

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

May 9, 2025

Topology IV

Sheet 2

Exercise 1. Show that there is an equivalence of functors $\Sigma(-) \simeq S^1 \wedge -: \operatorname{An}_* \to \operatorname{An}_*$.

The following exercises go towards proving the James splitting - since we have discussed a number of its ingredients in class already.

Exercise 2. Let $X, Y \in An_*$ and suppose X is n-connected and Y is m-connected. Show that $X \wedge Y$ is (n + m + 1)-connected.

Exercise 3. Using the natural equivalence $\operatorname{An}_{/X} \simeq \operatorname{Fun}(X, \operatorname{An})$, show the following. Consider the two squares

 $\begin{array}{cccc} A & \longrightarrow & B & & & A \times_D X & \longrightarrow & B \times_D X \\ \downarrow & & \downarrow & & & \downarrow & & \downarrow \\ C & \longrightarrow & D & & & C \times_D X & \longrightarrow & X \end{array}$

in An where the right square is obtained from the left by pullback along a map $X \to D$. Show that if the left square is a pushout, then so is the right square. (This is called Mather's second cube lemma). Deduce that for every $X \in An_*$, there is a canonical pushout square

Can the map a_X be the projection?

Exercise 4. Show that for $X \in An_*$, there is a canonical equivalence

$$\Sigma(\Omega\Sigma X) \simeq \Sigma X \vee \Sigma(X \land \Omega\Sigma X).$$

Deduce that when X is connected, there is a canonical equivalence

$$\Sigma(\Omega\Sigma X) \simeq \bigvee_{n \ge 0} \Sigma(X^{\wedge n}).$$

(This is called the James splitting).

Exercise 5. Let $\gamma_{\mathbb{K}}$ be the tautological \mathbb{K} -line bundle over \mathbb{KP}^n ; recall that it has an underlying spherical fibration (with fibre type the sphere $S(\mathbb{K})$ inside \mathbb{K}) – here $\mathbb{K} = \mathbb{R}, \mathbb{C}, \mathbb{H}$. Determine $\mathrm{Th}(\gamma_{\mathbb{K}})$ in terms of more familiar symbols.

This sheet will be discussed on May 16.