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Abstract. These are lecture notes for my lecture “Algebraic K-theory” which I taught in
the summer term 2025 at LMU Munich.
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1. Organization

There will be no lectures on 23.06. and 25.06. There will be weekly exercises, starting on
May 8. I will upload exercise sheets and this script to the homepage of the course
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weakly and after each lecture, respectively. The examination will be an oral exam at the end
of the term.

2. Introduction and several motivations

2.1. History. We begin with some historical remarks. In its simplest form, algebraic K-
theory can be viewed as a sequence of functors

Kn(−) : Rings→ Ab, n ∈ Z
where K0(R) is the group completion of the abelian monoid of isomorphism classes of finitely
generated projective R-modules Proj(R)/iso under direct sum. Concretely:

K0(R) = Z[Proj(R)/iso]/⟨[P ] + [Q] = [P ⊕Q]⟩.
This group was introduced by Grothendieck in 1957 (in fact in greater generality as we indicate
below). At the same time, Bott proved his famous periodicity theorem for the homotopy
groups of the stable unitary group U, and hence also for the classifying space for stable vector
bundles BU, and Atiyah and Hirzebruch defined the topological K-groups K∗(X) in 1959. In
1964, Bass defined K1(R) := GL(R)ab and proved what is called the fundamental theorem of
algebraic K-theory: There is an exact sequence of abelian groups

0→ K1(R)→ K1(R[t])⊕K1(R[t
−1])→ K1(R[t

±1])
∂−→ K0(R)→ 0

and the map ∂ is split by the map induced by sending P to ·t : P ⊗R R[t±1]→ P ⊗R R[t±1].1

Bass used this to define negative K-groups inductively: For n < 0, he sets

Kn(R) = coker(Kn+1(R[t])⊕Kn+1(R[t
−1])→ Kn+1(R[t

±1])).

Moreover, Bass, Milnor, and Murthy established an excision exact sequence in K-groups
starting with K1(−) and lowering degree: For a map f : A → B of rings carrying an ideal
I ⊆ A isomorphically to an ideal J ⊆ B, there is a long exact sequence:

K1(A)→ K1(A/I)⊕K1(B)→ K1(B/J)
∂−→ K0(A)→ K0(A/I)⊕K0(B)→ K0(B/J)

which in fact can be contined indefinitely to the right using Bass’ definition of negative K-
groups. Swan proved that there is no functorial way to extend this sequence to putative higher
K-groups to the left. Nevertheless, in 1967, Milnor defines K2(R) and computes K2(Z). It is
slightly more involved to describe K2(R) than K1(R), but it goes as follows. One defines the
Steinberg group St(R) of a ring R as the group generated by symbols ei,j(r), where i ̸= j are
natural numbers and r ∈ R, subject to the standard relations that the elementary matrices
Ei,j(r) ∈ GL(R) satisfy.2 One obtains a group homomorphism St(R)→ E(R) ⊆ GL(R) and
Milnor defines K2(R) = ker(St(R)→ GL(R)); one can show that this agrees with the center
C(St(R)) of St(R), and in particular K2(R) is indeed abelian. Since E(R) = [GL(R),GL(R)]
by Whiteheads lemma, there is an exact sequence

0→ K2(R)→ St(R)→ GL(R)→ K1(R)→ 0.

As described, both K1(R) and K2(R) are purely algebraic definitions, and there was good
reason to believe that these are “the correct definitions” – mostly, because they participate
in certain long exact sequences for quotients by a two-sided ideal. In his thesis in 1968,

1Here, we need to note that an automorphism of a finitely generated projective can be extended to an
automorphism of a finitely generated free module; this can be represented by a matrix and then represents an
element in K1(−).

2We will make this more explicit later in the course.
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Matsumoto gave an explicit presentation for K2(−) for fields, leading Milnor to define a form
of higher K-groups for fields now known as Milnor K-theory, but it seems to have been clear
that his is not even the “correct” definition of higher K-groups for fields, let alone for more
general rings. In particular, it was not at all clear at the tine how to correctly define higher
K-groups. This was eventually solved by Quillen in 1971. In modern language (and to the
best of my knowledge largely inspired by insights of Segal) he observed that it is better to
consider ιProj(R) as a symmetric monoidal groupoid and not take its isomorphism classes
(which is then an abelian monoid). Symmetric monoidal groupoids are then examples of
commutative monoids in anima (aka spaces, ∞-groupoids, etc..). The collection of such form
an∞-category CMon(An) which contains a full subcategory CGrp(An) of grouplike monoids,
i.e. those, where every point admits an inverse (or equivalently π0(−) forms an ordinary
abelian group). Just like in the case of abelian monoids and groups in sets, the inclusion
CGrp(An) ⊆ CMon(An) admits a left adjoint, the group completion (−)gp.3 Quillen came up
with an ad hoc construction, the Q-construction, which implements this group completion,
and defines the K-theory space:

K(R) := (ιProj(R))gp.

By comparing universal properties, one finds π0(K(R)) = K0(R). It is less obvious that
π1(K(R)) = K1(R) and π2(K(R)) = K2(R), these rely on the group completion theorem
of Segal and McDuff as we will prove in this course. The following are among the most
important first computations about K-theory. It is fair to say, that there is not a single
“simple” computation of K(R); all computations really invoke or establish deep mathematics.

(1) In 1971, when defining K(R) in general and setting up a number of influential basic
results [Qui73b], Quillen also computed K(Fq), where Fq is a finite field [Qui72]; the
result is that for n > 0, K2n(Fq) = 0, and K2n−1(Fq) = Z/qn − 1. In fact, Quillen
constructs a map of spaces

K(Fq)→ fib(BU
ψq−1−−−→ BU)

where ψq is an Adams operation, and shows that this map induces an isomorphism
on positive homotopy groups. Moreover, Quillen showed that Kn(OF ) is a finitely
generated abelian group for all n ≥ 0, where F is a number field with ring of integers
OF [Qui73a].

(2) In 1974, Borel then computed K(OF )⊗Q: These groups are trivial in even (positive)
degrees, and have rank r1 + r2 − 1 in degree 1, and for degrees larger than 1, the
ranks are given by r1 + r2 in degrees 1 mod 4 and r2 in degrees 3 mod 4. Here, r1
and r2 are the numbers of real and pairs of complex conjugate complex embeddings
of F , respectively. Borel’s proof again uses crucially the group completion theorem to
reduce the computation of homotopy groups to a computation of homology groups, in
the case of interest of certain arithmetic groups.

(3) In 1984, Suslin computed K(k)/n, where k is an algebraically (or separably) closed
field and n ∈ k×. In fact, he proves a rigidity theorem, that whenever k ⊆ k′ is an
inclusion of algebraically closed fields and n ∈ k×, then the inclusion induced map
K(k)/n→ K(k′)/n is an equivalence, and the common term is in turn equivalent to

3Warning: This is not quite as simple as the one for sets described above. Consider for instance the
symmetric monoidal groupoid of finite sets with bijections under disjoint union. Its group completion is then
the (anima underlying the) sphere spectrum, whose homotopy groups are the famously notoriously mysterious
and hard to compute stable homotopy groups of spheres.
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ku/n; here ku denotes the (connective) complex K-theory spectrum – to see this, by
rigidity, it suffices to study the cases K(Fp) and K(C); the former essentially then
follows from Quillen’s computation, and the latter is another result of Suslin from
1984, confirming a conjecture of Milnor’s about the relation of the group homologies
of GLn(C)δ and GLn(C) – once with the discrete and once with its analytic topology.

(4) In 1983, Gabber gave a talk explaining the following theorem (his result was then
published in 1989 [?]): If (A, I) is a henselian pair4 and n ∈ A×, then the induced
map K(A)/n → K(A/I)/n is an equivalence. Examples of henselian pairs include
the case where A is I-adically complete (in particular if I is nilpotent), and the case
where I is locally nilpotent.

Let us now turn to some results from different fields which aim to convey the slogan:
K-theory is everywhere and everywhere interesting.

2.2. Algebraic geometry. We begin with the origin of K-theory: Grothendieck’s goal to
understand (and vastly generalize in his typical manner) the theorem of Riemann and Roch.
Let us recall the theorem of Riemann–Roch from the 1850’s:

So let Σ be a compact Riemann surface of genus g(Σ). Let D ∈ Z[Σ] be a divisor on Σ, that
is, a formal finite linear combination of points in Σ with coefficients in Z. The degree deg(D)
of a divisor D is the sum of its coefficients. Divisors can be added and form an abelian group
Div(Σ). For f : Σ → C ∈ M(Σ;C) a meromorphic function, one can consider its associated
principal divisor D(f) whose coefficient D(f)x at x ∈ Σ is given by

D(f)x =


n if x is a zero of order n

−n if x is a pole of order n

0 otherwise

.

In the theory of Riemann surfaces, one is then interested in the C-vector spaces

M(D) = {f ∈M(Σ;C) | D(f)x ≥ −Dx}
and in particular, one would like to compute the dimension of M(D). Riemann proved the
inequality

dimM(D) ≥ deg(D) + 1− g(Σ).
This in particular implies that M(D) is non-empty if deg(D) + 1 − g(Σ) ≥ 0. Riemann’s
inequality was then improved by his student Roch as follows. First, note that dimM(D) =
dimM(D + D(f)) and deg(D) = deg(D + D(f)); it follows that D 7→ dimCM(D) can be
thought of as a function on the divisor class group Cl(Σ) = Div(Σ)/pDiv(Σ). This group is
isomorphic to the Picard group Pic(Σ) consisting of holomorphic line bundles (under tensor
product) on Σ. Let KΣ be the canonical bundle on Σ (i.e. the holomorphic cotangent bundle)
and DΣ ∈ Cl(Σ) be its associated divisor (up to principal divisors). For any D ∈ Cl(Σ), set
D∨ := DΣ −D. Then the Riemann–Roch (RR) theorem states:

dimM(D)− dimM(D∨) = deg(D) + 1− g(Σ).
Let us now go towards Grothendieck’s generalization of the Riemann–Roch theorem. We

aim to reinterprete several players involved in the above formula. Firstly, when L is the line
bundle with associated divisor D, then M(D) canonically identifies with H0

sh(Σ;L) = Γ(Σ;L),

4That is, A is a commutative ring, I ⊆ Jac(A) is contained in the Jacobson radical and for every monic
polynomial f ∈ A[X] with factorization f̄ = ḡh̄ with ḡ, h̄ ∈ A/I[X] monic and generating the unit ideal, there
exists a lifted factorization f = gh with g, h ∈ A[X] monic.
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i.e. the holomorphic global sections of the sheaf on Σ represented by L. Therefore, the left
hand side of RR becomes

dimH0
sh(Σ;L)− dimH0

sh(Σ;L
−1 ⊗KΣ)

which by Serre duality (and the fact that Riemann surfaces are complex curves, i.e. 1-
dimensional) is equal to

dimH0
sh(Σ;L)− dimH1

sh(Σ;L)
∨

which is the Euler characteristic χ(Σ;L) of Σ with coefficients in L (as all cohomology groups
here are finite dimensional C-vector spaces). In 1954, Hirzebruch then found the following
generalization of RR, the Hirzebruch–Riemann–Roch theorem: For E → X a holomorphic
vector bundle over a compact complex d-dimensional manifold X, there is the formula

χ(X;E) = ⟨ch(E) · td(TX), [X]⟩

where ch(E) is the Chern character of E and td(TX) is the Todd genus (another characteristic
class describable in terms of Chern classes) of the tangent bundle TX. Specialized to L→ Σ
with Σ a Riemann surface and L a holomorphic line bundle, the right hand side of the above
equality can be computed to be deg(D)+1−g(Σ), so Hirzebruch really generalizes the classical
Riemann–Roch theorem to higher dimensional compact complex manifolds.

