuse of notation, write x = x∗(ιn), where we also denote by x the map
X → K(F2, n) which classifies x. By naturality, we have Sqi(x) = x∗(Sqi(ιn)), so it suffices
to prove the result in case X = K(F2, n) and x = ιn. In this case, there are two options: If
i < 0 is different from −n, then Sqi(ιn) ∈ Hn+i(K(F2, n);F2) = 0. It remains to show that
Sq−n(ιn) = 0. In this case, consider the map c : ∗ → K(F2, n). Then it suffices to show that
c∗Sq−n(ιn) = 0. Again, by naturality this is equal to Sq−n(c∗(ιn)) = 0 since we have assumed
(implicitly) that n > 0. �

6.11. Lemma (Square-likeness) For x ∈ Hn(X;F2) we have Sqn(x) = x2.

Proof. By definition, Sqn(x) is the coefficient of t0 of Pt(x) ∈ H2n(X×RP∞). This coefficient
is equivalently given by the restriction of Pt(x) along the map X = X ×∗ → X ×RP∞ using
some basepoint of RP∞. This map is the tautological map X → XhΣ2 . Therefore, the result
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follows from the following commutative diagram.

X X ×X K(F2, n)×K(F2, n) K(F2, 2n)

XhΣ2 (X ×X)hΣ2 (K(F2, n)×K(F2, n))hΣ2

�

We work towards the Cartan fomula next. To do this, we recall that we have constructed
a natural map

Pt : H
∗(X;F2)→ H∗(X × RP∞;F2) = H∗(X;F2)[t]

where naturality means that for a map f : X → Y , the diagram

H∗(Y ;F2) H∗(Y ;F2)[t]

H∗(X;F2) H∗(X;F2)[t]

f∗ f∗

commutes (the right hand vertical map sends t to t). Let us denote by δ the canonical map
(X ×Y )hΣ2 → XhΣ2×YhΣ2 ; concretely, it is the map X ×Y ×RP∞ → X ×RP∞×Y ×RP∞,
which uses the symmetric monoidal structure on × and the diagonal RP∞ → RP∞ × RP∞.
The following lemma is the crucial relation giving the Cartan formula (we will make this
explicit momentarily).

6.12. Lemma (Cartan formula) Let X and Y be spaces, x ∈ Hn(X;F2) and y ∈ Hm(Y ;F2).
Then we have:

Pt(x× y) = δ∗(Pt(x)× Pt(y)).

Proof. First we note that both sides are additive in x and y. Therefore, we may assume that
X and Y are connected. Moreover, suppose n = 0. Then x is pulled back from the unique
map X → ∗. Exercise: prove the lemma in case X = ∗. The same argument applies when
m = 0.

We now assume that n and m are positive. As before, we may write x = x∗(ιn) and
y = y∗(ιm). Then we find

Pt(x× y) = Pt((x, y)∗(ιn × ιm)) = (x, y)∗(Pt(ιn × ιm))

Hence, if we can show that

Pt(ιn × ιm) = δ∗(Pt(ιn)× Pt(ιm))

the claim follows. Now note that since n and m are positive, the map classifiying ιn × ιm
factors as

K(F2, n)×K(F2,m)→ K(F2, n) ∧K(F2,m)→ K(F2, n+m)

where the latter map classifies the element ιn ∧ ιm. Hence, it suffices to show that

Pt(ιn ∧ ιm) = δ∗(Pt(ιn) ∧ Pt(ιm))

This amounts to proving the commutativity of the following diagram. Let us shorten notation
and write Kn for K(F2, n). Also, we will not include basepoints in the notation explicitly,
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but all homotopy orbits appearing next are to be taken in the pointed sense.

(Kn ∧Kn)hΣ2

[
(Kn ∧Km) ∧ (Kn ∧Km)

]
hΣ2

(Kn+m ∧Kn+m)hΣ2 K2(n+m)

(Kn)hΣ2 ∧ (Km)hΣ2 (Kn ∧Kn)hΣ2 ∧ (Km ∧Km)hΣ2 K2n ∧K2m K2n+2m

'

Here, the left most horizontal maps are again induced by the diagonals and the two left vertical
maps are the pointed versions of the tautological maps described earlier, so the left square
commutes by naturality of these maps. It remains to argue that the big right square also
commutes. To do this, note that both composites are equivalently described by an element of
H2(n+m)(−;F2) of the space appearing on the top left corner of the square under investigation.
Now, the same argument we used in the proof of Lemma 6.2 shows that the map

Kn ∧Km ∧Kn ∧Km →
[
(Kn ∧Km) ∧ (Kn ∧Km)

]
hΣ2

induces an isomorphism on H2(n+m)(−;F2). It hence suffices to prove that the right square
commutes after precomposition with this map. Then, one observes that both composites clas-
sify the unique non-trivial element of the corresponding cohomology group (by construction
and Künneth). �

We now show that this indeed amounts to the Cartan formula by writing out the two sides
of the equality of Lemma 6.12. For the left hand side, we get

Pt(x× y) =

n+m∑
i=0

Sqi(x× y) · tn+m−i

while the left hand side gives

δ∗(Pt(x)× Pt(y)) =
[ n∑
k=0

Sqk(x) · tn−k
]
×
[ m∑
l=0

Sql(y) · tm−l
]

=

n∑
k=0

m∑
l=0

(Sqk(x)× Sql(y)) · tn+m−(k+l)

=

n+m∑
i=0

[
∑
k+l=i

Sqk(x)× Sql(y)] · tn+m−(k+l)

showing the Cartan formula. For the next results, we first need to prove the following lemma
by hand:

6.13. Lemma Let i1 ∈ H1(S1;F2) denote the non-trivial element. Then Sq0(i1) = i1.

Proof. The element Sq0(i1) · t lives in H1(S1;F2) ⊗F2 H
1(RP∞;F2) ⊆ H2(S1 × RP∞. This

inclusion is equivalently given by map H2((S1, ∗)hΣ2);F2)→ H2(S1
hΣ2

;F2), induced from the
map from ordinary homotopy orbits to pointed homotopy orbits. It hence suffices to prove
that the composite

(S1, ∗)hΣ2 → (S1 ∧ S1, ∗)hΣ2 → (K1 ∧K1, ∗)hΣ2 → K2

is non-trivial, or equivalently, induces an isomorphism on H2(−;F2). Note that the final two
maps induce isomorphisms on H2(−;F2), the latter by Lemma 6.2 and the former for the
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same connectivity reasons leading to Lemma 6.2. It hence suffices to prove that also the
first map induces an isomorphism on H2(−;F2). To that end, let us consider the following
homotopy cofibre sequence of pointed Σ2-spaces:

(Σ2)+ → S0 → Sσ

where Sσ is therefore the one-point compactification of the sign Σ2-representation on R.
Exercise: as Σ2-space, there is a homeomorphism (S1∧S1) ∼= S1+σ := S1∧Sσ, the suspension
of Sσ, under which the diagonal map corresponds to the suspension of the inclusion S0 → Sσ.
Indeed, both terms are the one-point compactifications of representations of Σ2 on R2: The
former is the flip action (x, y) 7→ (y, x) and the latter is R1+σ, the trivial plus the sign
representation (x, y) 7→ (x,−y). Consider the linear automorphism of R2 given by (a, b) 7→
(a + b, a− b). This determines an isomorphism from the R1+σ to R2 with flip action, and it
sends the inclusion R1 → R1+σ, x 7→ (x, 0) to the diagonal embedding x 7→ (x, x) of R into R2

with flip action. Passing to one-point compactifications then yields the desired Σ2-equivariant
homeomorphism (S1∧S1) ∼= S1+σ. Now, the functor (−)hΣ2 , in the pointed context, preserves
homotopy cofibre sequences and sends X ∧ (Σ2)+ to X, see Remark 6.14 below. Hence, we
obtain that the map under investigation participates in a homotopy cofibre sequence

S1 → (S1, ∗)hΣ2 → (S1 ∧ S1, ∗)hΣ2 → S2 → S2
hΣ2

.

This shows that the map

H2((S1 ∧ S1, ∗)hΣ2 ;F2)→ H2((S1, ∗)hΣ2 ;F2)

is a surjection from F2 to F2 and hence an isomorphism as needed. �

6.14. Remark Let (X,x) be a pointed CW complex and G a finite group. Then X ∧ G+ is
a G-space with basepoint preserving G-action. Recall that X ∧ G+ = X × G/{x} × G. To
compute its homotopy orbits, let us then consider the following (pushout) diagrams

{x} ×G X ×G ({x} ×G)hG (X ×G)hG

∗ X ∧G+ ∗hG (X ∧G+)hG

where the right square is obtained from the left by first crossing with EG and then taking strict
orbits with regards to the G-action; both of these operations perserve pushout squares. Let us
calculate (Y ×G)hG for a general space Y . Recall that this is, by definition, (Y ×G×EG)/G.
Since the G-action is only on G × EG, we obtain that (Y × G)hG = Y × GhG and GhG =
(G×EG)/G. Viewing this as the associated bundle of the principal G-bundle G→ ∗ with the
G-space EG, we find that GhG = EG; compare the discussion in Example 4.57. We deduce
that the right above pushout sqaure has top horizontal map given by {x} ×EG→ X ×EG.
In particular, this map is a cofibration. Hence, so is its pushout, i.e. the lower map in the
above pushout square, so that its mapping cone is equivalent to the strict quotient; this strict
quotient is then isomorphic to the strict quotient of the cofibration {x} × EG → X × EG.
We hence obtain a homotopy equivalence

(X ∧G+, ∗)hG ' (X,x).

To prove the compatibility of the Steenrod operations with the suspension isomorphism σ,
it will be convenient to characterise σ as follows.
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6.15. Lemma The suspension isomorphism σ is given by the composite

Hn(X;F2)→ Hn+1(X ∧ S1;F2) ∼= Hn+1(ΣX;F2).

where the first map is given by the exterior product with the unique non-trivial class H̃1(S1;F2).

