

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT



Summer term 2025

## Algebraic *K*-theory

Sheet 2

**Exercise 1.** Show that the canonical map  $K_0(R \times S) \to K_0(R) \times K_0(S)$  is an isomorphism.

**Exercise 2.** Let K be a field and V a countably infinite dimensional K-vector space. Let  $R = \text{End}_K(V)$ . Show that  $K_0(R) = 0$ .

**Exercise 3.** Let R be a ring. Show that  $K_0(R) \cong K_0(M_n(R))$ . Hint: Show that  $R^n$  is an  $(R, M_n(R))$ -bimodule which implements an equivalence of categories  $\operatorname{Proj}(R) \simeq \operatorname{Proj}(M_n(R))$ .

**Exercise 4.** Let R be a ring and consider the canonical ring homomorphism  $R \to M_n(R)$ . Compute the composite

$$K_0(R) \to K_0(M_n(R)) \cong K_0(R)$$

obtained in Exercise 2.

**Exercise 5.** Show that if  $I \ni i \mapsto R_i$  is a filtered diagram of rings with  $\operatorname{colim}_i R_i = R$ , then

$$\operatorname{colim}_i K_0(R_i) \to K_0(R)$$

is an isomorphism. Construct a ring R with  $K_0(R) \cong \mathbb{Q}$ . Can such a ring be commutative? Are there commutative rings with  $K_0(R) = \mathbb{Z}/n$ ?

**Exercise 6.** Let  $TS^2$  be the tangent bundle of  $S^2$ . Show that  $\Gamma(TS^2; S^2)$  is a stably free  $C(S^2; \mathbb{C})$ -module, but it is not free.

This sheet will be discussed in the week of 23 October 2023.

7. Mai 2025