Grothendieck, among other things, wanted to generalize the above result to a relative
setting, where one considers a proper morphism f : X → Y where Y need not be a point. In
this situation, how could one generalise left and right hand sides of the equation? Recalling
that

χ(X;E) =
∑
i≥0

(−1)i · dimCH
i
sh(X;E)

and noting that H i(X;E) = Rip∗(E), where Rip∗ is the ith right derived functor of the
functor Γ(−;E) : Sh(X; Ab)→ Ab, here p : X → ∗ is the map to the point. For a morphism
f : X → Y , one can still consider the values Rif∗(E) of the right derived functors Rif∗ of
f∗ : Sh(X; Ab)→ Sh(Y ; Ab) and one would like to form∑

i≥0

(−1)i ·Rif∗(E).

But how are we supposed to interpret this alternating sum? You see that for the above
formula for χ(X;E) to make sense, we have used dimC(−) to obtain natural numbers, and
then know what it means to take an alternating sum. Grothendieck’s insight here was to
simply define an abelian group in which the above formula involving alternating sums of higher
pushforward sheaves makes sense. Indeed, he defined5 K0(X) to be the group completion of
the abelian monoid of isomorphism classes of of coherent sheaves on X, modulo the relation
[F1] = [F0] + [F2] if there is a short exact sequence of coherent sheaves

0→ F0 → F1 → F2 → 0.

5This is in fact not generally what K0(X) is, rather what one would call G0(X). K0(X) is defined with
vector bundles rather than coherent sheaves instead. The fact that the two yield the same group has to do
with the smoothness of X. We write K0(X) rather than G0(X) as to not make a big fuzz about the difference
at this point.
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Now, if f : X → Y is proper, the higher pushforward functors Rif∗(−) preserve coherent
sheaves and hence f induces a morphism f∗ : K0(X)→ K0(Y ), with

f∗(F) =
∑
i≥0

(−1)iRif∗(F) ∈ K0(Y )

which is now perfectly well-defined and precisely the putative candidate for the left hand side
of the Grothendieck–Riemann–Roch theorem (and also the reason for working with coherent
modules, rather than vector bundles: In general Rif∗ does not preserve vector bundles).
But then the next question is how to generalize the right hand side of the RR theorem?
Hirezbruch extension already showed that terms like a Chern character and the Todd class
appear at least in the holomorphic case. To see how Grothendieck treated this, let us briefly
talk about algebraic cycles. For X a smooth variety over a field, let the cycle group be

Z(X) = Z[ irred. subvarieties of X ].

One would like to have an intersection product on cycles, informally taking a pair (Z1, Z2) to
Z1 ∩ Z2. This turns out to work up to rational equivalence. One therefore defines the Chow
ring

A(X) = Z(X)/rational equivalence

which may perhaps be thought of as the algebraic analog of singular (co)homology (note
that A(X) is graded by codimension, and in particular trivial in degrees greater than the
dimension of X). The association X 7→ A(X) is contravariantly functorial for flat maps (by
taking preimages) and can be given a covariant functoriality for proper maps, essentially by
taking the image of a subvariety if the dimension of the image does not drop (multiplied with
the degree of the resulting extensions) or taking zero if the dimension drops. Grothendieck
then proved the following result about the relation between A(X) and K0(X): He constructed
an explicit isomorphism of rings

A(X)⊗Q ∼= K0(X)⊗Q

and obtains a Chern character ch(−) as the composition

K0(X)→ K0(X)⊗Q ∼= A(X)⊗Q.

This is very much in analogy with the situation in algebraic topology, where one can construct
an isomorphism ⊕

n≥0

H2n(X;Q) ≃ KU0(X)⊗Q

inducing in the same manner the topological Chern character.
Denote now by Tf the difference TX−f∗(TY ) ∈ K0(X); a kind of relative tangent bundle.

Note that f∗(TY ) is even a vector bundle on X so in particular a coherent sheaf. In order
to define the Chern character, Grothendieck really constructed algebraic Chern classes from
which he extracts the Chern character, just like Hirzebruch did in the complex case. One can
then also define a Todd class td(Tf ) ∈ A(X)⊗Q via these algebraic Chern classes. Indeed, the
Todd class can be defined for general coherent sheaves F onX, satisfies td(F) = td(F ′)·td(F ′′)
for all short exact sequences 0→ F ′ → F → F ′′ → 0, and is of the form 1 + x in A(X)⊗Q
where x sits is positive grading (with respect to the codimension grading indicated above).
Hence, td(F) is in fact invertible in the ring A(X)⊗Q, and so the map F 7→ td(F) extends
uniquely to a group homomorphism td: K(X)→ [A(X)⊗Q]×. If f is a smooth and proper



ALGEBRAIC K-THEORY 7

map between smooth varieties, then Tf is in fact itself a vector bundle, the tangent bundle
along the fibres of f , and TX = Tf ⊕ f∗(TY ).

Now, Grothendieck’s version of the HRR theorem, proved around 1957,6 states that for
f : X → Y a proper morphism between smooth varieties over a field, and any coherent sheaf
F on X, there is the equality

ch(f∗(F)) = f∗(ch(F) · td(Tf )).
In other words, it shows td(Tf ) is a correction term accounting for the non-commutativity of
the diagram

K0(X) A(X)⊗Q H2∗(X(C);Q)

K0(Y ) A(Y )⊗Q H2∗(Y (C);Q)

ch

f∗ f∗ f∗

ch

i.e. td(Tf ) measures the failure of the Chern character map to be compatible with the proper

pushforward (here the right hand dashed maps exist if X is defined over C).7 Written differ-
ently, the diagram

K0(X) A(X)⊗Q

K0(Y ) A(Y )⊗Q

ch(−)·td(TX)

f∗ f∗

ch(−)·td(TY )

commutes (this uses the usual projection formula for f∗ and f∗: f∗(a · f∗(b)) = f∗(a) · b)
in the Chow ring). Let us indicate that this indeed recovers the earlier results: When Y
is a point, we have K0(Y ) = Z via the dimension, and the lower horizontal map is simply
the inclusion Z ⊆ Q. Hence the LHS of Grothendieck’s version indeed becomes χ(X;F).
Moreover, Tf = TX. Now, if in addition the base field is C and F = E is a holomorphic
vector bundle, under the map A(X)⊗Q→ H2∗(X(C);Q), and the symbols ch(E) and td(Tf )
give precisely the terms appearing in Hirzebruch’s version of the Riemann–Roch theorem (i.e.
Grothendieck’s Chern character is mapped to Hirzebruch’s Chern character, and similarly for
the Todd class). Finally, in this situation, the map f∗ : A(X)⊗Q→ Q equals the composite
A(X)⊗Q→ H2∗(X(C);Q)→ Q, where the latter map is the evaluation on the fundamental
class [X], so we finally arrive at Hirzebruch’s formula.

There are more interesting things to say about K0(X) ⊗ Q: It turns out that K0(X) is
canonically a λ-ring and hence carries Adams operations ψk for all integers k. Rationally,
any λ-ring Λ decomposes into “common Eigenspaces” for these Adams operations; that is,
into the sum (over i ∈ Z) of its subspaces (Λ ⊗ Q)(i) where ψk acts via ki for all k. Under
Grothendieck’s isomorphism, these recover the fact that the Chow ring is graded by codi-
mension. Now in fact, we will see that there is a full spectrum K(X) all of whose homotopy
groups are interesting. Rationally, they again decompose into the common Eigenspaces for
Adams operations. In 1986, Bloch developed a higher version of Chow groups and extended

6Grothendieck presented his version of the HRR theorem at the Arbeitstagung in Bonn in 1957 which was
organized by Hirzebruch.

7This is a very interesting map: The Hodge conjecture is a conjecture about its image and assuming it, a
further conjecture of Bloch and Beilinson implies that the map is an isomorphism if and only if Hp,q(X) = 0
for p ̸= q.
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Grothendieck’s comparison between A(X) and K0(X) to (rational) higher Chow and K-
groups. These higher Chow groups define what is called (rational) motivic cohomology, so
that we learn that rational motivic cohomology and rational algebraic K-theory determine
each other: There is rational motivic cohomology Hn

mot(X;Q(i)) with Tate twist coefficients
Q(i); This then identifies with (K2i−n(X) ⊗ Q)(i), the weight i part of K-theory, character-

ized by the property that for all k, the Adams operation ψk acts by multiplication by ki. In
particular, K0(X) ⊗ Q ≃ ⊕iH2i

mot(X;Q(i)) ∼= A(X) ⊗ Q. If time permits, will discuss this
λ-ring structure on K0(X) and possibly on K∗(X) later in the course.

Another interesting interaction between algebraic K-theory and algebraic geometry is the
sensitivity of K-theory to regularity or smoothness. An instance of this is the following result:
Let X be a regular Noetherian scheme. Then the map A1

X → X induces an equivalence
K(X) ≃ K(A1

X) and Kn(X) = 0 for n < 0 (we will prove this later in this course). The
following two prominent conjectures aim to convey thatK-theory is an invariant very sensitive
to singularities. Indeed, from the Bass–Milnor–Murthy excision sequence, it was already
known that singular curves can have non-trivial K−1 (e.g. the nodal curve) but need not have
non-trivial K−1 (e.g. the cuspidal curve). Moreover, in these cases K−1 is free abelian, and
somewhat determined by “topology” and there are no non-trivial lower negative K-groups.
Weibel then conjectured that this is generally so:

2.1. Conjecture (Weibel) Let X be a Noetherian scheme of Krull dimension d. Then
Kn(X) = 0 for n < −d and K−d(X) can be described “topologically”.8

When X is a variety over a field k with char(k) = 0, it was shown by Cortinas–Haesemeyer–
Schlichting–Weibel [CHSW08] and by Geisser–Hesselholt [GH10] and Krishna [Kri09] for va-
rieties over of field satisfying a strong form of resolution of singularities. Weibel’s conjecture
was fully resolved in work of Kerz–Strunk–Tamme [KST18] and has been extended to a regular
schemes of valuative dimension d in the non-Noetherian situation [KST24].

2.2. Conjecture (Vorst) Let k be a field and A a k algebra essentially of finite type of Krull
dimension n. If K(A)→ K(A[X1, . . . , Xn+1]) is an equivalence, then A is regular.

Vorst showed this for dim(A) = 1 (1979), when char(k) = 0, it was shown by Cortinas–
Haesemeyer–Weibel (2008) [CHW08], and for perfect fields k with char(k) = p > 0, it was
shown by Geisser–Hesselholt [GH12]. A generalisation of their result, without assuming
resolution of singularities was recently proven by Kerz–Strunk–Tamme [KST21].

2.3. Number theory. Algebraic K-theory also has a wonderful relation to number theory.
For instance, to (special values of) ζ-functions. Most of what I write here is from [Kah05]
which gives a very nice overview of the relations between K-theory and number theory. Recall
the Riemann ζ-function

ζ(s) =
∑
n≥1

1

ns
=

∏
p prime

1

1− p−s

8Precisely, K−d(X) is conjecturally given by Hd
cdh(X;Z) is given by a sheaf cohomology group, where the

topology is a certain completely decomposed topology on schemes introduced by Voevodsky in his work on
motivic cohomology.
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for s ∈ C. This is the special case of the arithmetic ζ-function associated to schemes X which
are of finite type over Spec(Z), the Riemann ζ-function being the case of X = Spec(Z) itself:

ζX(s) =
∏
x∈X

closed point

1

1− |κ(x)|−s

where κ(x) is the residue field of X at the closed point x. The function ζX(−) converges for
Re(s) > dim(X) and is conjectured to have a meromorphic continuation to the whole complex
plane; this is known at least when Re(s) > dim(X)− 1

2 . Soulé conjectures (in particular) the
following.