Proof. This map is indeed a natural isomorphism by the Künneth theorem. Composing
with the inverse of the suspension isomorphism, we obtain a natural self-isomorphism of the
functor Hn(−;F2). The only such self-isomorphism is the identity (by representability, the
set of natural self-homorphisms is given by Hn(K(F2, n);F2) ∼= F2) and hence the map of the
lemma indeed agrees with the suspension isomorphism. �

6.16. Corollary (Stability) For x ∈ Hn(X;F2) we have Sqi(σ(x)) = σ(Sqi(x)).

Proof. Lemma 6.15 says that σ(x) = x ∧ i1. Note that Sqk(i1) = 0 unless k = 0 since
Hn(S1;F2) = 0 for n 6= 1. Moeover, Sq0(i1) = i1 by the previous lemma. Thus we find from
the Cartan formula that

Sqi(σ(x)) = Sqi(x ∧ i1) = Sqi(x) ∧ i1
and therefore that Sqi(σ(x)) = σ(Sqi(x)) as claimed. �

Let us pause for a second and realize what we have already achieved:

6.17. Corollary For all n ≥ 0, Σn(η) : Sn+3 → Sn+2 is not null-homotopic. In particular,
πn(Sn−1) ∼= Z/2Z for all n ≥ 4.

Proof. Recall that C(η) = CP2. Hence, C(Σn(η)) = Σn(C(η)) = ΣnCP2. Let x ∈ H2(CP2;F2)
be the non-trivial element. Then σn(x) ∈ Hn+2(ΣnCP2;F2) is non-trivial. Moreover, we have
Sq2(σn(x)) = σn(Sq2(x)) = σn(x2) and we know that x2 6= 0 in H4(CP2;F2) by Poincaré
duality. Therefore, we conclude that Sq2 : Hn+2(ΣnCP2;F2) → Hn+4(ΣnCP2;F2) is non-
trivial. This contradicts that Σnη is null-homotopic. Indeed, in this case, we would have
C(Σnη) ' Sn+2 ∨ Sn+4. A naturality argument then shows that Sq2 is trivial on the coho-
mology of Sn+2 ∨ Sn+4. �

6.18. Remark The same arguments apply to the quaternionic and octonionic Hopf maps
ν : S7 → S4 and σ : S15 → S8. Indeed, their mapping cones are given by HP2 and OP2,
respectively. Both are closed manifolds with H∗(−;Z) = Z[u]/u3 with |u| = 4 and |u| = 8,
respectively. Hence, we find that Sq4 is non-trivial on H∗(ΣkHP2;F2) and that Sq8 is non-
trivial on H∗(ΣkOP2;F2) for any k ≥ 0. Consequently, Σkν and Σkσ are not null-homotopic
for any k ≥ 0.

As a further consequence of stability and Lemma 6.13 we obtain:

6.19. Corollary (Unitality) Let x ∈ Hn(X;F2). Then Sq0(x) = x.

Proof. If n = 0, then we find that Sq0(x) = x2 ∈ H0(X;F2) =
∏

F2, and in this ring, we have
x2 = x for all elements, simply because it is true for F2 itself. Therefore let us suppose that
n ≥ 1. By naturality, it suffices to treat the case (X,x) = (K(F2, n), ιn). In this case Sq0(ιn)
is either ιn or 0, since Hn(K(F2, n);F2) ∼= F2. Hence, again by naturality, it suffices to find
an arbitrary space Y with 0 6= y ∈ Hn(Y ;F2) and Sq0(y) 6= 0. We choose Y = Sn and y = in
the unique choice. Then we find Sq0(in) = Sq0(σn−1(i1)) = σn−1(Sq0(i1)) = in. �
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6.20. Example Let us fully describe the action of the Steenrod squares on the cohomlogy of
RP∞. To that end, let t ∈ H1(RP∞;F2) be the non-trivial element. Then we have

Sqi(tk) =

(
k

i

)
tk+i.

Indeed, let us write Sq = 1 + Sq1 + Sq2 + . . . for the total Steenrod square. The Cartan
formula is then equivalent to the formula Sq(x · y) = Sq(x) · Sq(y). Moreover, we have
Sq(t) = t+ t2 = t(t+ 1) by unitality, square-likeness and triviality. Hence

Sq(tk) = Sq(t)k = tk(t+ 1)k = tk ·
k∑
i=0

(
k

i

)
ti

as needed.

6.21. Remark Note that the above computation for the action of Sqi on H∗(RP∞;F2) follows

from the properties (2), (3), (4), and (6). That is, any other set of operations S̃q
i

satisfying
these properties agree with Sqi when evaluated on the cohomology of RP∞. Using the Cartan

formula, it follows that S̃q
i

also agrees with Sqi on the cohomology of (RP∞)×n, the n-fold

cartesian product of RP∞ for any n ≥ 1. Now, let us try to show that S̃q
i

= Sqi in general.
To do so, let X be a space and x ∈ Hn(X;F2) be a cohomology class for which we aim to

show that S̃q
i
(x) = Sqi(x). Note that S̃q

i
are compatible with the suspension homomorphism

as a formal consequence of the fact that S̃q
1
(i1) = i1 and of the Cartan formula for S̃q

i
.

Hence, by passing to a suitably high suspension of X, we may assume that |x| = n > i, and in

particular that n+i < 2n. Now, by naturality, it suffices to show that S̃q
i
(ιn) = Sqi(ιn) where

ιn ∈ Hn(Kn;F2) is the tautological class. The decisive fact, which we are not yet able to prove,
but which has nothing to do with the uniqueness of the Sqi’s, is the following: Considering
the map ι×n1 : (RP∞)×n → Kn, this map induces an injection on Hk(−;F2) for k < 2n. Again

by naturality, we then deduce the claim that S̃q
i
(ιn) = Sqi(ιn) to the previously established

fact that S̃q
i

= Sqi on the cohomology of (RP∞)×n.
The fact that the map (RP∞)×n → Kn is injective on cohomology relies on an a priori

computation of H∗(Kn;F2) at least in the range of degrees ∗ ≤ 2n. We will perform this
computation next term.

We finally come to the Adem relations. We will present a proof of these relations that we
learned from Gijs Heuts who in turn learned it from Hopkins at Harvard; it seems to be based
on a paper by Bullet–Macdonald [BM82]. The idea will be, somewhat similarly to the proof
of the Cartan formula, to find a suitable relation for the function Pt(−); deducing the Adem
relations from this is then a “purely algebraic” argument.

The basic idea is the following. We recall that we may view Pt as a (ring) homomorphism

H∗(X;F2)→ H∗(X;F2)[t]

for any space X. In particular, we may apply this to the space X × RP∞ and obtain the
composite

H∗(X;F2)
Ps−→ H∗(X;F2)[s] ∼= H∗(X × RP∞;F2)

Pt−→ H∗(X × RP∞;F2)[t] = H∗(X)[s, t].
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6.22. Theorem Let X be a space and x ∈ H∗(X;F2). Then there is the equality

Ps(Pt(x)) = Pt(Ps(x)) ∈ H∗(X;F2)[s, t].

Proof. Considering the isomorphism H∗(X;F2)[s, t] ∼= H∗(X×RP∞×RP∞;F2) and the map
PsPt as a ring homomorphism

H∗(X;F2)→ H∗(X × RP∞ × RP∞;F2)

the statement of the theorem is equivalent to saying that this map has image contained in the
fixed-points of the Σ2-action on the codomain coming from the switch map τ : RP∞ × RP∞.
Now, recall that Pt(x) : XhΣ2 → K2n is given by the composite

XhΣ2 → (X ×X)hΣ2 → (Kn ×Kn)hΣ2 → K2n.

Let us then consider the following diagram, the top row of which classifies the element
Ps(Pt(x)):

(XhΣ2)hΣ2

[
(XhΣ2)×2

]
hΣ2

(K2n ×K2n)hΣ2 K4n

[
((X ×X)hΣ2)×2

]
hΣ2

[
((Kn ×Kn)hΣ2)×2

]
hΣ2

XhW (X ×X ×X ×X)hW (Kn ×Kn ×Kn ×Kn)hW

XhΣ4 (X ×X ×X ×X)hΣ4 (Kn ×Kn ×Kn ×Kn)hΣ4

' '

where W = Σ2 o Σ2 = (Σ2 × Σ2) o Σ2 ⊆ Σ4, the bent arrow comes from Lemma 6.2, and the
top left most vertical map comes from the inclusion Σ2 × Σ2 ⊆ W induced by the diagonal
Σ2 ⊆ Σ2 × Σ2: On this diagonal, the Σ2 from the definition of the wreath product acts
trivially, so the semi-direct product becomes simply a direct product. We note the the left
vertical maps are concretely given by

X × RP∞ × RP∞ → X ×BW → X ×BΣ4.

By the commutativity of the above diagram, it will be sufficient to show that this map is
homotopic to the same map, precomposed with the map induced by the switch map on
RP∞ × RP∞. For this, X plays no role and it suffices to prove that the diagram

RP∞ × RP∞ BΣ4

RP∞ × RP∞

i

τ
i

commutes up to homotopy. By Lemma 4.35, this is implied by the statement that the two
group homomorphisms

Σ2 × Σ2 Σ4

Σ2 × Σ2

i

τ
i
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are conjugated. To that end, let us make again explicit the inclusion i. It is given concretely
by the pair of permutations (σ1, σ2) where σ1 is the permuation τ1,2τ3,4, i.e. the permutation
that switches 1 and 2 and switches 3 and 4, while σ2 is the permutation that permutes the
block {1, 2} and the block {3, 4}, i.e. τ1,3τ2,4 which switches 1 and 3 and 2 and 4. It then
suffices to see that τ2,3σ1τ2,3 = σ2, so indeed i and τ ◦ i are conjugated by the element τ2,3 of
Σ4. �

Next, we need to argue how the relation Pt(Ps(x)) = Ps(Pt(x)) implies the Adem relations.
To do so, it will be convenient to introduce the following notation: We let Sqi be the coefficient
of ti in Pt. That is, for x ∈ Hn(X;F2), we have Sqi(x) = Sqn−i(x). Then we have

Pt(Ps(x)) = Pt(
∑
i≥0

Sqi(x)si)

=
∑
i≥0

Pt(Sqi(x)) · Pt(s)i

=
∑
i≥0

(
∑
j

Sqj(Sqi(x))tj) · (s2 + st)i

=
∑
i,j≥0

SqjSqi(x) · tj · (s2 + st)i

Here, we have used the Cartan formula, i.e. the statement that Pt(−) is a ring homomorphism,
and that for s ∈ H1(RP∞;F2), that Pt(s) = Sq1(s) + Sq0(s)t = s2 + st by square-likeness and
unitality. The formula PtPs = PsPt then gives the formula∑

i,j≥0

SqjSqi(x) · tj · (s2 + st)i =
∑
i,j≥0

SqjSqi(x) · sj · (t2 + st)i

Let us substitute and write u = g(s) = (s2 + st). Then we find that
∑
n≥0

tnSqnSqm is the

coefficient of u−1 of the Laurent series in u given by:∑
i,j≥0

tjui−m−1SqjSqi.

