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Exercise 1. Show that the canonical map K0(R× S) → K0(R)×K0(S) is an isomorphism.

Solution. We claim that the additive functor Proj(R×S) → Proj(R)×Proj(S) given by sending V to

the pair (V ⊗R×S R, V ⊗R×S S) admits an inverse given by (P,Q) 7→ P ×Q. Indeed, there are natural

isomorphisms (P × Q) ⊗R×S R ∼= P and (P × Q) ⊗R×S S = Q, showing that the one composite is

equivalent to the identity. Conversely, if V is a projective R × S module, we need to show that V is

isomorphic to V ⊗R×S R×V ⊗R×S S. To that end, note that the elements e = (1, 0) and 1− e = (0, 1)

in R × S are complementary idempotents. Hence for an R × S module V , we have V ⊗R×S R = V e

and V ⊗R×S S = V (1 − e), so we obtain V = V e ⊕ V (1 − e). The result then follows by passing to

isomorphism classes and group completing.

Exercise 2. Let K be a field and V a countably infinite dimensional K-vector space. Let R =

EndK(V ). Show that K0(R) = 0.

Solution. Denote by M the K-vector space HomK(V,
⊕

N V ). This is canonically a right R-module via

precomposition, and a left R-module via postcomposition with the induced endomorphism of
⊕

N V

– since these two module structures commute, M is an (R,R)-bimodule. Note that any choice of

isomorphism V ∼=
⊕

N V shows that the underlying right R-module of M is isomorphic to R itself.

Now consider the evident isomorphism

V ⊕
⊕
N

→
⊕
N

V, (v, (v0, v1, v2, . . . )) 7→ (v, v0, v1, . . . )

and note that this map is one of left R-modules; again, the left R-module structure is just compo-

nentwise. Therefore, we obtain an induced isomorphism

R⊕M = HomK(V, V )⊕HomK(V,
⊕
N

V ) ∼= HomK(V, V ⊕
⊕
N

V )
∼=−→ HomK(V,

⊕
N

V )

and this is an isomorphism of (R,R)-bimodules. We conclude that for every finitely generated projec-

tive R-module P , we obtain an isomorphism

P ⊗R M ∼= P ⊕ P ⊗R M ;

here we use that the right module underlying M is isomorphic to R, and hence in particular finite

projective; This ensures that − ⊗R M is indeed a functor Proj(R) → Proj(R). It follows that any

monoid homomorphism f : τ≤0Proj(R) → A sends P to zero since in the group A, we can cancel the

term f(P ⊗R M) from the above equation. Hence 0 satisfies the universal property of [τ≤0Proj(R)]gp

as needed.
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Remark: Note that the place where we have used that V is infinite dimensional is in the argument

that M is finite projective over R as right R-module; the same is not true for V finite dimensional as

the next exercise shows.

Exercise 3. Let R be a ring. Show that K0(R) ∼= K0(Mn(R)). Hint: Show that Rn is an (R,Mn(R))-

bimodule which implements an equivalence of categories Proj(R) ≃ Proj(Mn(R)).

Solution. We define an (R,Mn(R))-bimodule structure on Rn
r (thought of as a row vector) by left

scalar multiplication and right matrix multiplication. Likewise, define an (Mn(R), R)-bimodule Rc
r

(thought of as column vector) by right scalar multiplication and left matrix multiplication. Then we

obtain functors

Proj(R) → Proj(Mn(R)), P 7→ P ⊗R Rn
r

and

Proj(Mn(R)) → Proj(R), Q 7→ Q⊗Mn(R) R
n
c .

The respective composites are therefore given by

P 7→ P ⊗R Rn
r ⊗Mn(R) R

n
c

as well as

Q 7→ Q⊗Mn(R) R
n
c ⊗R Rn

r .

Hence, it suffices to show that Rn
r ⊗Mn(R) R

n
c
∼= R as (R,R)-bimodule, as well as that Rn

c ⊗R Rn
r
∼=

Mn(R) as (Mn(R),Mn(R))-bimodule.

To that end, let (x, y) ∈ Rn
r×Rn

c and consider ⟨x, y⟩ =
∑n

i=1 xiyi ∈ R – i.e. the matrix multiplication

of x and y. Then the associativity of matrix multiplication gives that this map factors as a map

Rn
r ⊗Mn(R) R

n
c → R. This map is evidently an (R,R)-bimodule map, and one checks directly that it

is an isomorphism.

Similarly, define a map Rn
c ⊗R Rn

r → Mn(R) again by matrix multiplication. Then, this map is

one of (Mn(R),Mn(R))-bimodules again by associativity of matrix multiplication, and again, it is an

isomorphism by direct check.