2.3. Conjecture (Soulé) Let X be regular and of finite type over Z of dimension d and let
n ∈ Z. Then

ords=nζX(s) =
∑
i∈Z

(−1)i+1 dimQ(Ki(X)⊗Q)(d−n)

=
∑
i∈Z

(−1)i+1 dimQH
2(d−n)−i
mot (X;Q(d− n)).

where the subscript denotes the weight (d − n) part of the Adams operation decomposi-
tion, that is, where all Adams operations ψk act by multiplication by kd−n, and hence the
appropriate rational motivic cohomology group by what we have indicated above.9

In particular, this assumes that the meromorphic continuation exists, and that the dimen-
sions appearing on the right hand side are all finite and almost surely zero. See Conjecture 2.14
below for further conjectures about finiteness of K-groups.

Soulé’s conjecture is known to hold for n > dim(X) – in that case both sides vanish. For
n = dim(X) − 1, it implies the famous conjecture of Birch and Swinnerton-Dyer (which as-
serts that the rank of the K-points of an elliptic curve E agrees with the order of the zero of
L(E, s) at s = 1, where L(E, s) is the Hasse-Weil L-function of E).

In order to appreciate the next conjecture, it is worthwhile to spell out Soulés conjecture for
Spec(OF ) for number fields F : Here, it turns out that the Adams Eigenspaces are explicitly
known: For i ≥ 1 we have (K∗(OF )⊗Q)(i) = K2i−1(OF ); and (K0(OF )⊗Q)(0) = K0(OF )⊗Q.
Hence we obtain for

ords=nζF (s) =


0 for n ≥ 2

−1 for n = 1

dimQ(K1−2n(OF )⊗Q) for n ≤ 0

As indicated above, the ranks of the K-groups have been computed by Borel, so the right
hand side is known explicitly. Moreover, the ζ-function (in particular of a number field)
satisfies a functional equation, relating ζF (s) with ζF (1 − s) (involving so-called Γ-factors,

9This might actually not be what Soulé conjectures; He has a more general version for arbitrary (pos-
sibly non-regular) schemes of finite type over Z, where one replaces Ki(X) by Gi(X), i.e. the K-theory of
coherent sheaves, not of vector bundles. Consequently, he works with Adams operations on G-theory, which
rationally identify with Borel–Moore motivic homology rather than motivic cohomology: (Gi(X) ⊗ Q)(j) ∼=
HBM,mot

2j+i (X;Q(j)). I am then alluding to a possible Poincaré duality statement in motivic cohomology for
regular schemes of dimension d of finite type over Z which might be incorrect in general – but is correct for
X = Spec(OF ) for a number ring F , this is the case we then use:.
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cosinus, and sinus functions). From this functional equation, and the fact that ζF (s) indeed
has a simple pole at s = 1, one can show that Souleś conjecture is true for Spec(OF ).

Lichtenbaum then conjectured the following about the special values of the ζ-function at
non-positive integers, i.e. the coefficient of the leading term for a Taylor expansion around a
non-positive integer. Concretely, this special value at −n can be computed as

sv(ζF )(−n) = lim
s→−n

(s+ n)ords=−nζF (s) · ζF (s)

and Lichtenbaum conjectures:

2.4. Conjecture (Lichtenbaum) Let F is a number field with ring of integers OF and n ≥ 0.
Then

sv(ζK)(−n) = ± |K2n(OF )|
|K2n+1(OF )tors|

·Rn+1(F )

where Rn+1(F ) is a transcendental number called the Borel regulator.10

For n = 0, by K2n(OF ) we really mean the reduced K0-group, obtained by modding
out the subgroup generated by OF itself, which is isomorphic to the Class group Cl(OF )
or equivalently the Picard group Pic(OF ). Moreover, K1(OF ) is isomorphic to O×

F which is
a finitely generated group of rank r1 + r2 − 1 by Dirichlet’s unit theorem and the torsion
elements are precisely the roots of unity µ(F ) of F and therefore a cyclic group. The case
n = 0 is therefore closely related to the class number formula discussed in a number theory
course, see e.g. [Neu92, Korollar 5.11]. In loc. cit., the class number formula however relates
the special value of the ζ-function at the simple pole s = 1 with something like the right hand
side in the above equation; Using the functional equation for the ζ-function, this determines
the special value at s = 0, and in fact, in this formulation, the formula simplifies a bit (for
instance powers of 2, π, and the discriminant of F appear on the right hand side of the class
number formula precisely because of the contribution coming from the functional equation);
In particular, Lichtenbaum’s conjecture is known for n = 0.

One reason to expect relations between special vaues of ζ-functions and quotients of orders
of K-groups to hold is that K-groups of number rings like OF tend to be describable in terms
of étale cohomology groups, and relations between special values of ζX and étale cohomology
appear for instance in work of Wiles and Mazur-Wiles. As a consequence, Lichtenbaum’s
conjecture is also known if F is an abelian extension of Q, and it is also known for totally
real number fields.

Let us also talk about the Kummer–Vandiver conjecture.

2.5. Conjecture (Kummer, Vandiver) If p is a prime number, then p does not divide the
class number of the maximal real subfield Q(ζp)

+ of Q(ζp).

Let us mention that the class number of number field F is |Pic(OF )| and Pic(OF ) ∼= K̃0(OF ).
The class number h of Q(ζp) is known to be the product h1h2 of the class number h1 of Q(ζp)

+

and a second number h2; this second number h2 is quite well understood, can be computed in
terms of Bernoulli numbers and is typically quite large. It really is the other factor h1 in the
class number of Q(ζp) that is the mysterious one. Recall also that a prime is called regular

10The sign in this conjecture can be made fully explicit: It is (−1)
n+1
2

r1+r2 if n is odd and (−1)
n
2
r1 if n is

even.
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if it does not divide the class number of Q(ζp); the first irregular prime is 37. The above
conjecture is therefore true for all regular primes (it is conjectured that ∼ 60% of all primes
are regular) and it has been verified for all primes p < 231.

2.6. Theorem (Kurihara [Kur92]) The Kummer–Vandiver conjecture is equivalent to the
statement that K4n(Z) = 0 for all n > 0.

Moreover, we know the following things about K(Z):
(1) K2k+1(Z) is known explicitly for all k ≥ 0.
(2) The orders of K4k+2(Z) are known explicitly for all k ≥ 0; they are conjectured to

be cyclic; this is implied by the Kummer–Vandiver conjecture, but a priori a weaker
assertion.

(3) K4(Z) = 0 (Rognes [Rog00]) and K8(Z) = 0 (Kupers [Kup17]); but as of now, we do
not know K12(Z).

Finally, we mention Clausen’s K-theoretic approach to Artin maps [Cla17]. To that end,
in class field theory, there appears for a global field F with ring of adèles AF , the Artin map
for F : It is a homomorphism

A×
F /F

× → Gal(F )ab

where Gal(F ) denotes the absolute Galois group of F . Similarly, there is an Artin map for a
local field F , taking the form

F× → Gal(F )ab

as well as an Artin map for a finite field F , taking the form

Z→ Gal(F )ab.

The final map seems simple to define: It merely sends 1 ∈ Z to the Frobenius of the finite field
F . However, these Artin maps obey a certain functoriality in F , which uniquely characterises
them. The fact that such a compatible, functorial set of Artin maps exists in a non-trivial
result. Clausen constructs these maps via the following K-theoretic construction. Associated
to a field F , (in fact more generally) he defines a category LCF = FunZ(Perf(F ),Perf(LCA))
of “Perf(F )-modules in the derived category of (second countable) locally compact abelian
groups” – whatever that is, it is something of which one can take K-theory, and considers
K(LCF ). He shows that there are maps from the sources of all the above Artin maps to
π1(K(LCF )). On the other hand, he constructs another invariant which he calls Selmer K-
homology: dKSel(F ), which is more complicated to define at this point, as it uses on the
one hand more sophisticated homotopy theory (some height one chromatic Anderson duality)
as well as another invariant, called topological cyclic homology which is closely related to
algebraic K-theory. He proves that π1(dK

Sel(F )) ∼= Gal(F )ab. Moreover, he constructs a
natural map

K(LCF )→ dKSel(F )

and this map induces all the above Artin maps on π1, with its functoriality, at once. The
above, I think, serves as good motivation that one also wants to study theK-theory of suitable
categories, not “only” that of rings or schemes.

2.4. Algebraic and geometric topology. Algebraic K-theory also appears prominently in
algebraic and geometric topology. In first instance, the relevant rings to consider are given
by Zπ1(X) for X a space. For instance, suppose X is a compact anima (historically, one
would say a finitely dominated space: I.e. one that is a retract up to homotopy of a finite
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CW complex). Associated to such a space is an element o(X) in K0(Zπ1(X)) often called
the K-theory Euler characteristic of X. Indeed, under the map K0(Zπ1(X)) → K0(Z) ∼= Z,
o(X) is sent to χ(X), the homological Euler characteristic of X. Define K̃0(Zπ1(X)) =
coker[K0(Z) → K0(Zπ1(X))] and denote by õ(X) the image of o(X) under the canonical
projection. If X is a finite anima (i.e. can be represented by a finite CW complex), then õ(X)
vanishes, one therefore refers to õ(X) as the finiteness obstruction of X. Wall then proved
the following result.

2.7. Theorem (Wall) The anima X is finite (i.e. can be represented by a finite CW complex)

if and only if õ(X) = 0 ∈ K̃0(Zπ1(X)). Moreover, for every finitely presented group π, every

element õ ∈ K̃0(Zπ) appears as the finiteness obstruction of a finitely dominated space X.

Wall came to this theorem from surgery theory: In practice he was often to show the
existence of a finitely dominated space (i.e. a compact anima) and would like to have in fact
constructed a closed manifold. But the anima of a closed manifold is always finite11, not only
compact, and so he naturally came to study what the difference between finite and compact
anima are.

Moving more torwards differential topology, consider a closed smooth manifold M .12 Let
W be an h-cobordism from M to M ′, that is, W is a cobordism with one boundary piece
identified with M (the other end we simply call M ′), such that both inclusions M →W and
M ′ → W are homotopy equivalences. Associated to this, one can associate the Whitehead
torsion τ(W,M) ∈ K1(Zπ1(M))/⟨±g⟩) = Wh(π1(M)). The following is known as the s-
cobordism theorem:

2.8. Theorem (Smale, Barden, Mazur, Stallings) Let M be a closed manifold of dimension
≥ 5. Then the association (W,M,M ′) 7→ τ(W,M) induces a bijection between isomorphism
classes of h-cobordisms W over M and Wh(π1(M)).

Since the cylinder M × [0, 1] is an h-cobordism with trivial Whitehead torsion, the s-
cobordism theorem implies that an h-cobordism (W,M,M ′) with trivial Whitehead torsion
τ(W,M) is in fact diffeomorphic to the cylinder, and in particular, there exists a diffeomor-
phism M ∼=M ′.