We will now use some manipulations from complex analysis. For this recall that given a
Laurent series f(t) =

∑
i>−∞ ait

i that the residuum Rest=0f(t) of f at t = 0 is given by the
coefficient a−1. In a complex analysis course, we learn the following formula. For u = g(s)
with g(0) = 0 and f(u) Laurent series in u, we have

Resu=0f(u) = Ress=0[f(g(s)) · g′(s)].

Together with the above, we therefore deduce∑
n≥0

SqnSqmt
n = Resu=0[

∑
i,j≥0

SqjSqi · tjui−m−1]

= Ress=0[
∑
i,j≥0

SqjSqi · tj(s2 + st)i−m−1 · g′(s)]

where g(s) = s2 +st and therefore g′(s) = 2s+ t and from the first to the second line, we have
used the above fact from complex analysis. The Adem relations are relations in characteristic
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2, hence we may replace g′(s) = 2s+ t with t. Now, we compute∑
i,j≥0

SqjSqi · tj(s2 + st)i−m−1t = [
∑
i,j≥0

SqjSqi · tj(s2 + st)i]t(s2 + st)−m−1

= [
∑
i,j≥0

SqjSqi · sj(t2 + st)i]t(s2 + st)−m−1

=
∑
i,j≥0

SqjSqi · sj−m−1ti+1(s+ t)i−m−1

Here, from line one to line two we have used the equation PtPs = PsPt. Hence, combined
with the above we obtain∑

n≥0

SqnSqmt
n = Ress=0[

∑
i,j

SqjSqi · sj−m−1ti+1(s+ t)i−m−1]

which is simply the coefficient of sm in the Laurent series∑
i,j≥0

SqjSqis
jti+1(s+ t)i−m−1.

Writing out30

(s+ t)i−m−1 =
∑
k≥0

(
i−m− 1

k

)
sk · ti−m−1−k

and calculating the coefficient of sm in the Laurent series∑
i,j,k≥0

(
i−m− 1

k

)
· SqjSqi · sj+kt2i−m−k

gives the equality ∑
n≥0

SqnSqmt
n =

∑
i≥0

0≤j≤m

(
i−m− 1

m− j

)
SqjSqi · t2i+j−2m.

Setting n = 2i+ j − 2m, we have j = 2m+ n− 2i. Note that the condition 0 ≤ j ≤ m then
translates to the condition m+ n ≤ 2i ≤ 2m+ n. Hence, we get

SqnSqm =
∑

i≥0 s.t.
m+n≤2i≤2m+n

(
i−m− 1

2i−m− n

)
Sq2m+n−2iSqi.

We now need to translate this back to the Steenrod squares Sqa rather than the Sqn’s we
have been using here. To do so, we pick an arbitrary cohomology class x of degree l. Then
we have

SqnSqm(x) = Sqn(Sql−m(x)) = Sq2l−m−nSql−m(x)

Likewise, we have

Sq2m+n−2iSqi(x) = Sq2l+i−2m−nSql−i(x).

30We may also invert t and think about the above as Laurent series in both s and t, so the terms appearing
indeed formally make sense.
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Let us then substitute j = l − i, so that we obtain

SqaSqb(x) =
∑
j s.t.

m+n≤2(l−j)≤2m+n

(
l −m− j − 1

2l − 2j −m− n

)
Sqa+b−jSqj(x).

Now, l −m− j − 1 = b− j − 1 and 2l − 2j −m− n = a− 2j. Furthermore, the inequalities
m + n ≤ 2(l − j) ≤ 2m + n are equivalent to the inequalities 2l − 2m − n ≤ j ≤ 2l −m − n
which in turn are equivalent to a+ b− l ≤ 2j ≤ a. Hence we get

SqaSqb(x) =
∑
j s.t.

a+b−l≤2j≤a

(
b− j − 1

a− 2j

)
Sqa+b−jSqj(x).

Now observe that if j ≤ 0, then Sqj = 0, so we may in addition assume in the sum that j ≥ 0.

Moreover, 2j < a+b−l is equivalent to a+b−j > j+l in which case again Sqa+b−jSqj(x) = 0.
Consequently, we obtain

SqaSqb(x) =

ba/2c∑
j=0

(
b− j − 1

a− 2j

)
Sqa+b−jSqj

giving the Adem relations, in fact for arbitrary a and b.

6.23. Remark Let us note that the condition a < 2b is equivalent to the condition that for
all 0 ≤ j ≤ ba/2c, we have a+ b− j ≥ 2j. A monomial SqkSql is called admissible if k ≥ 2l;
more generally, for a multi index I = (i1, . . . , in), the monomial SqI = Sqi1 · · · Sqin is called
admissible if ij ≥ 2ij+1 for all j. Hence, the condition that a < 2b gives that the above

established Adem relation writes SqaSqb as a sum of admissible monomials. It follows that
every monomial in Steenrod squares can be written as a sum of admissible monomials.

Finally, we record the following property of the Steenrod squares:

6.24. Lemma Let R be a commutative ring, Y
f−→ X a map and C(f) its mapping cone. Then

H̃∗(C(f);R) is an H∗(X;R)-module and for x ∈ H∗(X;F2) and a ∈ H̃∗(C(f);F2) and all
n ≥ 0, we have

Sqn(a · x) =
n∑
i=0

Sqi(a) · Sqn−i(x).

Proof. The composite

Y ∧X+ → X ∧X+ → C(f) ∧X+

is canonically null homotopic, since the functor −∧T for any pointed space preserves pointed
homotopies and Y → X → C(f) is pointed null homotopic. Then we consider the diagram

Y X C(f)

Y ∧X+ X ∧X+ C(f) ∧X+

∆̄

where the solid vertical maps are induced by the respective diagonal maps. Hence, the null
homotopy of the lower composite induces the dashed arrow. This map has the property that
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the composite

C(f)
∆̄−→ C(f) ∧X+ → C(f) ∧ C(f)+

is itself induced by the diagonal of C(f). Then we define the module action by the composite

H̃∗(C(f);R)⊗R H∗(X;R)→ H∗(C(f) ∧X+;R)
∆̄∗−−→ H∗(C(f);R).

Finally we find

Sqn(a · x) = Sqn(∆̄∗(a ∧ x))

= ∆̄∗(Sqn(a ∧ x))

= ∆̄∗[

n∑
i=0

Sqi(a) ∧ Sqn−i(x)]

=
n∑
i=0

∆̄∗(Sqi(a) ∧ Sqn−i(x))

=
n∑
i=0

Sqi(a) · Sqn−i(x)

where we have used the naturality of Sqn and the Cartan formula. �

Moving forward, it will be convenient to consider the following F2-algebra A∗ commonly
called the Steenrod algebra.

6.25. Definition The Steenrod algebra A∗ is the free (non-commutative) algebra on the
(graded) F2-module

⊕
n≥0 F2{Sqn}, modulo the 2-sided ideal generated by the following ele-

ments:

- 1 + Sq0, and

- For i < 2j, the element R(i, j) = SqiSqj +
bi/2c∑
k=0

(
j−k−1
i−2k

)
Sqi+j−kSqk.

6.26. Remark By construction, A∗ is a graded F2-algebra, the grading being induced from the
grading |Sqi| = i on the free algebra on the symbols Sqi. Since the Adem relations preserve
the grading, this indeed induces a grading of A∗. We say that A is a graded connected
algebra of finite type, which means that its degree 0 part is F2 and the degree n part is
finite dimensional over F2 for each n ≥ 0. Remark 6.23 says that the Steenrod algebra A∗

is, as an F2-vector space, generated by admissible monomials. In fact, it turns out that the
admissible monomials are also linearly independent31, so that they form a basis of the F2-
vector space A. There are many more things that can be said about A∗: For instance, it is a
cocommutative (connected) graded Hopf algebra of finite type of F2 with the comultiplication
ψ : A∗ → A∗ ⊗F2 A

∗ determined by the formula

ψ(Sqn) =

n∑
i=1

Sqi ⊗ Sqn−i.

The dual Steenrod algebra A∗ = HomF2(A∗,F2) is then a commutative (connected) graded
Hopf algebra, and turns out to have underlying F2-algebra a polynomial algebra, much unlike

31A common way to prove this involves the computation of the cohomology of Kn.
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A∗ itself: as an F2-algebra, A∗ is not polynomial. In fact, any element in A∗ of positive degree
is nilpotent (a result originally due to Milnor). For now, let us only hint at why this is.

For n ≥ 1, let A(n) be the sub algebra of A∗ generated by Sqi for i ≤ 2n. Note that we
have inclusion maps A∗(n)→ A∗(n+ 1)→ . . . and that A∗ = colimnA

∗(n) =
⋃
nA
∗(n), i.e.

the Steenrod algebra is the union of the sub algebras A∗(n). The decisive fact about these

sub algebras A∗(n) is that they turn out to be finite dimensional, in fact of dimension 2(n+2
2 ).

It then also follows that every element of positive degree in A is nilpotent.

To move on, let us now record an algebraic lemma about binomial coefficients known as
Lucas’ theorem. We will use this theorem mainly for p = 2.

6.27. Lemma Let 0 ≤ k ≤ n and p be a prime number. Let k =
∑l

i=0 kip
i and n =

∑l
i=0 nip

i.
Then (

n

k

)
≡

l∏
i=0

(
ni
ki

)
mod p.

Let us also list some examples of (useful) Adem relations.

6.28. Example We have

Sq1Sqn =

{
Sqn+1 if n is even

0 if n is odd
.

