

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Summer term 2025

Algebraic K-theory

Sheet 0

Exercise 1. Let R be a ring and $x \in R$ an element. Show that the following are equivalent.

- (1) $x \in \operatorname{Jac}(R)$,
- (2) for all $y \in R$, we have that 1 xy is right-invertible,
- (3) Mx = 0 for all simple *R*-modules *M*.

Solution. $(1)\Rightarrow(2)$: If 1-xy is not right-invertible, then (1-xy)R is a proper right ideal of R, hence by Zorn's lemma 1-xy is contained in a maximal right ideal \mathfrak{m} . Since $1 \notin \mathfrak{m}$, we deduce $xy \notin \mathfrak{m}$ and hence $x \notin \operatorname{Jac}(R) \subseteq \mathfrak{m}$. $(2)\Rightarrow(3)$: Assume $Mx \neq 0$ and take $m \in M$ with $mx \neq 0$. Then $0 \neq mxR \subseteq M$ so mxR = M since M is simple. Hence, there exists $y \in R$ such that mxy = m or equivalently, m(1-xy) = 0. Since (1-xy) is right-invertible, this implies m = 0; contradiction. $(3)\Rightarrow(1)$: Let \mathfrak{m} be a maximal ideal of R. Then R/\mathfrak{m} is simple, and hence $(R/\mathfrak{m})x = 0$ and hence $x \in \mathfrak{m}$.

Exercise 2. For an *R*-module *M*, define $Ann(M) = \{r \in R \mid Mr = 0\}$. Show that

$$\operatorname{Jac}(R) = \bigcap_{M \text{ simple}} \operatorname{Ann}(M).$$

Deduce that Jac(R) is a 2-sided ideal of R.

Solution. The equality is a direct consequence of the equivalence of (1) and (3) above. For the second, we need to show that if $r \in R$ and $x \in \text{Jac}(R)$, then $rx \in \text{Jac}(R)$. But if M is simple, then $Mrx \subseteq Mx = 0$, so $rx \in \text{Jac}(R)$ again by characterization (3) above.

Exercise 3. Let R be a ring and $J \subseteq \operatorname{Jac}(R)$. Show that $\operatorname{Proj}^{\operatorname{fg}}(R) \to \operatorname{Proj}^{\operatorname{fg}}(R/J)$ is conservative.

Proof. Suppose $f: P \to Q$ is such that $f \otimes_R R/J = g$. We show that f is an isomorphism. Note that $\operatorname{coker}(f)$ is finitely generated and $\operatorname{coker}(f) \otimes_R R/J = \operatorname{coker}(g) = 0$; hence Nakayama implies that $\operatorname{coker}(f) = 0$, so f is surjective. In particular, $P \cong Q \oplus \operatorname{ker}(f)$, so that $\operatorname{ker}(f)$ is again finitely generated (and projective) and $\operatorname{ker}(f) \otimes_R R/J = \operatorname{ker}(g) = 0$ since the functor $- \otimes_R R/J$ preserves split exact sequences. Another application of Nakayama gives $\operatorname{ker}(f) = 0$ and hence f is an isomorphism. \Box

Exercise 4. Let I be an ideal of a ring R such that R is I-adically complete. Show that idempotent elements of R/I can be lifted to idempotent elements of R.

8. Mai 2025

Solution. First we treat the case where $I^n = 0$ is nilpotent. So let \bar{e} be an idempotent in R/I. Let $x \in R$ be a lift of \bar{e} and set y = 1 - x so that 1 = x + y. Then x and y commute and $yx = xy = x - x^2 \in I$. Since $I^n = 0$ we find $(xy)^n = 0$. Then we have

$$1 = (x+y)^{2n} = \sum_{k=0}^{n} \binom{2n}{k} x^{2n-k} y^k + \sum_{k=n+1}^{2n} \binom{2n}{k} x^{2n-k} y^k.$$

Let the first summand be e, so the second summand is 1 - e. Since $(xy)^n = 0$, we have e(1 - e) = 0, i.e. $e^2 = e$ so e is an idempotent. Moreover,

$$e = x^{2n} + 2nx^{2n-1}y + \dots + \binom{2n}{n-1}x^{n+1}y^{n-1} \in x^{2n} + I$$

so e lifts \bar{e} , as x^{2n} lifts $\bar{e}^{2n} = \bar{e}$.

This construction provides compatible idempotents in R/I^n , and hence an idempotent in $\lim_n R/I^n \cong R$, by completeness.

This sheet was discussed on May 8.