We note that for any group π, there is a comparison map, called the assembly map

Bπ ⊗K(Z)→ K(Zπ)

and that the groups K̃0(Zπ) and Wh(π) identify with the cokernel of the map induced by
the assembly map on π0 and π1.

Waldhausen has realised that one should consider the variant where Z is replaced by the
sphere spectrum S and where one uses the group in anima ΩX rather than its π0 (which is
π1(X)). Doing so, one still obtains two maps, the latter of which is the assembly map and
the former of which is induced by the unit of the ring spectrum K(S):

X ⊗ S→ X ⊗K(S)→ K(S[ΩX])

The cofibre of the composite is called the smooth Whitehead spectrum Whsm(X) of X, and
the cofibre of the composite is called the topological Whitehead spectrum Whtop(X) of X.
One can then show that π0 and π1 of the two versions of Whitehead spectra agree, and that

11In fact, a compact ANR is a finite anima by a result of West. Topological manifolds are ANRs, so that
compact manifolds are always finite anima.

12In fact, all I am about to say holds for topological manifolds as well.
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their common π0 and π1 are given by K̃0(Zπ1(X)) and Wh(π1(X)), respectively (perhaps we
will learn some of the ingredients that go into these computations this term, but perhaps also
not).

He then indicated a proof of what is now called the stable parametrized s-cobordism theo-
rem, the details of which were published in joint work of Waldhausen with Jahren and Rognes.
To state it, one has to accept that there can be built a space H(M) of h-cobordisms over
M (whose points evidently are h-cobordisms over M) which comes with stabilisation maps
H(M) → H(M × [0, 1]) → .. whose colimit Hs(M) is the stable h-cobordism space. The
stable parametrized s-cobordism theorem then states:

2.9. Theorem For a compact smooth/topological manifold of dimension ≥ 5, there is a canon-

ical equivalence Hs(M) ≃ ΩWhsm/top(M).

The consequence that their π0 agree then recovers the s-cobordism theorem described
above. Moreover, the space ΩH(M) itself is described as the stable pseudoisotopy or con-
cordance space Cs(M), and hence contains very interesting information on M -parametrized
families and hence about certain automorphism groups of M , as Igusa proved that the maps
C(M)→ C(M × [0, 1])→ · · · → Cs(M) are at least (roughly) dim(M)/3-connected. Here,

C(M) = {f : M × [0, 1]
∼=−→M × [0, 1] | f |M×{0}∪∂M×[0,1] = id}.

As a consequence there is a (roughly) dim(M)/3-connected map

C(M)→ Ω2Wh(M).

When M = Dd is a disk, source and target are only interesting in the smooth case, and one
obtains

C(Dd)→ Ωfib(S→ K(S))
Rationally, it turns out that S → Z is an equivalence as we will learn in the Topology IV
course. K-theory behaves so well in this situation that this implies K(S) → K(Z) is also a
rational equivalence, and the latter is famously calculated by Borel. Finally, there is a fibre
sequence

Diff∂(D
d+1)→ C(Dd)→ Diff∂(D

d)

and it is known by work of Randal-Williams and Berglund–Madsen, that Diff∂(D
2d) is ratio-

nally (roughly) 2d-connected. Therefore, the map

Diff∂(D
2d+1)Q → C(D2d)Q → Ω2K(Z)Q

is (roughly) 2d/3-connected. Nowadays, much more is known about the rational homotopy
groups of Diff∂(D

d), mainly due to work of Krannich [Kra22], Krannich–Randal-Williams
[KRW21] and Kupers–Randal-Williams [KRW25].

2.5. K-theory of group rings. As the finiteness obstruction and the Whitehead torsion
are of great geometric relevance, it makes good sense to study the group in which they live
in detail. As those are controlled by the assembly map, it therefore makes sense to study the
assembly map

BG⊗K(R)→ K(RG)

for a ring R and a group G. The following conjecture is due to Farrell and Jones:
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2.10. Conjecture (Farrell–Jones, I) Let R be a regular Noetherian ring and G be a torsion
free group. Then the assembly map

BG⊗K(R)→ K(RG)

is an equivalence.

In fact, this is just the special case of a conjecture for all rings and all groups:

2.11. Conjecture Let R be a ring and G be a group. Then the assembly map

colim
H∈OrbVCyc(G)

K(RH)→ K(RG)

is an equivalence.

Here OrbVCyc(G) denotes the full subcategory of the category of G-sets on G-sets of the
form G/H where H ⊆ G is a virtually cyclic group, that is, one which contains a cyclic group
of finite index. They come in two families, the ones which admit a surjection onto Z (with
finite kernel), or the ones which admit a surjection onto D∞ = Z/2 ⋆ Z/2 (again with finite
kernel). When G is torsion free and virtually cyclic, it must therefore be isomorphic to Z.
For a regular ring R, it is a consequence of the fundamental theorem from the very beginning
of this introduction, that the first version of the Farrell–Jones conjecture holds for R. It can
then be shown that for R regular and G torsion free, the more sophisticated conjecture is
really equivalent to the easier one. There is no counterexample known to the sophisticated
Farrell–Jones conjecture, and it is known for a large class of groups. In particular, typically,
for torsion free groups, the finiteness obstruction and the Whitehead torsion vanish, simply
because the groups in which they live are the trivial groups.

Similarly, When M is an aspherical manifold, it follows from the Farrell–Jones conjecture
that Whtop(M)Q ≃ 0, hence one concludes information about the rational homotopy groups
of the (stable) concordance space of M .

There are further interesting consequences of the Farrell–Jones conjecture that are more
about the representation theory of non-finite groups: First, the comparison map

colim
H∈OrbFin(G)

K(RH)→ colim
H∈OrbVCyc(G)

K(RH)

reducing to the orbits with finite stabilizers on the source, induces an isomorphism on negative
homotopy groups; essentially one has to show that the result holds for virtually cyclic groups
G in which case the target becomes K(RG). Using the classification of virtually cyclic groups,
this then follows from known long exact sequences in the algebraic K-theory of group rings
of amalgamated products and semidirect products over Z.

2.12. Conjecture Let G be any group. Then K−n(ZG) = 0 for n ≥ 2 and there is an
isomorphism

colim
H∈OrbFin(G)

K−1(ZH)→ K−1(ZG).

The vanishing result is rather famously known for finite groups and is also true for virtually
cyclic groups. The result therefore follows from the Farrell–Jones conjecture and the above
comparison isomorphism in negative degrees. It should be noted that K−1(ZG) for finite G
is also classically studied in representation theory.
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When the orders of finite all finite subgroups of G are invertible in a regular ring R, as is
the case for R = Q and any group G, then one obtains:

2.13. Conjecture Let G be any group. Then K−n(QG) = 0 for n ≥ 1 and there is an
isomorphism

colim
H∈OrbFin(G)

K0(QH)→ K0(QG).

This is a reminiscent of Artin induction for finite groups; It should be noted thatK0(CG) =
RC(G) is the complex representation ring.

For finite groups G, a theorem of Swan asserts that K̃0(ZG) is itself finite. But by Artin–
Wedderburn, QG is a product of matrix algebras over division rings D; sinceK0(−) commutes
with finite products, swallows matrix algebras, and K0(D) = Z (every module over a division

ring is free), we see that K0(QG) is torsion free. In particular, the map K̃0(ZG)→ K̃0(QG)
is trivial. It was an open question whether this remains true for general groups, but this turns
out not be true, a counterexample was provided by Lehner.

Understanding, for finite groups G, the groups K0(ZG) is very complicated and not too
much beyond the finiteness result mentioned above is known in general. The situation be-
comes surprisingly different for Wh(G) for finite groups G, where Oliver has a program of
determining the groups algorithmically.

2.6. Some prominent open problems.

2.14. Conjecture (Bass finiteness) Let X be of finite type over Z. Then Gi(X) is finitely
generated for all i ≥ 0. In particular, if X is regular and of finite type over Z, then Ki(X) is
finitely generated for all i ≥ 0.

We say “in particular” since under the regularity assumption K(X) ≃ G(X). It turns out,
however, that both of the above formulations are in fact equivalent: the regular locus of X
which is of finite type over Z is dense and open, so one may appeal to suitable localization
sequences in G-theory and Noetherian induction. This conjecture is really one of the basic
and widely open problems in algebraic K-theory.

2.15. Conjecture (Beilinson–Soulé vanishing) For k a field and n < 0, l ≥ 0, one has
(K2l−n(k)⊗Q)(l) = 0.

As indicated above, the K-group appearing above is equivalently given by the motivic
cohomology group Hn

mot(k;Q(l)); Beilinson–Soulé vanishing can therefore be thought of as
either a statement about K-theory or motivic cohomology; the latter is easier to remember
because it says that there is no negative cohomology, something that perhaps sounds plau-
sible. It is true that if the Beilinson–Soulé vanishing conjecture as stated above holds for
all fields, then the same vanishing also holds for all regular schemes X. Moreover, it is also
equivalent to the same vanishing to hold for all regular schemes X of finite type over Z, i.e.
that Hn

mot(X;Q(l)) = 0 for n < 0 and l ≥ 0.
Because of this result, it is known that the Bass conjecture implies the Beilinson–Soulé

vanishing conjecture, but it does rely on heavily non-trivial input, even for schemes of finite
type over Z[12 ], namely the (resolved) Milnor conjecture and Bloch–Kato conjectures compar-
ing mod 2 or mod l Milnor K-theory with Galois cohomology; These conjectures have been
resolved by work of Voevodsky and Rost. They imply that that the K-theory of a regular
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scheme of finite type over Z admits a filtration with associated graded controlled by motivic
cohomology; and eventually that 2-local motivic cohomology is finitely generated if the Bass
conjecture holds. The idea is to consider the long exact sequence

· · · → Hn
mot(X;Z(2)(l))

·2−→ Hn
mot(X;Z(2)(l))→ Hn

mot(X;Z/2(l))→ . . .

and then to use the Milnor conjecture to conlude that Hn(X;Z/2(l)) vanishes in the range of
interest (this seems to be the place to use that 2 is invertible onX). But thenHn

mot(X;Z(2)(l))
is finitely generated over Z(2) and at the same time 2 is invertible on it, so it must be trivial.

2.16. Conjecture (Gersten’s injectivity conjecture) Let R be a discrete valuation ring13 with
fraction field F . Then the map Kn(R)→ Kn(F ) is injective for all n ≥ 0.

It turns out that this conjecture is equivalent to the same conjecture for all regular local
rings R which are smooth over a DVR. Indeed, in this case, there is a localization map
R → D with D a DVR and such that the map Kn(R) → Kn(D) is injective for all n ≥ 0.
Gersten’s conjecture is known “with finite coefficients” and in the “equal characteristic” case,
for n = 0, 1, 2, and in case the residue field is an algebraic extension of Fp; Gersten injectivity is
also known for (possibly non-local) Dedekind domains with global fraction field, in particular,
for Z. It is open in mixed characteristic in general, however.

3. Low algebraic K-theory

In this section, we recall the definitions of K0(R), K1(R) and K2(R) and the basic results
about those. As many of the participants have seen these results in a seminar last term, I
summarize only the statements and essentially leave out all the proofs. Over time, I will add
proofs just so that these notes are self-contained.

3.1. Preliminaries from algebra. Throughout, a ring R is unital and associative, but not
necessarily commutative. R-modules refer to right R-modules unless stated otherwise; we
write RMod(R) for the category of right R-modules.

3.1. Definition An R-module M is called

(1) finitely generated or finite for short, if there exists an exact sequence Rn → M → 0
for some n ≥ 0,

(2) finitely presented, if there exists an exact sequence Rm → Rn → M → 0 for some
n,m ≥ 0.