Indeed, by the Adem relations, we have

Sq1Sqn =

b1/2c∑
j=0

(
n− j − 1

1− 2j

)
Sqn+1−jSqj =

(
n− 1

1

)
Sqn+1,

giving the desired result. Similarly, we have for n ≥ 2

Sq2Sqn =

(
n− 1

2

)
Sqn+2 + Sqn+1Sq1

where concretely the binomial coefficient is non-zero if and only if n − 1 ≡ 2(4). Again
similarly, we have

Sq3Sqn =

(
n− 1

3

)
Sqn+3 + (n− 1)Sqn+2Sq1.

Finally, we claim that for all n ≥ 1 we have

Sq2n−1Sqn = 0.

Indeed, this follows again from the Adem relations, using that the binomial coefficient(
n− j − 1

2n− 1− 2j

)
= 0

for j ≤ n− 1 since then 2n− 1− 2j > n− 1− j.

6.29. Terminology Let us call Sqk decomposable if it can be written as a sum of non-
trivial products of Steenrod squares (necessarily of lower degree)32: Sqk =

∑
i SqaiSqbi with

ai, bi > 0. Sqk is called indecomposable if it is not decomposable.

32This is the same as being indecomposable in the Steenrod algebra A∗.
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6.30. Lemma Let k ≥ 1. Then Sqk is indecomposable if and only if k = 2n is a power of 2.

Proof. Write k =
∑n

i=0 ai2
i with an 6= 0. Let b = 2n and a = k− b. Then a > 0 if and only if

k is not a power of 2, moreover a < 2b and we have

SqaSqb =

ba/2c∑
j=0

(
b− j − 1

a− 2j

)
Sqa+b−jSqj .

From Lemma 6.27 above, we find that the binomial coefficient of the j = 0 summand
(
b−1
a

)
is non-zero, so that Sqk = Sqa+b is indeed decomposable.

Conversely, we claim Sq2n is indecomposable. To see this, consider t ∈ H1(RP∞;F2). Then

Sq2n(t2
n
) = t2

n+1 6= 0. However, for 0 < i < 2n, we have

Sqi(t2
n
) =

(
2n

i

)
· t2n+i = 0

where the first equality is shown in Example 6.20 and the second is for instance a consequence
of Lemma 6.27, so Sq2n is indeed indecomposable. �

It follows that, as an F2-algebra, the Steenrod algebra A∗ is generated by the elements
Sq2n with n ≥ 0. Further consequences of the above results are:

6.31. Corollary Let X be a space with H∗(X;F2) = F2[u]/um where m ≥ 333. Then |u| = 2n

is a power of 2.

Proof. By assumption, we have Sq|u|(u) = u2 6= 0. But since Hk(X;F2) = 0 for |u| < k < 2|u|,
we find that Sq|u| cannot be decomposable. Hence |u| = 2n by Lemma 6.30. �

6.32. Corollary Assume that there exists a fibre bundle S2n−1 → Sn with typical fibre Sn−1.
Then n is a power of 2.

Proof. Such a fibre bundle is classified by a map Sn → BHomeo(Sn−1). There is a group
homomorphism Homeo(Sn−1)→ Homeo0(Dn) obtained by thinking of Dn = C(Sn−1) as the
Cone on Sn−1 and then simply coning off a homeomorphism. The resulting homeomorphism
will in fact fix 0 as indicated. Since a homeomorphism preserves the boundary, there is also
a group homomorphism Homeo0(Dn) → Homeo(Sn−1) obtained by restricting. This is a
section to the map Homeo(Sn−1)→ Homeo0(Dn). Hence, under the given assumption, there
is a Dn-fibre bundle X → Sn whose underlying sphere bundle is isomorphic to S2n−1 → Sn.
Note that X is a topological manifold with boundary given precisely by S2n−1 and that the
projection X → Sn is a homotopy equivalence. Consider M = D2n ∪S2n−1 X, the space
obtained from X by gluing in a disk.34 Then M is a closed manifold of dimension 2n whose
only non-trivial cohomology group outside of degrees 0 and 2n is given by Hn(M ;Z) ∼= Z.
By Poincaré duality, we find that H∗(M ;Z) = Z[u]/u3 with |u| = n. The claim hence follows
from Corollary 6.31. �

6.33. Remark In fact, in both previous Corollaries one can strengthen the statement as
follows: Not only is |u| or n, respectively, a power of 2, in fact the only number that can
appear are 1, 2, 4, 8, and the statement even holds for fibrations, not necessarily fibre bundles.
This is called the Hopf invariant one problem which was initially solved by Adams and later
given a new proof using topological K-theory by Atiyah.

33m =∞ is allowed, in which case we simply mean F2[u].
34In particular, X is homotopy equivalent to the mapping cone of the projection map S2n−1 → Sn.
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Let us now prove some more results on unstable homotopy groups of spheres, extending
our results from Corollary 6.17 and Remark 6.18.

6.34. Proposition The Hopf maps η, ν, and σ satisfy that ηΣη : S4 → S2, νΣ3ν : S10 → S4

and σΣ7σ : S22 → S8, and all their suspensions, are not null-homotopic.

Proof. We prove the version for ν2 here, the other cases are similar as we indicate at the end.
To arrive at a contradiction let us assume that νΣ3ν is null homotopic. This means that a
dashed arrow in the following diagram exists

S10 S7 S4

Σ3HP2

Σ3ν ν

i
ν̄

such that ν ◦Σ3ν is homotopic to ν̄ ◦ i ◦Σ3ν. This is because Σ3HP2 is the mapping cone of
Σ3ν. Now let us consider the diagram of homotopy pushout squares:

S7 Σ3HP2 S4

∗ S11 HP2

∗ X

where X is defined as the homotopy pushout, that is, as the mapping cone of the map
S11 → HP2. This shows that the map HP2 → X induces an isomorphism on Hk for k ≤ 10.
The combined large right pushout square gives a homotopy cofibre sequence

S4 → X → Σ4HP2

showing that X → Σ4HP2 induces an isomorphism on Hk(−;F2) for k ≥ 6. Now we recall that
H∗(HP2;F2) = F2[u]/u3 with |u| = 4, and hence that Sq4 : H4(HP2;F2)→ H8(HP2;F2) is an
isomorphism. Using naturality for the maps HP2 → X → Σ4HP2, we obtain the following
commutative diagram

H8(Σ4HP2;F2) H12(Σ4HP2;F2)

H4(X;F2) H8(X;F2) H12(X;F2)

H4(HP2;F2) H8(HP2;F2)

Sq4

∼= ∼=
Sq4

∼=

Sq4

∼=

Sq4

whose vertical maps are isomorphisms. This shows that Sq4Sq4 is non-trivial on H∗(X;F2).
However, the Adem relations give

Sq4Sq4 = Sq7Sq1 + Sq6Sq2.

Since H5(X;F2) = H6(X;F2) = 0, we find that

H4(X;F2)
Sq1

−−→ H5(X;F2) and H4(X;F2)
Sq2

−−→ H6(X;F2)
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vanish. This contradicts that Sq4Sq4 is non-trivial on H∗(X;F2). Hence, the assumption in
the very beginning, that ν ◦ Σ3ν is null-homotopic, leading to the existence of the space X,
is false.

The same argument applies to any suspension of this map since we have used only the
stable operations Sq4. A similar argument applies to ηΣη and its suspensions. Here one will
use the Adem relation Sq2Sq2 = Sq3Sq1. For σΣ7σ and its suspensions one uses the Adem
relation Sq8Sq8 = Sq15Sq1 + Sq14Sq2 + Sq12Sq4. �

6.35. Remark Note that η ∧ η : S6 → S4 is homotopic to Σ2(ηΣη) and similarly ν ∧ ν '
Σ4(νΣ3ν) : S14 → S8 and σ∧σ ' Σ8(σΣ7σ) : S30 → S16. Hence we conclude that these maps
are also not null homotopic.

As further example, we also consider some composites of different Hopf maps. These are
not all cases one could consider, but are exemplary for the arguments.

6.36. Proposition The maps S8 Σ5η−−→ S7 ν−→ S4 and S9 Σ6η−−→ S8 Σν−−→ S5 are not null homo-
topic.

Proof. As before, assume that the composite S8 → S7 → S4 is null homotopic. Then ν
factors (up to homotopy) as a composite S7 → Σ5CP2 → S4. We may then compute the
following interated homotopy pushout squares

S7 Σ5CP2 S4

∗ S9 HP2

∗ X

We therefore obtain two homotopy cofibre sequences:

S9 → HP2 → X → S10 and S4 → X → Σ6CP2 → S5

The first shows that HP2 → X induces an isomorphism on Hk(−;F2) for k ≤ 8 and the
second that the map X → Σ6CP2 induces an isomorphism on Hk(−;F2) for k ≥ 6. It follows
that the composite

H4(X;F2)
Sq4

−−→ H8(X;F2)
Sq2

−−→ H10(X;F2)

is an isomorphism. But the Adem relations give Sq2Sq4 = Sq6 + Sq5Sq1. Now, Sq5Sq1 is
trivial on X since X has trivial H5(−;F2). Moreover, Sq6 is trivial on H4(−;F2) for degree
reasons. The same argument applies to the composite S9 → S8 → S5. �

6.37. Remark The above argument does not show that Σ2νΣ7η : S10 → S6 is not null ho-
motopic, because there is no a priori reason that Sq6 vanishes on the space X we build from
a null homotopy. And indeed, by Freudenthal π10(S6) ∼= π4(S) and this group turns out to
vanish.

6.38. Remark The above argument does not show that the other composite S8 Σν−−→ S5 Σ2η−−→
S4, and in fact similarly that S7 ν−→ S4 Ση−−→ S3 is not null homotopic. Indeed, running the
same argument, assuming that the map is in fact null homotopic, one constructs a space X
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on which Sq4Sq2 is non-zero. But the Adem relations don’t allow to rewrite this in any other
way which would lead to a contradiction.