Exercise 4. Let R be a ring and consider the canonical ring homomorphism R → Mn(R). Compute

the composite

K0(R) → K0(Mn(R)) ∼= K0(R)

obtained in Exercise 2.

Solution. By construction, the composite is induced by sending P to (P ⊗R Mn(R))⊗Mn(R) R
n
c , and

is hence induced by the (R,R)-bimodule Rn. Consequently, the map sends P to P⊕n, and thus the

map under investigation is the multiplication by n map.
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Exercise 5. Show that if I ∋ i 7→ Ri is a filtered diagram of rings with colimiRi = R, then

colimi∈I K0(Ri) → K0(R)

is an isomorphism. Construct a ring R with K0(R) ∼= Q. Can such a ring be commutative? Are there

commutative rings with K0(R) = Z/n?

Solution. As usual, we first prove that colimProj(Ri) → Proj(R = colimRi) is an equivalence. Then

the result follows from the fact that passing to groupoid cores preserves filtered colimits, and τ≤0(−)

and (−)gp are both left adjoint functors and hence commute with all colimits.

We give two arguments for the above equivalence: One computational one and one abstract: For

the computational one, we note that the functor is concretely given as follows: Since the colimit is

filtered, an object of the left hand side is an object P of Proj(Ri) for some i ∈ I; such an object is

then sent to P ⊗Ri
R. Note that this implies that the finite free R-modules are in the image of this

functor. So if the functor is fully faithful, then retracts of free modules are also in the image and hence

the functor is also essentially surjective. Now, to see fully faithfulness, we pick objects P ∈ Proj(Ri)

and Q ∈ Proj(Rj). (Since I is filtered, we could assume without loss of generality that i = j). Then

we use that

HomcolimProj(Ri)
(P,Q) = colimk∈Ii/×IIj/

HomRk
(P ⊗Ri

Rk, Q⊗Ri
Rk)

= colimk∈Ij/ HomRi
(P,Q⊗Rj

Rk)

= HomRi
(P, colimk∈Ij/ Q⊗Rj

Rk)

= HomRi
(P,Q⊗Rj

R)

= HomR(P ⊗Ri
R,Q⊗Rj

R)

giving fully faithfulness as needed. Note that we have used in the above that P is finite projective,

and hence compact, over Ri in order to pull in the colimit in line 3.

Different, less computational, approach: The functor R 7→ Proj(R) is a left adjoint when taking

values in pointed small additive categories (A, a) in which every retract splits. Indeed, there is a functor

from such categories to rings given by sending (A, a) to EndA(a), and this functor is right adjoint

to R 7→ Proj(R) – indeed, R 7→ Free(R) is the coproduct completion of BR, the “additive category

with one object and R as endomorphisms” and Proj(R) is then the retract closure of Free(R). It then

remains to show that filtered colimits in pointed additive categories are computed by forgetting the

specified objects, this follows from the fact that filtered diagrams are contractible. Finally, the forgetful

functor from additive categories to ordinary categories also preserves filtered colimits, as does passing

to the groupoid cores.

Now, to construct a ring R with K0(R) ∼= Q, consider the filtered diagram with values Z and

transition maps multiplication by natural numbers via the divisibility poset. Its colimit is Q. All

these maps can be realised by maps induced by ring maps on K0(−) by the above. Hence, taking the

resulting colimit of rings, we are done. Such a ring cannot be commutative: For commutative rings,

we have Z as a direct summand of K0(R), but Z is not a direct summand in Q. Same applies to

K0(R) = Z/n.
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Exercise 6. Let TS2 be the tangent bundle of S2. Show that ΓR(TS
2;S2) is a stably free C(S2;R)-

module, but it is not free. Note that TS2 is in fact canonically a complex vector bundle. Is ΓC(TS
2;S2)

stably free as C(S2;C)-module?

Solution. For the first, by Swan’s equivalence of categories, we need to show that TS2 is, as a real

vector bundle, non-trivial but stably trivial. It is stably trivial, since the normal bundle of the canonical

embedding S2 ⊆ R3 is trivial, and therefore TS2 ⊕ ϵ = TS3
|S2 = ϵ3. Now, if TS2 were trivial, we could

find a non-vanishing section, but the hairy ball theorem says that there is no such non-vanishing

section. The same argument in fact applies to TS2n for any n ≥ 1.

As for ΓC(TS
2), we see that this is a line bundle over C(S2;C) - so we know from Remark 3.46 in

the lecture that it is stably trivial if and only if it is trivial. But it is not trivial as a complex bundle

since it is non-trivial as a real bundle as shown above.

This sheet will be discussed on May 15.
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