(3) coherent, if it and all its finitely generated submodules are finitely presented.
(4) finite projective, if there exists another module N and an isomorphism N ⊕M ∼= Rn

for some n ≥ 0.
(5) stably finite free, if there exists an isomorphism M ⊕Rm ∼= Rn for some n,m ≥ 0.

3.2. Remark For Noetherian rings, finite and finitely presented modules agree. A ring is
called (right) coherent, if it is coherent as a module over itself. In particular, Noetherian
rings are coherent. For coherent rings, finitely presented and coherent modules agree.

The category of coherent R-modules is an abelian subcategory of RMod(R). In particular,

for a coherent ring, Modfp(R) is an abelian subcategory, and for Noetherian R, Modfg(R) is
an abelian subcategory.

13i.e. a local Dedekind domain.
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In general, finite projective modules are finitely presented. Finitely presented modules are
precisely the compact objects in RMod(R). P is projective if and only if HomR(P,−) is
(right) exact. Projective modules are flat. Conversely, finitely presented and flat modules are
projective.

3.3. Example Over a PID, finitely generated projective modules are free as follows from
the classification of finitely generated modules over PIDs.14 Let K be a field and G a finite
group, assume that |G| ∈ K×. Let V be a finite dimensional G-representation over K, i.e. a
KG-module, finite dimensional over K. Then V is a projective KG-module. Moreover, by
Artin–Wedderburn, we have

KG =

d∏
i=1

Mni(Di)

where Di are division algebras over K.

3.4. Example Let X be a compact Hausdorff space and E → X a vector bundle. Then
Γ(X;E) is a projective C(X)-module. This follows essentially from the fact that every vector-
bundle over compact X embeds into a trivial bundle, that short exact sequence of vector-
bundles split and that Γ(X;X × Cn) ∼= C(X)n is free. Same holds for real vector bundles
with C(X;C) replaced by C(X;R).

3.5. Lemma Let R be commutative and a1, . . . , an elements spanning the unit ideal. An R-
module is finitely presented or finite if and only if for all i = 1, . . . , n, the module M [ 1ai ] is

finitely presented or finite over R[ 1ai ].

Equivalently, M is finitely presented or finite if for all p ∈ Spec(R), there is an s ∈ R \ p
such that M [1s ] is a finitely presented or finite R[1s ]-module.

3.6. Definition Let R be a ring. Its Jacobson radical Jac(R) is the intersection of all maximal
(right) ideals of R.

3.7. Remark One can show that Jac(R) is in fact a 2-sided ideal (see Exercise 2 Sheet 0),
and equal to the intersection of all maximal left ideals of R.

3.8. Lemma Let R be a ring. Then x ∈ Jac(R) iff 1− xy is right-invertible for all y ∈ R iff
Mx = 0 for all simple15 R-modules.

Proof. Exercise 1 Sheet 0. □

3.9. Example If R is local, Jac(R) = m is the unique maximal ideal. If I ⊆ R is an ideal
such that R is I-adically complete (e.g. if I is nilpotent), then I ⊆ Jac(R).

3.10. Proposition (Nakayama’s Lemma) Let R be a ring, J ⊆ Jac(R) a right ideal and M a
finite R-module. If MJ =M , then M = 0.

Proof. Assume M ̸= 0. Apply Zorn’s lemma to the poset of proper submodules N ⊆M (for
a chain of proper submodules, the union is again proper, as if it were not, then a finite set of
generators must already be contained in a finite stage) to obtain a maximal proper submodule

14In fact, projective modules are free.
15A module M is called simple if its only submodules are M and 0.
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M ′ ⊆ M . Then M/M ′ is simple so that M/M ′x = 0 for x ∈ Jac(R), and hence Mx ⊆ M ′.
Consequently, M =MJ ⊆M ′, a contradiction. □

3.11. Corollary Let R be a ring J ⊆ Jac(R) a 2-sided ideal. Let P , Q be finite projective R-
modules and g : P ⊗RR/J → Q⊗RR/J and isomorphism. Then there exists an isomorphism
f : P → Q lifting g.

Proof. Consider the diagram

P Q

P ⊗R R/J Q⊗R R/J

f

g

Since P is projective, there exists a dashed morphism f making the diagram commute. Ex-
ercise 3 of Sheet 0 implies the claim. □

3.12. Lemma Let R be a ring and I ⊆ R a 2-sided ideal such that R is I-adically complete.
Let Q be a finite projective R/I-module. Then there exists a finite projective R-module P and
an isomorphism P ⊗R R/I ∼= Q.

Proof. We can write Q as the image of an idempotent element in Mn(R/I). Now Mn(I) ⊆
Mn(R) is an ideal such that Mn(R) is Mn(I)-adically complete. Appealing to Exercise 4
Sheet 0 then gives the lemma. □

3.13. Definition Let R be a ring. We write Proj(R) for the (essentially small symmetric
monoidal, under direct sum) category of finite projective R-modules, and τ≤0Proj(R) for the
abelian monoid consisting of its isomorphism classes.

3.14. Corollary Let R be a ring, I ⊆ R an ideal such that R is I-adically complete. Then
the canonical map

τ≤0Proj(R)→ τ≤0Proj(R/I)

is a bijection.

3.15. Remark It is necessary to pass to isomorphism classes for this statement to hold: the
map R× → (R/I)× is an isomorphism only if I = 0: Indeed, its kernel contains 1 + I.

However, we see that completeness is not a necessary condition for the above corollary to
be true:

3.16. Proposition Let R be a commutative local ring with maximal ideal m. Then a finite
projective R-module is free.

Proof. Let P be finite projective over R. Then P ⊗R R/m is finite free, and lifting a basis
we obtain an n ≥ 0 and a map Rn → P which becomes invertible upon applying −⊗R R/m.
Appealing to Corollary 3.11, we obtain the proposition. □

3.17. Remark Let R be a ring and J ⊆ Jac(R). Then, in general, it is not true that

τ≤0Proj(R)→ τ≤0Proj(R/J)

is a bijection (though it is always injective). Indeed, Consider the ideal (6) ∈ Z. Its com-
plement is multiplicatively closed, so we may localize at (6) to obtain a semi-local ring Z(6)
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with two maximal ideals (2) and (3). In particular Jac(Z(6)) is (6). Therefore, the quotient
Z(6)/Jac(Z(6)) is simply Z/6Z ∼= Z/2Z × Z/3Z by the Chinese remainder theorem. Hence
Z/2Z is a projective module over Z(6)/Jac(Z(6)), but it cannot be lifted to a finite projective
module over Z(6) (this is a PID, so all its finite projective modules are finite free).

3.18. Definition Let R be a commutative ring and M an R-module. It is called locally free
if for all p ∈ Spec(R), there exists s ∈ R \ p such that M [1s ] is free over R[1s ].

3.19. Lemma Let R be commutative and P an R-module. The following are equivalent.

(1) P is finite projective,
(2) P is finitely presented and Pp is a free Rp-module for all p ∈ Spec(R), and
(3) P is finite and locally free,

Proof. (1)⇒(2) follows from Proposition 3.16 and the observation that finite projectives are
finitely presented. (2)⇒(3): Lifting a basis of Pp, we obtain an n ≥ 0 and a map f : Rn → P
which becomes an isomorphism after localizing at p. Let K be the kernel of f and C be the
cokernel of f . Then Cp = 0 and C is finitely generated, hence there exists s ∈ R \ p such that
C[1s ] = 0. Similarly, K[1s ] is finitely generated and vanishes after localization at p, so there

exists another t ∈ R \ p such that K[ 1st ] = 0. Hence P [ 1st ] is finite free over R[ 1st ]. (3)⇒(1):
By Lemma 3.5, P is finitely presented. Let M → N be a surjection. We want to show that
HomR(P,M)→ HomR(P,N) is also surjective. Since P is finitely presented, it is a compact
R module. This implies that for every R-module V , the canonical map

HomR(P, V )p → HomRp(Pp, Vp)

is an isomorphism. Indeed, the localization at p can be written as a filtered colimit, so the
compactness of P gives an isomorphism

HomR(P, V )p → HomR(P, Vp)

so the claim follows by adjunction. Using this, the implication under investigation follows
from the fact that Pp is free. □

3.20. Remark Let (X,OX) be a scheme. A vector bundle on X is an OX -module F which is
locally free in the sense that every point x has an open neighborhood U such that F|U ∼= OnU
for some n. In particular, F is quasi-coherent, and if X = Spec(R) is affine, vector bundles
are locally free modules in the above sense, and hence correspond precisely to finite projective
R-modules.

For non-affine schemes X and vector bundles F , the functor HomOX
(F ,−) is typically not

exact, i.e. vector bundles are not projectives in the category of quasi-coherent OX -modules:
forF = OX itself, the Hom functor just becomes the global sections functor. But the higher
cohomology of quasi-coherent sheaves need not vanish (look e.g. at projective space).

3.21. Remark Let R be commutative and P a finite projective R-module. Then one can form
its rank function Spec(R)→ N, sending p to dimRp(Pp). This function is locally constant as
a consequence of Lemma 3.19, and we say that P has constant rank if its rank function is
constant. This is automatic of Spec(R) is connected.

3.22. Definition Let R be a commutative ring. A line bundle on R is a finite projective
module of constant rank 1.
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3.23. Lemma Let R be a commutative ring. Then line bundles are precisely the ⊗R-invertible
R-modules.

Proof. Let L be a projective module of constant rank 1. Let L∨ = HomR(L,R) be its dual.
We claim that the evaluation map L ⊗R L∨ → R is an isomorphism, showing that L is ⊗R-
invertible. Indeed, localizing at all primes p, we see that L ⊗R L∨ → R is surjective, so its
kernel is again finitely generated and vanishes after localization at all p, and is hence itself
trivial.

Conversely, suppose that P is an ⊗R-invertible R-module, then its inverse is necessarily its
dual P∨ and we find HomR(P,−) = P∨ ⊗R − so that P is projective and finitely presented.
Moreover, for all p ∈ Spec(R), Pp is again ⊗Rp-invertible, and is hence one-dimensional. It
follows that P has constant rank 1. □

3.24.Definition Let R be a commutative ring. The set of iso classes of line bundles is denoted
by Pic(R), called the Picard group of R. It is naturally an abelian group under ⊗.

3.2. K0(R). We come to algebraic K-theory:

3.25.Definition LetR be a ring. Then we denote byK0(R) the group completion [τ≤0Proj(R)]
gp

of the abelian monoid of isomorphism classes of finite projective R-modules.

3.26. Remark There are two standard models for Mgp when (M,⊕) is an abelian monoid:
The brutal one, which is Z[M ]/⟨

∑
imi = ⊕imi⟩ and a less brutal one, which is given as follows:

Consider M ×M and define an equivalence relation by (m,m′) ∼ (n, n′) if there exists k such
that m+ n′ + k = m′ + n+ k. Then the cosets form an abelian group, the inverse of [m,m′]
being [m′,m], and the associationm 7→ [m, 0] gives a monoid homomorphismM →Mgp which
satisfies the universal property a group completion: Given a monoid homomorphism f : M →
A where A is an abelian group, since the only way to extend f to a group homomorphism f̄
is to set f̄(m,m′) = f(m)− f(m′), and this indeed is a group homomorphism.

The second perspective on the group completion implies that the functor (−)gp commutes
with arbitrary products of abelian monoids.