It turns out, however, that Σ(η)ν is not null homotopic. Let us argue that this implies that
also (Σ2η)Σν is not null homotopic.35 Indeed, this argument is much more simple (and in
fact also proves that νΣ5η is not null-homotopic – but not that ΣνΣ6η is not null-homotopic
as we have shown above. The map ν is part of a fibre sequence

S3 → S7 → S4

and the fibre inclusion S3 → S7 is of course null-homotopic (e.g. by cellular approximation).
Hence the long exact sequence in homotopy groups splits into short exact sequences of the
kind:

0→ πi(S
7)

ν∗−→ πi(S
4)

∂−→ πi−1(S3)→ 0

This shows for instance that νΣ5(η) is not noll-homotopic, since we already know that Σ5η is
not null homotopic. Now we observe that the map ∂ is induced by the map ΩS4 → S3 obtained
from expanding the Hopf fibration once to the left. This map induces an isomorphism on π3

by the long exact sequence. Now there is also a map S3 → ΩS4, the unit of the adjunction.
By Freudenthal it also induces an isomorphism on π3. This implies that the above short exact
sequece in fact splits, i.e. that the map

πi(S
7)⊕ πi−1(S3)

ν∗+Σ−−−→ πi(S
4)

is an isomorphism and in particular that the suspension map π7(S3) → π8(S4) is injective.
Hence, if νΣη is not null, then so is ΣνΣ2η. We claim that π7(S3) ∼= Z/2Z, generated by
Σην.36 It follows that π8(S4) ∼= Z/2Z⊕ Z/2Z, generated by ΣνΣ2η and (Σ5η)ν.

6.39. Remark The argument from above really shows the following:

(1) πi(S
2) ∼= πi(S

3)⊕ πi−1(S1),
(2) πi(S

4) ∼= πi(S
7)⊕ πi−1(S3), and

(3) πi(S
8) ∼= πi(S

15)⊕ πi−1(S7)

where the maps from right to left are given by composition with the appropriate Hopf maps
plus the suspension homomorphism. In fact, there are equivalences of spaces

ΩS2 ' S1 × ΩS3, ΩS4 ' S3 × ΩS7, ΩS8 ' S7 × ΩS15.

which induce the above isomorphisms on homotopy groups (exercise).

There is a further construction which we will use later. Let us denote by Â∗ the completed

Steenrod algebra, where we complete at the ideal of positively graded elements in A∗. In Â∗,
the element

Sq = 1 + Sq1 + Sq2 + Sq3 + . . .

is well-defined. Moreover, it follows formally that this element is left and right invertible and
hence invertible. Let us denote its inverse by Sq−1. Indeed, one can inductively solve the

equations Sq · (1 + x) = 1 = (1 + x) · Sq = 1 for x ∈ Â∗.

35I learned these arguments from Achim Krause, but they are well-known and have all been worked out by
Toda in his seminal computations of homotopy groups of spheres.

36Perhaps we will argue next term why that is. Essentially, there is a generalized Hopf invariant which can
be computed to be non-zero on Σην, showing that Σην is not null.
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6.40. Example Writing out low degree terms gives

Sq−1 = 1 + Sq1 + Sq2 + Sq2Sq1 + . . .

One can be more explicit, however. To that end let us set χ(Sq0) = Sq0 and inductively
set for n ≥ 1:

χ(Sqn) =
n∑
i=1

Sqiχ(Sqn−i).

6.41. Lemma We have the equality χ(Sq) =
∑
n≥0

χ(Sqn) = Sq−1 in Â∗.

Proof. Note that the definition of χ implies that for all n ≥ 1, we have

n∑
i=0

Sqiχ(Sqn−i) = 0.

Moreover, since we already know Sq to be invertible in Â∗, it suffices to show that χ(Sq) is a
one-sided inverse of Sq. To that end, we compute

Sq · χ(Sq) = (
∑
i≥0

Sqi) · (
∑
j≥0

χ(Sqj))

=
∑
i,j≥0

Sqiχ(Sqj)

=
∑
n≥0

n∑
i=0

Sqiχ(Sqn−i)

= Sq0χ(Sq0) = 1

as needed. �

6.42. Remark Note that the invertibility of Sq implies that also χ(Sq) · Sq = 1. This is
perhaps less obvious from the definition and implies that χ(Sqn) =

∑n
i=1 χ(Sqn−i)Sqi.

6.43. Remark Part of the definition of a Hopf algebra is a map called the antipode. The
above definition of χ extends in at most one way to an map χ(A∗)op → A∗ of algebras and it
turns out that this map is the antipode of the Hopf algebra A∗.

7. The theorem of Leray–Hirsch

We will phrase the entire section in terms of fibrations. We will indicate the non-trivial
statements we use here to prove our main results. If we restrict ourselves to fibre bundles
rather than fibrations, many of the statements we use for fibrations become much simpler
to prove (similarly to as we have seen in the classification of bundles: we have given a full
argument for the classification of fibre bundles, but not for that of fibrations) and most of
the standard textbooks provide references where these arguments are carried out in detail.
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We begin with the theorem of Leray–Hirsch. The setup we want to put this in is as follows.
Consider a commutative diagram

F E B

F E B

π

π

consisting of horizontal fibre sequences, that is π and π are fibrations with typical fibre F
and F and assume that B is connected for simplicity. Further, let R be a commutative ring.

7.1. Theorem Assume that there are homogenuous classes {xi}i∈I ⊆ H∗(E,E;R) such that
there are only finitely many xi of the same degree and such that the images yi of the xi under
the map H∗(E,E;R)→ H∗(F , F ;R) form a basis of the graded R-module H∗(F , F ;R). Then
sending yi to xi induces a unique H∗(B;R)-module map

Φπ : H∗(F , F ;R)⊗R H∗(B;R)→ H∗(E,E;R).

This map is an isomorphism of H∗(B;R)-modules.

7.2. Remark Note that the relative cohomologies appearing above are isomorphic to the
cohomologies of the respective mapping cones. The map Φπ then uses that by Lemma 6.24,
H∗(E,E;R) is an H∗(E;R) and hence via π∗ also an H∗(B;R)-module. Moreover, note that
F and E may also well be chosen to be empty.

7.3. Remark Warning: The map Φπ is not a map of R-algebras, at least not in any evident
way. And in fact, in many instances where the above theorem applies, the multiplications on
source and target of Φπ indeed do not agree. We will come back to this later when discussing
examples.

Proof of Theorem 7.1. We first observe that the map Φπ induces the following maps. For
every CW complex X equipped with a map f : X → B, let us denote by E|X the pullback
f∗(E). Doing so, we obtain a commutative diagram

F E|X X

F E|X X

πX

πX

consisting of horizontal fibre sequences and elements f∗(xi) ∈ H∗(E|X , E|X ;R); here we (by

abuse of notation) denote the map H∗(E,E;R)→ H∗(E|X , E|X ;R) which is induced by f by
f∗. The restrictions of the classes to the fibres are simply given by the elements yi, and so by
assumption again form a basis. Hence we obtain by the same reasoning as above the map

ΦπX : H∗(F , F ;R)⊗R H∗(X;R)→ H∗(E|X , E|X ;R).

Moreover, both the source and the target of this map form a functor on the category of
CW complexes equipped with a map to B, and the maps ΦπX are readily checked to form
the components of a natural transformation. We will now show that this map is a natural
isomorphism. Once this is shown, we may choose a weak equivalence X → B with X a CW
complex. Then the claim of the theorem follows from the fact that singular cohomology sends
weak equivalences to isomorphisms as follows from Theorem 2.1.
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We now aim to prove that ΦπX is an isomorphism essentially by induction over the cells.
To that end, let us first consider the case where X is a disjoint union of points. Then the
result is true by assumption (this uses the assumption that H∗(F , F ;R) is degree-wise finite
free over R). Let us now prove by induction over the dimension of X that the map ΦπX is an
isomorphism for finite dimensional X. To do so, in the inductive step, we consider a pushout∐

Sn−1 Xn−1

∐
Dn X

which exhibits X as n-cells attached to its (n − 1)-skeleton. We will now use the following
fact, namely that the diagrams

E|
∐
Sn−1 E|Xn−1

E|
∐
Sn−1 E|Xn−1

E|
∐
Dn E|X E|

∐
Dn E|X

are homotopy pushouts.37 In particular, upon passing to homotopy cofibres (i.e. mapping
cones) of the maps from the left square to the right square, we again obtain a homotopy
pushout square. Let us now denote the source of Φ by F (−) and the target of Φ by G(−).
Then, the above diagrams together with the naturality of the maps Φ give rise to the com-
mutative diagram of horizontal exact sequences

. . . F (X) F (Xn−1)⊕ F (
∐
Dn) F (

∐
Sn−1) F (X)[1] . . .

. . . G(X) G(Xn−1)⊕G(
∐
Dn) G(

∐
Sn−1) G(X)[1] . . .

here the (−)[1] denotes the appropriate shifting operation on graded R-modules (which is
where the functors F and G naturally take values). The upper sequence comes from the
long exact sequence of the pushout describing X; note that H∗(F , F ;R) is R-free which
implies that the tensored sequence is indeed again exact. The lower sequence comes from
the homotopy pushout square of mapping cones described above. The two squares from the
left commute by naturality of the maps Φ. The right square in fact also commutes, this is a
direct computation. Now note that the vertical maps are isomorphisms at the places involving
Xn−1 and

∐
Sn−1 by the inductive hypothesis, and at the place involving

∐
Dn since Dn

is contractible, and hence the map under investigation is the isomorphic to the one for a
disjoint union of points which we have already observed to be an isomorphism (essentially by
assumption, in fact). By the 5-lemma, we conclude that the map left vertical displayed map
above is also an isomorphism. This shows that the components of Φπ on finite dimensional
CW complexes are isomorphisms. So finally assume that X is a general CW complex. We
may write X = colimnXn where Xn is the n-skeleton. By another application of the fact that

37This is a result called “fibrations satisfy descent” or “fibrations glue” and is again a consequence of the
straightening-unstraightening equivalence we have indicated when talking about the classification of fibrations.
See Remark 7.4 for a workaround in the given situation.
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fibrations glue, we find that E|X = hocolimnE|Xn and E|X = hocolimnE|Xn .38 Now, since

the maps Xn → X as well as the maps E|Xn → E|X and E|Xn → E|X become more and more
connected as n grows, it follows that the canonical maps

H∗(X;R)→ lim
n
H∗(Xn;R) and H∗(E|X , E|X ;R)→ lim

n
H∗(E|Xn , E|Xn ;R)

are isomorphisms, and in fact in each cohomlogical degree, the inverse limit is eventually
constant. Since H∗(F , F ;R) is a degree-wise finite R-free module, this implies that the map

H∗(F , F ;R)⊗R H∗(X;R)→ lim
n

[
H∗(F , F ;R)⊗R H∗(Xn;R)

]
is also an isomorphism. Hence, the theorem finally follows from the commutative square

H∗(F , F ;R)⊗R H∗(X;R) H∗(E|X , E|X ;R)

limn

[
H∗(F , F ;R)⊗R H∗(X;R)

]
limnH

∗(E|Xn , E|Xn ;R)

ΦπX

∼= ∼=
limnΦπXn
∼=

since the vertical maps are isomorphisms as we have just explained, and the lower horizontal
map is an inverse limit of isomorphisms by the previous step, and hence also an isomorphism.

