

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Summer term 2025

Algebraic *K*-theory

Sheet 2

Exercise 1. Let R be a ring. Show that the elementary matrices $E_{i,j}(r) \in GL(R)$ satisfy the following relations:

- (1) $E_{i,j}(r)E_{i,j}(r') = E_{i,k}(r+r'),$
- (2) $[E_{i,j}(r), E_{j,k}(r')] = E_{i,k}(rr')$, if $i \neq k$ and
- (3) $[E_{i,j}(r), E_{k,l}(r')] = 1$ if $i \neq l$ and $j \neq k$.

Exercise 2. Let R be a ring. Show that the center C(E(R)) of the group of elementary matrices is trivial. Hint: Show that if $A \in GL_n(R)$ commutes with all elements of $E_n(R)$, then A is a homothetic, i.e. a diagonal matrix (r, \ldots, r) with $r \in C(R)$. Deduce that no element of $E_{n-1}(R)$ lies in the center of $E_n(R)$ and let n go to infinity.

Exercise 3. Let R be a ring and $C \in GL_n(R)$. Show that the following matrices are elementary:

$$\begin{pmatrix} 1 & C \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 & 0 \\ -C^{-1} & 1 \end{pmatrix}$$

Exercise 4. Show that the map $R^{n-1} \to St(R)$ given by

$$(r_1, \ldots, r_{n-1}) \mapsto e_{1,n}(r_1) \cdot e_{2,n}(r_2) \cdots e_{n-1,n}(r_{n-1})$$

is an injective group homomorphism.

Exercise 5. Use Matsumoto's theorem to show that $K_2(\mathbb{F}_q) = 0$ where \mathbb{F}_q is a finite field.

This sheet will be discussed in the week of 23 October 2023.

12. Mai 2025