3.27. Remark An abelian monoid M is called cancellative, if m+m′ = m+m′′ implies that
m′ = m′′. If M is cancellative, then the natural map M →Mgp is injective (and vice versa).
In the opposite direction, suppose M admits an absorbing element, i.e. an element ∞ ∈ M
such that for all m ∈M , we have m+∞ =∞. Then Mgp = 0.

3.28. Lemma Let R→ S be a ring homomorphism. It induces an additive functor Proj(R)→
Proj(S) and hence a group homomorphism K0(R)→ K0(S).

3.29. Remark Let M be an (R,S)-bimodule. Then − ⊗R M : RMod(R) → RMod(S) de-
termines an additive functor. If the underlying S-module of M is projective, then we
obtain an additive functor − ⊗R M : Proj(R) → Proj(S) and therefore an induced map
−⊗RM : K0(R)→ K0(S).

Exercise. Show that K0(R × S) ∼= K0(R) × K0(S). Hint: Show that τ≤0Proj(R × S) →
τ≤0Proj(R)×τ≤0Proj(S) is an isomorphism of abelian monoids and that in general the canon-
ical map (M0 ×M1)

gp →Mgp
0 ×M

gp
1 is an isomorphism.
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Exercise. Let K be a field and V a countably infinite dimensional K-vector space. Let
R = EndK(V ). Show that K0(R) = 0.

Exercise. Let R be a ring. Show that K0(R) ∼= K0(Mn(R)). Hint: Show that Rn is an
(R,Mn(R))-bimodule which implements an equivalence of categories Proj(R) ≃ Proj(Mn(R)).

Exercise. Let R be a ring and consider the canonical ring homomorphism R → Mn(R).
Compute the composite

K0(R)→ K0(Mn(R)) ∼= K0(R)

obtained the exercise above.

Exercise. Show that if I ∋ i 7→ Ri is a filtered diagram of rings with colimiRi = R, then

colim
i

K0(Ri)→ K0(R)

is an isomorphism. Construct a ring R with K0(R) ∼= Q. Can such a ring be commutative?
Are there commutative rings with K0(R) = Z/n?

3.30. Example Let R be a ring such that finite projectives are free, with unique dimension.
Then K0(R) = Z. Examples include division rings, PIDs, or local commutative rings, and by
a theorem of Quillen and Suslin the rings k[X1, . . . , Xn] for fields k.

3.31. Example Let G be a finite group, K a field, and assume |G| ∈ K×. Then KG =∏d
i=1Mni(Di) with Di division K-algebras. Hence K0(KG) ∼= Zd. We note that KG is

semisimple, i.e. Artinian with trivial Jacobson radical.

3.32. Example Let R be an commutative Artinian ring. Then it has finitely many prime
ideals, each of which is a maximal ideal and one has R ∼=

∏
m∈Specmax(R)Rm. Since Rm is

local, we then find K0(R) ∼=
∏

mK0(Rm) ∼= Z|Specmax(R)|.

3.33. Lemma If R is commutative, then ⊗R makes τ≤0Proj(R) into a commutative semi-ring.
Hence K0(R) becomes a commutative ring. A map of commutative rings R → S induces a
map of commutative rings K0(R)→ K0(S).

Proof. Then tensor product defines a functor

Proj(R)× Proj(R)→ Proj(R), (P,Q) 7→ P ⊗R Q
which induces a map

τ≤0Proj(R)× τ≤0Proj(R)→ τ≤0Proj(R)

Using the above exercise, this induces a map

K0(R)×K0(R)→ K0(R)

and this map is readily checked to be the multiplication of a commutative ring structure on
K0(R). That K0(R)→ K0(S) is then a ring homomorphism follows by direct inspection. □

3.34. Remark Suppose given semi-ring homomorphism τ≤0Proj(R) → S, i.e. a monoid ho-
momorphism both for the addition and multiplication. Then the unique extension to a group
homomorphism K0(R)→ S is in fact a ring homomorphism. This again follows readily from
the definitions.
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3.35. Construction Let R be a commutative ring. In Remark 3.21, we have discussed the
rank function τ≤0Proj(R) → C(Spec(R),N) which is a monoid homomorphism. Consider
then the diagram

τ≤0Proj(R) C(Spec(R),N)

K0(R) C(Spec(R),Z)

rk

in which the dashed arrow exists by the universal property of the group completion.
In fact, the right vertical map in the above diagram is always group completion, even more

generally for any topological space X in place of Spec(R). Indeed, a continuous function
f : X → Z decomposes X into a disjoint union of clopen subsets X<0 ⨿ X=0 ⨿ X>0, the
subset where f takes negative, zero, or positive values. Consequently, f can be written as a
difference of two continuous functions on X taking values in N – from here, the claim follows
readily.

3.36. Construction Given a locally constant function n : Spec(R)→ N we construct a finite
projective R-module Rn with rank function n as follows. The image of n : Spec(R) → N
consists of finitely many points in N, since Spec(R) is quasi-compact and n is continuous.
Therefore, the preimages of these points write Spec(R) as a disjoint union of open and closed
subsets of Spec(R). Since any closed subset of Spec(R) is affine, we find that R = R1×· · ·×Rk
for some rings Ri (which need not necessarily have connected spectrum). Let ni = n|Spec(Ri)

which is by construction constant. Then we let Rn be the product Rn1
1 × · · · ×R

nk
k . We note

that the association n 7→ Rn is a monoid homomorphism, essentially by construction.

In particular the composite

C(Spec(R),N) n 7→Rn

−−−−→ τ≤0Proj(R)
rk−→ C(Spec(R),N)

is the identity, and we may apply (−)gp, after which the composite still is the identity.
Consequently, we find

3.37. Proposition For a commutative ring R, we have K0(R) ∼= C(Spec(R),Z) ⊕ K0(R)
where K0(R) = ker(rk: K0(R)→ C(Spec(R),Z)) is an ideal.

3.38. Remark Given a commutative Noetherian ring R, it can be written as a finite product
R1 × · · · × Rn such that all Spec(Ri) are (Noetherian and) connected. Therefore K0(R) ∼=
K0(R1) ⊕ · · · ⊕ K0(Rn). Since C(Spec(Ri),Z) ∼= Z, we then find K0(Ri) ∼= K̃0(Ri) and

K0(R) ∼=
∏n
i=1 K̃0(Ri). A non-Noetherian ring need not be a finite product over connected

rings, since its spectrum need not be Noetherian in the topological sense and hence the
connected components need not be open in general. For instance R = Fp ⊗Fp Fp is such that
Spec(R) is uncoutable and totally disconnected.

3.39. Lemma A finite projective R module P is stably finite free if and only if [P ] = 0 ∈
K̃0(R).

Proof. Recall that [P ] = 0 ∈ K̃0(R) is equivalent to the statement that there exists an n such
that [P ] = ±[Rn] in K0(R). If the sign is +, this in turn is equivalent to the existence of an
m such that P ⊕ Rm ∼= Rn+m, so P is stably finite free. If the sign in −, it is equivalent to
the existence of an m such that P ⊕Rn+m ⊕Rm, so again, P is stably finite free. □
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Exercise. Let TS2 be the tangent bundle of S2. Show that Γ(TS2;S2) is a stably free
C(S2;C)-module, but it is not free.

One may still wonder when stably freeness implies actual freeness of a module. For instance,
one can show that stably isomorphic line bundles are in fact isomorphic (we will perhaps do
so later, using the determinant). There is the following cancellation theorem:

3.40. Theorem (Bass–Serre cancellation) Let R be a Noetherian ring of Krull dimension d
and P a finite projective R-module of rank > d.

(Serre) There is an isomorphism P ∼= P ′ ⊕R for some projective P ′.
(Bass) If P is stably isomorphic to Q, the P ∼= Q.

Serre’s part of this theorem is a reminiscent of the following topological fact: Let X be
a d-dimensional CW complex and E → X a rank n R-vector-bundle. If n > dim(X), then
E = E′⊕R. Indeed, this follows simply from the fact that BO(n−1)→ BO(n) has homotopy
fibre Sn−1, so obstruction theory says that there is a lift of the classifying map X → BO(n).

3.41. Corollary Let R be Noetherian commutative of dimension 1 (e.g. a Dedekind domain).

If 0 ̸= P is a finite projective module, then P ∼= L⊕Rrk(P )−1 where L is a line bundle.

In fact, this line bundle can be made very explicit. To that end, we introduce the following
constructions.

3.42. Construction Let R be a commutative ring and M an R-module. Then Σn acts on
M⊗Rn. We form

(1) the nth symmetric power Symn
R(M) = (M⊗Rn)Σn ,

(2) the nth divided power ΓnR(M) = (M⊗Rn)Σn ,
(3) the nth exterior power ΛnR(M) = (M⊗Rn)/⟨m1⊗ · · ·⊗mn | mi = mj for some i ̸= j⟩.

For P finite projective we have isomorphisms Symn
R(P )

∨ ∼= ΓnR(P
∨) and ΛnR(P )

∼= ΛnR(P
∨)∨,

where (−)∨ = HomR(−, R) denotes the linear dual.

3.43. Remark If F is free of rank d, then Symn
R(F ) and ΓnR(F ) are free of rank

(
n+d−1
n

)
and

ΛnR(F ) is free of rank
(
d
n

)
. As a consequence, if P is finite projective of rank d, then Symn

R(P )
and ΓnR(P ) are finite projective (the functors Symn

R(−), ΓnR(−) and ΛnR(−) preserve retracts)

of rank
(
n+d−1
n

)
and ΛnR(P ) is finite projective of rank

(
d
n

)
; indeed to compute the ranks, we

may apply −⊗κ where κ is some residue field of R.

Exercise. Set Λ∗
n(M) =

⊕
n Λ

n
R(M) and note that this is a graded R-algebra. Show that

Λ∗
R(M ⊕N) ∼= Λ∗

R(M)⊗R Λ∗(N).

3.44. Definition Let R be commutative and P finite projective of rank n. We write det(P )
for ΛnR(P ).

3.45. Lemma Let P and Q be finite projective modules of rank p and q over a commutative
ring R. Then det(P ) is a line bundle and det(P ⊕Q) ∼= det(P )⊗R det(Q).

Proof. By Remark 3.43, det(P ) is a finite projective of rank 1 and hence a line bundle.
Moreover, P ⊕Q has rank p+ q, so we get

det(P ⊕Q) = Λp+q(P ⊕Q) =
⊕

k+l=p+q

ΛkR(P )⊗R ΛlR(Q)
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If k > p, then ΛkR(P ) = 0, so the right most term above is non-zero precisely if (k, l) = (p, q),
giving the claim. □

3.46. Remark Consider a Noetherian commutative ring R of dimension 1 and P a finite
projective with P ∼= L⊕Rrk(P )−1 as in Corollary 3.41. Then we find

det(P ) ∼= det(L⊕Rrk(P )−1) ∼= det(L)⊗R det(Rrk(P )−1) ∼= L

since det(L) ∼= L and hence det(Rrk(P )−1) ∼= R. In particular, the pair (det(P ), rk(P ))
determines the isomorphism class of P .