�

7.4. Remark We briefly comment on the use of “fibrations satisfy descent” in the above
argument, as we in fact can work around it using the following trick having to do with the
fact that the homotopy pushouts we consider are quite special ones. Indeed, note that when
X is obtained from Xn−1 by attaching n-cells, we can form an open cover X = U ∪ V by
letting U be a thickening of Xn−1 in X and V to be the images of the open cells under the
attaching maps. This yields a pushout description of X which is homotopy equivalent to the
cell-attachment pushout for X. Now, the pullback of an open cover is again an open cover,
so we see that E|X admits an open cover of the form E|U ∪ E|V . Moreover, the E|U ' E|Xn
and E|V ' E|∐Dn , yielding the claimed homotopy pushouts.

Similarly, there are open sets Xn ⊆ Un ⊆ X such that the inclusion Xn → Un is a
deformation retraction (in particular a homotopy equivalence) and such that the Un’s form an
increasing sequence of opens in X. Then E|X =

⋃
nE|Un . As before, the maps E|Un → E|X

are become more and more connected as n grows, so we may now use the interaction of
cohomology with increasing open filtrations which have this connectivity properties.

7.5. Example Suppose F
i−→ E

π−→ B is a fibration with homotopy retraction r : E → F , i.e.
so that ri ' idF

39 and that H∗(F ;R) is R-free of finite type with basis yii∈I . Considering
the classes xi = r∗(yi) we see that we can apply Leray–Hirsch and in addition that the
isomorphism

H∗(F ;R)⊗R H∗(B;R)→ H∗(E;R)

is a map of H∗(B;R)-algebras and hence an isomorphism of H∗(B;R)-algebras. Indeed, this
follows simply from the fact that it is the extension of scalars (along R→ H∗(B;R)) of the R-
algebra homomorphism r∗ : H∗(F ;R)→ H∗(E;R). In particular, we deduce a cohomological
Künneth result for products F ×B in case the R-cohomology of F is R-free of finite type.

38Here, the hocolim is the construction dual to holim which we have briefly discussed earlier, a so called
mapping telescope. It behaves formally very similar to the skeletal filtration of a CW complex.

39Exercise: Show that the map (i, p) : E → F ×B is an equivalence.
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Let us use the theorem of Leray–Hirsch to compute some further cohomology groups.

7.6. Theorem Let n ≥ 1. Then there are isomorphisms of rings

(1) H∗(U(n);Z) ∼= ΛZ[e1, e3, . . . , e2n−1],
(2) H∗(SU(n);Z) ∼= ΛZ[e3, . . . , e2n−1], and
(3) H∗(Sp(n);Z) ∼= ΛZ[f3, f7, . . . , f4n−1].

Proof. In all cases one argues inductively and in all cases the induction starts at n = 1 where
we have U(1) ∼= S1, SU(1) = Sp(1) = S3 which evidently have the claimed cohomology rings.
We discuss now the inductive step of case (1); the other cases are done in the exact same way.
To that end, we recall that there is a fibre sequence

U(n− 1)→ U(n)→ S2n−1

from which, using the relative Hurewicz theorem and the universal coefficient theorem, we
deduce that Hk(U(n);Z)→ Hk(U(n− 1);Z) is an isomorphism for k ≤ 2n− 3. In particular,
we can lift all exterior generators ofH∗(U(n−1);Z) to elements which we again call e2i−1 in the
cohomology of U(n). It follows that we can lift a basis of the F2-vector space H∗(U(n−1);F2)
to H∗(U(n);F2). Using Leray–Hirsch and the inductive hypothesis, we obtain an isomorphism
of [ΛZ[e2n−1] = H∗(S2n−1;Z)]-modules

ΛZ[e1, . . . , e2n−3]⊗Z ΛZ[e2n−1]→ H∗(U(n);Z)

which shows the claimed statement additively. Since the exterior algebra over Z is torsion
free and since the e2i−1 have odd degree, we deduce that, in H∗(U(n);Z), we have e2

2i−1 = 0.
This implies that the map ΛZ[e1, . . . , e2n−3] → H∗(U(n);Z) obtained by sending ei to ei
is a ring homomorphism. Consequently, as discussed in Example 7.5 we deduce that the
isomorphism of ΛZ[e2n−1]-modules is in fact one of ΛZ[e2n−1]-algebras, and we obtain the
claimed statement. �

7.7. Remark The case of O(n) and SO(n) are less direct. Let us indicate why that is.
Running the same inductive argument as above, let us try to prove that (additively) we have
H∗(SO(n);F2) ∼= ΛF2 [a1, . . . , an−1].40 So let us consider the fibre sequence

SO(n− 1)→ SO(n)→ Sn−1

and note that it implies that the map Hk(SO(n);F2)→ Hk(SO(n−1);F2) is an isomorphism
for k < n− 2; indeed by the relative Hurewicz and UCT, there is an exact sequence

Hn−2(SO(n);F2)→ Hn−2(SO(n− 1);F2)→ Hn−1(Sn−1;F2) ∼= F2 → Hn−1(SO(n);F2)

and we need to come up with an argument that the elements an−2 ∈ Hn−2(SO(n − 1);F2)
can in fact be lifted.

Moreover, the ring structure on H∗(SO(n);F2) surely is not exterior: Consider the case
SO(3) ∼= RP3 for instance.

We will now discuss another application of the theorem of Leray–Hirsch, namely the split-
ting principle. To state it, let us recall that there is a canonical continuous group homomor-
phism GLn+1(K)→ Homeo(KPn). Hence any K-vector bundle π : E → B admits a fibrewise
projectivization p : P(E) → B, a fibre bundle with typical fibre KPn, which is classified by
the composite

B → BGLn+1(K)→ BHomeo(KPn).

40This turns out to be correct, after all.
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7.8. Proposition Let π : E → B be a K-vector bundle of K-rank n and p : P(E) → B be its
projectivization. Let R be a commutative ring, which is an F2-algebra if K = R. Then p∗(E)
splits as a sum of vector bundles L ⊕ Q, where L is a K-line bundle. Moreover, the map
H∗(B;R)→ H∗(P(E);R) is injective.

Proof. Pick an open cover {Ui}i∈I which trivializes π. Then P(E)→ B is also trivial over {Ui}
and p∗(E)|p−1(Ui)

∼= Ui×KPn−1×Kn. Recall that the tautological bundle γK on KPn−1 is the

sub bundle of the trivial bundle KPn−1 ×Kn consisting of the pairs (L, x) where x ∈ L. We
then define L ⊆ p∗(E) to satisfy L|p−1(Ui) = Ui×γK ⊆ Ui×KPn−1×Kn. It is readily checked
that L indeed defines a subset of p∗(E) which is a sub K-line bundle. That is, L → P(E)
is a K-line bundle, and the inclusion L → p∗(E) is fibrewise K-linear. Then we may use
an appropriate choice of (fibrewise) scalar product41 on E to split p∗(E) as L ⊕ L⊥ so that
Q = L⊥ is again a K-vector bundle.

Now, by construction, the K-line bundle L→ P(E) becomes isomorphic to the tautological
K-line bundle γK over KPn when pulled back along the fibre inclusion KPn → P(E). Let x
be w1(L) if K = R, c1(L) is K = C or q1(L) if K = H; see Examples 4.38, 4.37, and 4.39.
Then the restricion of x to the fibre KPn becomes a polynomial generator of the cohomology
ring of KPn which in all three cases is polynomial over R; here, we use that R is an F2-
algebra if K = R. Hence we deduce that the elements 1 = x0, x, x2, . . . , xn form elements
in H∗(P(E);R) whose restriction to H∗(KPn;R) form an R-basis. Theorem 7.1 then implies
in particular that the map H∗(B;R) → H∗(P(E);R) is injective, in fact a direct summand
inclusion. �

The following statement is often referred to as the splitting principle.

7.9. Corollary Let π : E → B be a K-vector bundle and R be a commutative ring which is a
F2-algebra if K = R. Then there exists a map f : X → B such that

(1) the map f∗ : H∗(B;R)→ H∗(X;R) is injective, and
(2) the vector bundle f∗(E) is isomorphic to a sum of K-line bundles.

Proof. Apply Proposition 7.8 to π and then to Q→ P(E) and so on. �

7.10. Remark Corollary 7.9 implies the following. Let E → B be a K-vector bundle of rank
n. Then there exists a (homotopy) commutative diagram

X B(GL1(K))×n

B BGLn(K)

f

with f∗ injective. Let us denote by B′ the homotopy pullback of the diagram obtained by
removing X. Then we have a canonical map X → B′ whose composite with B′ → B is f . It
follows that the map H∗(B;R) → H∗(B′;R) is also injective, so we may think of B′ as the
minimal choice for X appearing in the splitting principle.

7.11. Remark In this remark, we want to take the above perspective more seriously and
think about a variant of the above observation for general compact connected Lie groups G.
Indeed, for such, let T ⊆ G be a sub Lie group, for instance a maximal torus.42 Recall that the

41That is, we choose a reduction of the structure group of E to the isometry group of Kn.
42That is, a Lie subgroup of the form U(1)×n for a maximal number n.
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homotopy fibre of BT → BG identifies with G/T , see Example 4.33. In case T is a maximal
torus, it turns out that H∗(G/T ;Z) is degree-wise finitely generated free and concentrated
in even degrees; this is a theorem of Bott–Samelson [BS55]. Moreover, for appropriate rings
R, the map H∗(BT ;R) → H∗(G/T ;R) is surjective, e.g. when G = U(n),Sp(n) the ring Z
works.43 The same results turn out to be true when G = O(n), T = O(1)×n, and R is an
F2-algebra or when G = Sp(n), T = Sp(1)×n and R = Z. Let us from now on assume that
this is the case.

Then let B → BG be a map classifying a principle G-bundle over B and consider the
pullback

X BT

B BG

so that X → B again has homotopy fibre G/T . It is perfectly fine to consider the case
B = BG and the map being the identity. From the composite

H∗(BT ;R)→ H∗(X;R)→ H∗(G/T ;R)

we deduce that the latter map is again surjective and hence we may apply the theorem of
Leray–Hirsch to deduce that the map

H∗(G/T ;R)⊗R H∗(B;R)→ H∗(X;R)

is an isomorphism. In particular, we find that H∗(B;R) → H∗(X;R) is injective. In the
case where G = U(n), its maximal torus is U(1)×n and we obtain a direct argument for the
splitting principle. In case G = Sp(n) it turns out that its maximal torus is again U(1)×n, so
we obtain the following strengthening of the splitting principle for quaternionic bundles: Not
only is the pullback f∗(E) appearing in Corollary 7.9 a sum of H-line bundles, in fact, after
suitable choice of X, it is a sum of H-line bundles which are obtained from C-line bundles via
−⊗C H.44 Exercise: Prove that such an X can be found just from Corollary 7.9.

7.12. Remark One can also use the theorem of Leray–Hirsch to compute the cohomology
rings of the classifying spaces BU(n), BSp(n) and BO(n); the latter with F2-coefficients, but
the argument involves several applications of Leray–Hirsch in inductive manners. We will
instead compute these cohomologies via the Serre spectral sequence next term and perhaps
briefly discuss the relation to the approach using Leray–Hirsch.

We end this section with some further applications of what we proven this term.

7.13. Proposition Suppose that there is a fibration sequence CPn → CP∞ → X, where the
first map is the canonical map. Then n is either 0 or 1. Conversely, in these cases, a fibration
as indicated exists.

Proof. The fibre of id : CP∞ → CP∞ is indeed CP0. Moreover, the fibre of CP∞ → HP∞ is
given by S3/S1 ∼= CP1, by ??. So we need to argue the converse and assume that there is

43In case T is a maximal torus, one sufficient criterion for such R is that H∗(BG;R) is concentrated in
even degrees – this turns out to be true for R = Z and G = U(n), Sp(n) and can for instance be deduced from
explicit cell structures on the Grassmannians from Example 4.41, see e.g. [Gha19]

44Note that H is indeed a (C,H)-bimodule, so the indicated symbol provides a canonical functor from
C-vector spaces to H-vector spaces.
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a fibration as written in the proposition. The map H∗(CP∞;Z)→ H∗(CPn;Z) is surjective,
so we may apply the Leray–Hirsch thereom. We deduce that the ring map H∗(X;Z) →
H∗(CP∞;Z) is additively the inclusion of a direct summand, and writing out the Leray–
Hirsch isomorphism, we find that H∗(X;Z) = Z[u] with |u| = 2n. Steenrod operations show
that this can only be the case when n = 0, 1. �

7.14. Proposition Suppose that there is a fibration sequence CP1 → CP3 → X. Then X '
S4. Conversely, a fibration sequence CP1 → CP3 → S4 exists.

Proof. We first show that a fibration as claimed exists. We write S4 = S7/S3, we deduce
from the canonical inclusion S1 ⊆ S345 that there is a tautological map CP3 → HP1. Its
homotopy fibre F is then again given by S3/S1 = CP1 as needed. Indeed, this follows from
the diagram consisting of horizontal and vertical fibre sequences:

∗ F S3/S1

S7 CP3 CP∞

S7 HP1 HP∞

Conversely, applying again Leray–Hirsch reveals that H∗(X;Z) ' H∗(S4;Z), and the long
exact sequence in homotopy groups shows that π1(X) = 1. It follows (though this is somewhat
non-trivial unless we assume X to have finitely generated homology to begin with) that
H∗(X;Z) ∼= H∗(S

4;Z), so the Hurewicz theorem implies that X ' S4 as needed. �

7.15. Proposition Let M be the pullback CP3 → S4 ← S4 with right hand map being a map
of degree k and the left hand map being the fibration from Proposition 7.14. Compute the
cohomology ring H∗(M ;Z).

Proof. We consider the (pullback) diagram of fibration sequences

CP1 CP3 S4

CP1 M S4.

q

f ·k
p

Since the bottom sequence is pulled back from the top one, and the top one satisfies the
assumptions of Leray–Hirsch, so does the bottom. Specifically, let x = f∗(c1) ∈ H2(M ;Z) be
pullback of the tautological class in H2(CP3;Z). Then we obtain an induced isomorphism of
H∗(S4;Z)-modules

H∗(CP1;Z)⊗Z H
∗(S4;Z)→ H∗(M ;Z).

In particular, the cohomology of M , additively, looks like that of CP3 and we can name
generators of all non-trivial cohomology groups: We have 1 ∈ H0(M ;Z), x ∈ H2(M ;Z),
p∗(i4) ∈ H4(M ;Z) and x · p∗(i4) ∈ H6(M ;Z) all constitute generators. Since p∗(i4)2 = 0,
we have in fact already computed all products of generators, except x2 ∈ H4(M ;Z), so to
compute the cohomology ring of M it suffices to do that. To that end, we write

x2 = f∗(c1)2 = f∗(c2
1) = f∗(q∗(i4)) = kp∗(i4).

45or equivalently U(1) ⊆ Sp(1).
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�

7.16. Proposition Let G be a finite p-group. Then H∗(BnG;R) = R if p ∈ R×.

Proof. As in the case above, inductively, it suffices to show the case n = 1. It is a classical fact
from algebra that a finite p-group has non-trivial center, and hence there is a fibre sequence

BC(G)→ BG→ B(G/C(G)).

If we can show that H∗(BC(G);R) = R, then we may apply Leray–Hirsch and obtain an
isomorphism

H∗(B(G/C(G);R)
∼=−→ H∗(BG;R).

Then we may use induction over the number of elements ofG to deduceR = H∗(B(G/C(G));R)
and hence the corollary. Hence, it suffices to treat the case of finite abelian p-groups A. In
this case, there is a short exact sequence

1→ Cp → A→ A/Cp → 1

so running the same argument as above, we reduce to showing that

H∗(BCp;R) = R

this follows the from the fact that a model for BCp is given by an infinite dimensional lens
space, whose integral cohomology is Fp[u] with |u| = 2. �

Appendix A. Homotopy Pullbacks

We give a brief interlude on homotopy pullback diagrams here. To do so, let us fix a
diagram

(5)

A B

C D

s

f g

t

which commutes up to specified homotopy h. We say that two such diagrams are weakly
equivalent if one maps to the other (this includes a homotopy witnessing the homotopy
commutativity of the resulting cube) via a map which is a weak equivalence in each corner.

A.1. Lemma Associated to the data (5) there is a canonically induced map hofibc(f) →
hofibt(c)(g).

Proof. We recall that hofibc(f) consists of pairs (a, γ) with a ∈ A and γ : [0, 1] → C with
γ(0) = c and γ(1) = f(a). The map we are looking for assigns to such a pair (a, γ) the pair
(s(a), h(a, 0) ? t(γ)). �

A.2. Definition A diagram (5) is called a homotopy pullback if for all c ∈ C, the induced
map hofibc(f)→ hofibt(c)(g) is a weak equivalence.

A.3. Example This example illustrates how important the datum of the homotopy in the
above notion is. Consider the following square.

ΩxX ∗

∗ X

x

x
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There are two somewhat canonical homotopies between the two composites (both of which
are the map which is constant at x) to consider:

(1) Since the diagram commutes strictly, we may choose the constant homotopy.
(2) We may also consider the homotopy ev : ΩxX × [0, 1]→ X given by ev(γ, t) = γ(t).

Now, the vertical homotopy fibres of the above diagram are both given by ΩxX. The constant
homotopy from (1) induces the map ΩxX → ΩxX sending every based loop to the constant
loop at x. However, the homotopy from (2) induces a map which is homotopic to the identity.
(Exercise)

A.4. Example Suppose the diagram (5) is a pullback diagram, in particular strictly commu-
tative and equipped with the constant homotopy witnessing commutativity, and that g is a
fibration. We claim that such squares are homotopy pullbacks. Indeed, in this case, f is also
a fibration and for every c ∈ C we may consider the following commutative diagram

fibc(f) fibt(c)(g)

hofibc(f) hofibt(c)(g)

in which the vertical maps are the canonical inclusions, which are weak equivalences since
f and g are fibrations. Since the top horizontal map is a homeomorphism (recall that we
assumed the original square to be a pullback square), the bottom horizontal map is a weak
equivalence, showing the claim.

A.5. Remark Suppose any of the maps appearing in diagram (5) is replaced by a homotopic
map. Then there is a canonically induced homotopy h witnessing that the diagram commutes
up to homotopy. With these associated data, the new diagram is a homotopy pullback if and
only if the old diagram is a homotopy pullback. Indeed, if for instance f is replaced by a
homotopic map f ′, one proves that this homotopy induces a homotopy equivalence hofibc(f) '
hofibc(f

′) fitting in a commutative triangle with the respective maps to hofibt(c)(g). Similarly
if g is replaced by g′. If t is replaced by a homotopic map t′, then again there is a homotopy
equivalence hofibt(c)(g) ' hofibt′(c)(g) compatible with the map from hofibc(f). Finally, if s
is replaced by a homotopic map s′, then the two induced maps hofibc(f) → hofibt(c)(g) are
homotopic.

A.6. Lemma Consider a diagram

A B X

C D Y

s

f g

u

k

t v

both of which commute up to specified homotopy. Then the big diagram also commutes up to
specified homotopy. Moreover, assuming that the right square is a homotopy pullback, then
the left square is a homotopy pullback if and only if the big square is a homotopy pullback.