3.47. Remark Note that there are canonical symmetry isomorphisms α : P ⊕Q ∼= Q⊕P and
β : det(P )⊗R det(Q) ∼= det(Q)⊗R det(Q) induced simply by “switching symbols”. However,
the diagram

det(P ⊕Q) det(Q⊕ P )

det(P )⊗R det(Q) det(Q)⊗R det(P )

det(α)

β

in which the vertical maps are the canonical isomorphisms from Lemma 3.45, only commutes
up to a sign (−1)pq. In particular, det : (Proj(R),⊕) → (Pic(R),⊗R) is monoidal, but not
symmetric monoidal. This can, however, be remedied as follows. Let PicZ(R) denote the
groupoid of Z-graded ⊗-invertible modules over R whose objects are pairs (L, f) where L is
a line bundle and f : Spec(R)→ Z is a locally constant function. The morphisms in PicZ(R)
from (L, f) to (L′, f ′) are empty unless f = f ′ in which case they are given by isomorphisms
from L to L′. Then PicZ(R) is canonically a symmetric monoidal groupoid, with tensor
product

(L, f)⊗ (L′, f ′) = (L⊗ L′, f + f ′)

and symmetry isomorphism determined by (l ⊗ l′) 7→ (−1)f ·f ′ l′ ⊗ l. Then the association
Proj(R) → PicZ(R), sending P to (det(P ), rk(P )) indeed becomes symmetric monoidal for
the Koszul sign symmetry isomorphism on PicZ(R).

By the universal property, we obtain a map detZ : K0(R)→ τ≤0PicZ(R) ∼= C(Spec(R);Z)⊕
Pic(R).

3.48. Corollary Let R be a commutative ring. Then the map

detZ : K0(R)→ C(Spec(R),Z)⊕ Pic(R)

is surjective. If R is Noetherian commutative of dimension 1, it is an isomorphism.

Proof. The map of sets (n,L) 7→ [Rn] + ([L] − [R]) is a section of detZ, showing surjectiv-
ity. When R is Noetherian commutative of dimension 1, Remark 3.46 implies that the map
detZ : τ≤0Proj(R)→ C(Spec(R),N)⊕Pic(R), sending P to (rk(P ),det(P )) is an isomorphism
of abelian monoids, and hence remains an isomorphism upon group completion. □

3.49. Remark Suppose R is a Dedekind domain (in particular Spec(R) is connected). One
can show that every line bundle L over R is isomorphic to an invertible ideal. Hence Pic(R)
is isomorphic to the ideal class group Cl(R). We therefore find K0(R) = Z⊕Cl(R). For OF ,
the ring of integers in a number field F , Cl(OF ) is known to be a finite group, as is shown in
most number theory courses, see e.g. [Neu92, Theorem I.6.3] or [Sta21] for the general case
where F is any global field.
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3.3. K1(R). There are several ways of motivating the definition of K1; we will now simply
introduce it, study some basic properties about it and then motivate it in two ways in hind-
sight: Once via the excision exact sequence and Milnor’s patching argument, and once via
the group completion theorem. The latter is, in my mind, the key approach, but the former
makes clear why historically it was clear what K1 ought to be, before having known about
the concept of group completing E∞-monoids and how to compute their π1.

3.50.Definition LetR be a ring. We defineK1(R) = GL(R)ab, where GL(R) = colimnGLn(R)
is the infinite general linear group of R and (−)ab denotes the abelianization functor.

We note that, by the (1-dimensional) Hurewicz theorem, we also haveK1(R) = H1(BGL(R);Z).

3.51. Definition We let E(R) ⊆ GL(R) be the subgroup of elementary matrices, which is
generated by matrices Ei,j(r) with 1’s on the diagonal and precisely one (possibly) non-zero
entry r at spot (i, j) for i ̸= j.

Exercise. The elementary matrices Ei,j(r) satisfy the following relations:

(1) Ei,j(r)Ei,j(r
′) = Ei,k(r + r′)

(2) [Ei,j(r), Ej,k(r
′)] = Ei,k(rr

′), if i ̸= k and
(3) [Ei,j(r), Ek,l(r

′)] = 1 if i ̸= l and j ̸= k.

Exercise. Show that the center C(E(R)) of E(R) is trivial. Hint: Show that if A ∈ GLn(R)
commutes with En(R), then A must be a diagonal matrix (whose entries are in the center of
R). Then deduce that no element of En−1(R) is in the center of En(R) and finally the result.

3.52. Lemma (Whitehead) The commutator [GL(R),GL(R)] is given by E(R) and E(R) is
perfect.

Proof. For the latter, it suffices to show that generators of E(R) can be written as commu-
tators of generators of E(R). This follows form (2) in the above exercise. In fact, for every
n ≥ 3, this gives that En(R) is perfect.16 In particular we find E(R) ⊆ [GL(R),GL(R)].
Conversely, for A,B ∈ GLn(R), we have an equality in GL2n(R)

ABA−1B−1 =

(
A 0
0 A−1

)
·
(
B 0
0 B−1

)
·
(
(AB)−1 0

0 AB

)
In general we have for C ∈ GLn(R) the equality in GL2n(R):(

1 C
0 1

)
·
(

1 0
−C−1 1

)
·
(
1 C
0 1

)
·
(
1 1
0 1

)
·
(

1 0
−1 1

)
·
(
1 1
0 1

)
=

(
0 C

−C−1 0

)
·
(

0 1
−1 0

)
=

(
C 0
0 C−1

)
so it suffices to see that all the matrices appearing in the first line are elementary; see the
exercises. □

3.53. Corollary There is a canonical equivalence K1(R) = GL(R)/E(R).

16Exercise: Think about the group E2(R).
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For a commutative ring, one may consider the determinant of invertible matrices as a
function GL(R)→ R×. SinceR× is commutative, we obtain a well-defined map det : K1(R)→
R×, which is split by the inclusion R× ⊆ GL(R)→ K1(R).

3.54. Definition For a commutative ring R, we denote by SK1(R) the kernel of the determi-
nant map K1(R)→ R×.

Equivalently, we have SK1(R) = SL(R)/E(R) since SL(R) = ker(det : GL(R)→ R×).

3.55. Example For a euclidean domain such as a field and certain PIDs including Z, Z[i] and
k[T ] for fields k, one can show that E(R) = SL(R). Hence, the map det : K1(R)→ R× is an
isomorphism and SK1(R) = 0. However, being euclidean is not a necessary condition for the
vanishing of SK1(R) as we will see below.

3.56. Lemma Let R be a semi-local17 commutative ring. Then E(R) = SL(R), so that
SK1(R) = 0 and K1(R) = R×.

Proof. We always have E(R) ⊆ SL(R), so the other inclusion is to be shown. To that end,
let A ∈ SL(R). Recall that R/Jac(R) is a (finite) product of fields, so SL(R/Jac(R)) =
E(R/Jac(R)) as follows from Example 3.55. Hence Ā is a product Ē of elementary matrices.
One can then lift Ē to a product E of elementary matrices over R. Then A · E−1 lives over
the identity of R/Jac(R), so its diagonal entries are in 1+Jac(R) and the off-diagonal entries
are in Jac(R). Using row and column operations, since 1 + Jac(R) ∈ R×, one can therefore
transform A · E−1 into a diagonal matrix D. Since its determinant is 1, one can then finally
show that D is elementary, using again that matrices of the form(

B 0
0 B−1

)
are elementary. So it suffices to note that all matrices on the right hand side are elementary.
It follows that A is elementary and hence the lemma. □

Of course, the group of units in a commutative ring can be quite complicated (think of
C×). An instance where it is very well understood is for the ring of integers in a number field.

3.57. Theorem (Dirichlet’s unit theorem) Let F be a number field with ring of integers OF .
Then O×

F
∼= µ(F )⊕Zr1+r2−1 where µ(F ) denotes the (cyclic) group of roots of unity in F , r1

denotes the number of real embeddings of F and r2 the number of complex conjugate pairs of
complex embeddings of F .

In addition, regardless of whether OF admits a Euclidean algorithm, there is the following
theorem:

3.58. Theorem (Bass, Milnor, Serre) Let F be a number field with ring of integers OF . Then
SK1(OF ) = 0 so that K1(OF ) ∼= µ(F )⊕ Zr1+r2−1.

3.4. K2(R). We now come to the original definition of K2(R) due to Milnor.

3.59. Definition Let R be a ring. We define its Steinberg group St(R) to be the group
generated by symbols ei,j(r), for r ∈ R and i ̸= j natural numbers, subject to the Steinberg
relations

17That is, it has finitely many maximal ideals.
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(1) ei,j(r)ei,j(r
′) = ei,k(r + r′)

(2) [ei,j(r), ej,k(r
′)] = ei,k(rr

′), if i ̸= k and
(3) [ei,j(r), ek,l(r

′)] = 1 if i ̸= l and j ̸= k.

By one of the exercises, we obtain a canonical surjection St(R)→ E(R).

Exercise. Show that the map Rn−1 → St(R) given by

(r1, . . . , rn−1) 7→ e1,n(r1)e2,n(r2) · · · en−1,n(rn−1)

is an injective group homomorphism. Hint: Show that its composition with St(R)→ GL(R)
is injective.

3.60. Definition (Milnor) Let R be a ring. We define K2(R) = ker(St(R)→ E(R)).

As written, it is not clear that K2(R) is an abelian group, but by construction, there is an
extension of groups:

1→ K2(R)→ St(R)
p−→ E(R)→ 1

3.61. Theorem (Steinberg) The above extension is central, in fact, K2(R) = C(St(R)).

Proof. Since St(R)→ E(R) is surjective, C(St(R))→ C(E(R)) is well-defined. But C(E(R)) =
{1} so C(St(R)) ⊆ K2(R). Conversely, if x ∈ K2(R), i.e. p(x) = 1, then we find for all
y ∈ St(R) that p([x, y]) = 1. Now, write x as a product of d many generators eai,bi(γi), and
let n be larger than all numbers ai and bi appearing in this product. Then it follows from
the defining relations (2) and (3) that for all i < n, the commutator [eai,bi(γi), ei,n(r)] lies in
the subgroup generated by ej,n(s), where j < n and s ∈ R. This implies that [x, ei,n(r)] lies
in the same subgroup, and is also in the kernel of p. Indeed, recall that in general one has

[ab, c] = a[b, c]a−1[a, c].

Therefore

[x, ei,n(r)] = [ea,b(γ) · x′, ei,n(r)] = ea,b[x
′, ei,n(r)]ea,b(−γ)[ea,b(γ), ei,n(r)]

and inductively, [x′, ei,n(r)] is in the wanted subgroup, as is the right hand commutator term,
and then also the conjugated left hand term. Finally, using the above exercise, one can show
that p is injective on this subgroup, so we conclude [x, ej,n(r)] = 1 for all j < n. Similarly
one argues that [x, en,j(r)] = 1 and concludes that x commutes with all generators of St(R)
so that x is in the center of St(R). As x ∈ K2(R) was arbitrary, we find K2(R) ⊆ C(St(R))
as needed. □

3.62. Proposition Let G be a perfect group. Then there exists an universal (more precisely
initial) central extension

1→ C(Ĝ)univ → Ĝuniv → G→ 1

that is, given any central extension Ĝ → G, there is a unique map Ĝuniv → Ĝ commuting

with the respective projections to G. We have C(Ĝ)univ = H2(BG;Z).

Proof. A central extension of groups

1→ A→ Ĝ→ G→ 1

is equivalently described by a map f : BG → K(A, 2); see Remark 3.63 below. When G is
perfect, we have H1(BG;Z) = 0, and H2(BG;A) ∼= Hom(H2(BG;Z), A) by the universal
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coefficient theorem. Therefore, we see that for A = H2(BG;Z), there is a unique lift of
idH2(BG;Z) to an element u ∈ H2(BG;H2(BG;Z)) which then by the above characterization

of central extensions classifies the initial central extension Ĝuniv. □

3.63. Remark Given a cohomology class x ∈ H2(BG;A), represented by a map f : BG →
K(A, 2), denote by F = fib(f). Then π1(F ) is the extension group corresponding to x and
the sequence

0→ A→ π1(F )→ G→ 1

is the central extension associated to x.
Conversely, a central extension as above gives a fibre sequence

BA→ BĜ→ BG

and the map BĜ→ BG is a simple map in the sense of [Lan24, Def. 5.13]. Then, just as in
[Lan24, Cor. 5.14], this fibration deloops to a fibration

BĜ→ BG
x−→ K(A, 2).