Proof. The main point to observe is that for c ∈ C, the composite

hofibc(f)→ hofibt(c)(g)→ hofibut(c)(k)
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is the map associated to the homotopy commutative big diagram. Then we may use the
3-for-2 property for weak equivalences. �

A.7. Remark One might think that the 3-for-2 property for weak equivalences implies a 3-
for-2 property for homotopy pullbacks in the above situation. Let us see why this is not the
case and assume that the big square and the left square are homotopy pullback diagrams.
To show that the right square is a homotopy pullback diagram, we need to show that the
map hofibd(g) → hofibv(d)(k) is a weak equivalence for all d ∈ D. If there exists c ∈ C with
t(c) = d then we may in fact conclude what we want. But in general, this need not be the
case, the extreme case is A = C = ∅.

A.8. Lemma Suppose (5) is a homotopy pullback. Choose a factorization of g with B → B′

a homotopy equivalence and B′ → D a fibration. Then the diagram

A B′

C D

is a homotopy pullback diagram.

Proof. This follows from Lemma A.6 once we acknowledge that the square

B B′

D D

is a homotopy pullback diagram, which in turn follows from the fact that B → B′ is a weak
equivalence. �

A.9. Lemma Suppose (5) is a homotopy pullback and g is a fibration. Then s is homotopic
to a map s′ making the diagram commute strictly. In particular, there is a map A→ P where
P denotes the pullback of t and g and this map is a weak equivalence.

Proof. Consider the lifting problem

A× {0} B

A× [0, 1] D

s

h

where h is the homotopy between gs and tf . As g is a fibration, we can find a solution, H
and s′ = H(−, 1) does the job. We then obtain a map A→ P participating in a diagram

A P B

C C D

in which the big diagram is a homotopy pullback and the right diagram is a homotopy
pullback, since for fibrations, the homotopy fibre and the fibre are homotopy equivalent. By
Lemma A.6 we conclude that the left square is a homotopy pullback and then that A→ P is
a weak equivalence. �
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A.10. Lemma Consider a diagram

X A B

Y C D

both whose small squares commute up to specified homotopy. Assume that the left square is a
homotopy pullback and that X and Y are CW complexes. Then a dotted lift up to compatible
homotopy induces a dashed lift up to compatible homotopy.

Proof. The conclusion of the lemma is stable under replacing the right hand square by a
weakly equivalent one. Arguing as above, we then replace the right square by a weakly
equivalent square which is a strict pullback and whose vertical maps are fibrations. We may
also replace the map X → Y by a subcomplex inclusion. Then a dotted lift up to compatible
homotopy can be strictified by Lemma 5.1 and therefore induces a dashed strict lift since the
right square is now a pullback. �

Appendix B. Odd primary Steenrod operations

In this appendix, we will sketch how the odd primary analog of the construction and
properties of the Steenrod squares are obtained. The very first thing we will need is the
following:

B.1. Lemma Let p be an odd prime. Then H∗(BΣp;Fp) = Fp[u] ⊗Fp ΛFp [ε] = Fp[u, ε]/ε2
where |u| = 2p− 2 and |ε| = 2p− 3 and ε2 = 0.

Proof sketch. First, one shows that H∗(BCp;Fp) = Fp[x, e]/e2 with |e| = 1 and |x| = 2.
Then we observe that Cp ⊆ Σp is a p-Sylow subgroup. It follows from a transfer argument
that therefore H∗(BΣp;Fp)→ H∗(BCp;Fp) is the inclusion of an (additive) direct summand.
Moreover, we observe that the normalizer of Cp in Σp is given by the semi-direct product
CpoF×p , from which it follows that the map H∗(BΣp;Fp)→ H∗(BCp;Fp) factors through the

inclusion H∗(BCp;Fp)F
×
p ⊆ H∗(BCp;Fp). In fact, the former term turns out to be H∗(B(Cpo

F×p );Fp). Now, recall that F×p is a cyclic group, i.e. isomorphic to Z/(p−1)Z. This group acts in

the tautological way on Hk(BCp;Fp) = Fp for k = 1, 2. In particular, we find that xp−1 is fixed

under the F×p -action and it then turns out that H∗(BCp;Fp)F
×
p = Fp[xp−1, exp−1]/(exp−1)

which is what we claim the Fp-cohomology of Σp to be. Hence, one is reduced to showing
that the map H∗(BΣp;Fp) → H∗(B(Cp o Fp);Fp) is also surjective. This follows from a
computation with the double coset formula. �

B.2. Lemma Let X be a pointed space with base-point preserving G-action. If X is (n− 1)-
connected, then the map X → (X,x)hG induces the inclusion Hn(X;M)G ⊆ Hn(X;M) upon
applying Hn(−;M).

Proof. The proof of this result is essentially given in the proof of Lemma 6.2. �

In particular, we deduce:

B.3. Corollary For k ≥ 1, there is a, unique up to homotopy, extension of the map ι×kn :
∏
kK(Fp, n)→

K(Fp, nk) to a map (
∧
kK(Fp, n), ∗)hΣk → K(Fp, nk).
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B.4. Construction We may then perform the same construction as in the p = 2 case: For a
space X with x ∈ Hn(X;Fp), consider the composite

X → X×p → K(Fp, n)×p→ K(Fp, np)

classifying the element xp. By the above lemma, it induces the following map

XhΣp → (X×p)hΣp → (
∧
k

K(Fp, n), ∗)hΣp → K(Fp, np)

classifying an element P (x) ∈ Hnp(X × BΣp;Fp) ∼= [H∗(X;Fp)[u, ε]/ε2]np. Denote then by
P i(x) the coefficient of tn−2i. With this, we find that P i is a natural operation

P i : Hn(−;Fp)→ Hn+2i(p−1)(−;Fp).

We can compose P i with the Bockstein operator Hk(−;Fp)→ Hk+1(−;Fp) to obtain further
operations

βP i : Hn(−;Fp)→ Hn+2i(p−1)+1(−;Fp).

B.5. Remark In case p = 2, we have by construction that P i = Sq2i, and βP i = Sq1Sq2i =
Sq2i+1, see Example 6.28.

B.6. Theorem The operations P i and βP i satisfy the following relations.

(1) Naturality: That is, if x = f∗(y), then P i(x) = f∗(P i(y)); same for βP i.
(2) Triviality: We have P i(x) = 0 for i > 2n and for i < 0.
(3) Square-likeness: We have Pn(x) = xp if |x| = 2n.

(4) Cartan formula: P i(x× y) =
∑

k+l=i P
k(x)× P l(y) in Hn+2i(p−1)(X × Y ;F2); same

for ∧ in place of ×.
(5) Stability: We have P i(σ(x)) = σ(P i(x)) where σ is the suspension isomorphism.
(6) Unitality: We have P 0(x) = x.
(7) Adem relations: For i < pj, we have

P iP j(x) =
∑
k

(−1)k+i

(
(p− 1)(j − k)− 1

i− pk

)
P j+i−kP k(x)

and for i ≤ pj, we have

P iβP j(x) =
∑
k

(−1)k+i

(
(p− 1)(j − k)

i− pk

)
βP i+j−kP k(x)

+
∑
k

(−1)k+i+1

(
(p− 1)(j − k)− 1

i− pk − 1

)
P i+j−1βP k(x).

where in all cases, the binomial coefficient is to be interpreted in Fp.

B.7. Remark In this remark, we briefly indicate what arguments are similar to the case p = 2
and which ones differ slightly. In principle, the proofs of these results follow the same line
of thought as in the p = 2 case. E.g. naturality, triviality, square-likeness, and the Cartan-
formula are really proven in the same way. To get at stability and unitality, we again need
to prove by hand that P 0(i1) = i1, where i1 ∈ H1(S1;Fp) is the generator. This amounts to
proving that the map

(S1, ∗)hΣp → [(S1, ∗)∧p]hΣp
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induced by the diagonal is an isomorphism on Hp(−;Fp). Here, let us denote by Rρ the per-
mutation Σp-representation on Rp. The diagonal is a direct summand in this representation,
let us denote an (orthogonal) complement by Rρ̄, so that the diagonal map is Σp-equivariantly
equivalent to the inclusion R → R⊕ Rρ̄.46 Consequently, the map we care about is the map
induced on one-point compactifications and further applying (−)hΣp . Hence, we want to in-

vestigate the map S0 → Sρ̄ again before applying Σp-orbits, but as a map of Σp-spaces (and
finally suspend everything once). This is more involved that the case p = 2 where we could
use the simple cofibre sequence (C2)+ → S0 → Sσ;

The proof of the Adem relations then follow the same strategy as in the case p = 2.
One proves the analog of Theorem 6.22 and then performs a similar coefficient-comparison
argument with power series; see again [BM82].

We then have the following result analogous to Lemma 6.30.

B.8. Lemma The operation P i is indecomposable if and only if i = pn is a power of p.

Proof. Here, we say that P j is decomposable if it can be written as a non-trivial sum over
terms of the form P kP l. �

B.9. Proposition Let p be an odd prime and X be a space with H∗(X;Fp) = Fp[u]/um with

p < m ≤ ∞. Then |u| = pk · l where l is an even divisor of 2(p− 1).

Proof. Since 0 6= u2, by graded commutativity of the cohomology ring, we find that |u| is of
the form 2n. Then Pn(u) = up 6= 0. Now, Pn can be written as a sum of products of terms

of the form P p
i
, we find that there exists some i such that P p

i
(u) 6= 0 in H2n+2pi(p−1)(X;Fp).

Since the cohomology of X is concentrated in degrees divisible by 2n, this simply means that
2pi(p − 1) is divisible by 2n. Hence, 2n is of the form 2pkl with k < i and 2l is a divisor of
2(p− 1) as claimed. �

B.10. Corollary Let X be a space with H∗(X;Z) = Z[u]/um for m > 3. Then |u| is 2 or 4.

Proof. Reducing modulo 2, we find that |u| = 2n is a power of 2. Note that then even divisors
of 2(3− 1) = 4 are precisely 2 and 4, so by reducing modulo 3 we get

2n = |u| = 3kα

where α is either 2 or 4. It follows that k = 0 and hence the result. �
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