3.64. Remark The above proof in fact works more generally for groups G such that Gab is a
free abelian group. Indeed, then the universal coefficient theorem implies that for all abelian
groups A, we have H2(BG;A) ∼= Hom(H2(BG;Z), A) which is all that was used above.

3.65.Remark If C(G) = {1}, the inclusion C(Ĝuniv)/C(Ĝ)univ → C(G) shows thatH2(BG;Z)
is then the full center of Ĝuniv. In particular this applies to G = E(R). It seems to be true

that for all perfect groups G that H2(BG;Z) is all of the center of Ĝuniv. The above proof
doesn’t immediately reveal this, however (there are perfect groups with non-trivial center).
In particular, I am not certain whether the same is true for groups with free abelianization.

3.66. Proposition Let Ĝ→ G be a central extension with G perfect. Then the following are
equivalent:

(1) Ĝ→ G is the initial central extension,

(2) Ĝ is perfect, and every central extension over Ĝ is trivial.

(3) H1(Ĝ;Z) = H2(Ĝ;Z) = 0.

Proof. If H1(BĜ;Z) = 0, we find H2(Ĝ;A) = Hom(H2(BĜ;Z), A), so (2) and (3) are clearly

equivalent. Now let 1 → A → Ĝ → G → 1 be a central extension and consider the fibration
sequence

BĜ→ BG
e−→ K(A, 2)

where e equivalently is described by a homomorphism φe : H2(BG) → A. We have argued
earlier that the initial central extension is the one where φe is the identity of H2(BG). Since
G is perfect and H3(K(A, 2)) = 0, we find from the Serre spectral sequence an exact sequence

A⊗H1(BĜ)→ H2(BĜ)→ H2(BG)
φe−→ [H2(K(A, 2)) ∼= A]→ H1(BĜ)→ 0.

It follows that (3) is equivalent to φe being an isomorphism, which is as discussed earlier,
equivalent to (1). □

3.67. Theorem (Kervaire, Steinberg) Let R be a ring. Then

1→ K2(R)→ St(R)→ E(R)→ 1
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is the initial central extension over E(R).

Proof. It remains to prove H1(St(R);Z) = H2(St(R);Z) = 0. For the first, just as for E(R),
we note that the defining relation (2) implies that every generator of St(R) is a commutator,
so St(R) is perfect. Then, it suffices to show that H2(St(R);A) = 0 or equivalently, that
every central extension over St(R) splits. This is a purely algebraic, but arguably involved
argument using the explicit presentation of St(R); we omit the argument here but see [Wei13,
III Prop. 5.5.1]. □

3.68. Corollary For every ring R, there is an isomorphism K2(R) ∼= H2(BE(R);Z).

3.69. Theorem (Milnor) We have K2(Z) = Z/2.

Let us describe the non-trivial element in K2(Z). To that end, consider the element e1,2(1) ·
e2,1(−1) · e1,2(1) ∈ St(Z). Its image in E(Z) is computed to be the matrix

A =

(
0 1
−1 0

)
From A4 = id, we deduce that t = (e1,2(1) · e2,1(−1) · e1,2(1))4 ∈ K2(Z). It then turns out
that t ̸= 0 and 2t = 0, so that t generates a Z/2 ⊆ K2(Z). This inclusion then turns out to
in fact be an isomorphism.

3.70.Remark Some context to the above: Recall that there is a natural group homomorphism
Σ∞ → GL(Z) sending a permutation to its permutation matrix. On commutators, this gives
a map A∞ → E(Z), this map in turn induces a map H2(BA∞;Z)→ H2(BE(Z);Z) ∼= K2(Z).
Conversely, the map BE(Z) → BGL(Z) → BO factors through a map BE(Z) → BSO, and
hence in turn induces a further map H2(BE(Z);Z) → H2(BSO;Z) ∼= π2(BSO) ∼= π1(SO) ∼=
Z/2Z. One can also show that H2(BA∞;Z) ∼= Z/2Z and that the composite

H2(BA∞;Z)→ H2(BE(Z);Z)→ H2(BSO;Z) ∼= Z/2

is an isomorphism.

3.71. Theorem (Matsumoto) For a field k, there is a canonical map k×⊗Zk
×/⟨a⊗(1−a)⟩ →

K2(k) and this map is an isomorphism.

3.72. Corollary Let F be a finite field. Then K2(F ) = 0.

Proof. Recall that Matsumoto’s theorem says that

K2(F ) = F× ⊗Z F
×/⟨a⊗ 1− a | a ∈ F× \ {1}⟩.

Since the right hand side involves a tensor product over Z, it is more convenient to write
the group F× additively. However, since F× ⊆ F this is confusing, so we follow Milnor’s
suggestion to give a name to the isomorphism F× → K1(F ), say ℓ, and then write K2(F ) as
the quotient of K1(F )⊗ZK1(F ) by the subgroup generated by ℓ(a)⊗ℓ(1−a) for a ∈ F×\{1}.
With this notation, we have ℓ(ab) = ℓ(a) + ℓ(b), as we write K1(F ) additively. First, some
general relations that follow in K2(F ):

(1) ℓ(a)⊗ ℓ(−a) = 0,
(2) ℓ(a)⊗ ℓ(a) = ℓ(a)⊗ ℓ(−1), and
(3) ℓ(a)⊗ ℓ(b) = −ℓ(b)⊗ ℓ(a).
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Indeed, to see (1), note the equality in F× given by −a = 1−a
1−a−1 . Hence we have

ℓ(a)⊗ ℓ(−a) = ℓ(a)⊗ [ℓ(1−a)− ℓ(1−a−1)] = ℓ(a)⊗ ℓ(1−a)+ ℓ(a−1)⊗ ℓ(1−a−1) = 0+0 = 0

giving (1). Then, since a = (−1)(−a), we get

ℓ(a)⊗ ℓ(a) = ℓ(a)⊗ [ℓ(−1) + ℓ(−a)] = ℓ(a)⊗ ℓ(−1) + ℓ(a)⊗ ℓ(−a) = ℓ(a)⊗ ℓ(−1)

showing (2). Moreover, using (1) three times, we obtain (3):

0 = ℓ(ab)⊗ ℓ(−ab) = ℓ(a)⊗ [ℓ(−a) + ℓ(b)] + ℓ(b)⊗ [ℓ(a) + ℓ(−b)] = ℓ(a)⊗ ℓ(b) + ℓ(b)⊗ ℓ(a)

Now for F a finite field, we have F× is a cyclic group, say of order q − 1 (i.e. F = Fq is a
finite field with q = pn elements). Pick a generator ξ. Then any two units in F are given by
ξn and ξm for some n,m. Then

ℓ(ξn)⊗ ℓ(ξm) = nm · [ℓ(ξ)⊗ ℓ(ξ)].

But using (3) above, we find that ℓ(ξ) ⊗ ℓ(ξ) is of order 2. Thus K2(F ) is generated by an
element of order 2 and is hence either cyclic of order two or trivial. In fact, we also find
ℓ(1) = ℓ(ξq−1) = (q − 1)ℓ(ξ), showing that

(q − 1) · ℓ(ξ)⊗ ℓ(ξ) = ℓ(1)⊗ ℓ(ξ)

which is the trivial element in K2(F ) as we recall that ℓ(1) = 0 ∈ K1(F ). However, if q
is even, then (q − 1) ≡ 1 mod 2, so the fact that ℓ(ξ) ⊗ ℓ(ξ) has order two implies that it
vanishes. It remains to argue the case where q is odd, in which, possibly ℓ(ξ) ⊗ ℓ(ξ) is a
non-trivial element of order 2 in K2(F ).

Now to treat the case where q is odd, we first claim that there are elements u, v ∈ nS =
F× \ (F×)2 such that 1 = u+ v. Indeed, consider the set nS and the set 1− nS. Both these
sets have (q−1)/2 many elements and are subsets of F \{0, 1} which has q−2 many elements.
Hence the intersection is non-trivial, showing that there is a non-square u for which 1−u = v
is also a non-square. It follows that ℓ(u)⊗ ℓ(v) = ℓ(u)⊗ ℓ(1− u) = 0. Now since ξ ∈ F× is a
generator, it is not a square. Moreover, the multiplication by squares acts transitively on the
non-squares. This implies that there exists a, b ∈ F× such that a2u = ξ = b2v. Furthermore,
as we have already argued that K2(F ) is 2-torsion, we know that for any unit a, we have
0 = 2 · ℓ(a)⊗ ℓ(v) = ℓ(a2)⊗ ℓ(v), and similarly, 0 = ℓ(u)⊗ ℓ(b2). Consequently, we obtain

0 = ℓ(u)⊗ ℓ(v) = ℓ(a2u)⊗ ℓ(v) = ℓ(a2u)⊗ ℓ(b2v) = ℓ(ξ)⊗ ℓ(ξ)

showing that the generator of K2(F ) is trivial, and hence finally that K2(F ) = 0 as wanted.
□

3.73. Remark Given Milnor’s result on K2(Z), we will later see that

K2(Q) ∼= Z/2Z⊕
⊕

p prime

F×
p .

Similarly, we will see for F a finite field, K2(F (t)) is a big sum over non-trivial finite abelian
groups. In contrast, K2(Q) = 0.

4. Definition K(R) and some properties

We now move towards the K-theory space of a ring R.
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4.1. Some higher categorical background. In the following we will use some higher alge-
bra, that is, that is algebra in higher category theory rather than in ordinary category theory.
For this, it is useful to take note of the following dictionary. We list a couple of references
[Lur09, §1], [Gro20, Gep20, Lan21].

(1) The role of the category Set of sets in higher algebra is taken by the ∞-category An
of anima.18 Just as Set, this is a bicomplete (presentable) category19, with carte-
sian closed symmetric monoidal structure. We may therefore consider the categories
CMon(An) and CGrp(An) of commutative monoids and groups in An; these are the
analogs of commutative monoids CMon and abelian groups Ab in sets as we are used
to.

(2) We have argued that CGrp(An) is the analog of Ab. It turns out that CGrp(An) is
a full subcategory of another category, the category Sp of spectra or spectrum objects
in An. Concretely,

Sp = lim
n
(. . .An∗

Ω−→ An∗
Ω−→ An∗)

so a spectrum may be thought of as a sequence of pointed spaces {Xn} equipped with
equivalences ΩXn ≃ Xn−1. In particular, X0 is what is called an infinite loop space,
because it is an n-fold loop space for every n ≥ 0. For a spectrum X, one can define
homotopy groups πk(X) for all k ∈ Z. A spectrum is called connective if πk(X) = 0
for k < 0. One can show that Sp is additive, in fact, it is stable. The tautological
functor Ω∞ : Sp → An∗, sending X = {Xn}n≥0 to X0 therefore canonically lifts to a
functor Sp→ CGrp(An). The so-called recognition principle implies that the induced
functor

Sp≥0 ⊆ Sp→ CGrp(An)

is an equivalence of categories (we will discuss some things about this recognition
principle below). Therefore, we may think of both Sp and Sp≥0 as valid replacements
for the ordinary category Ab of abelian groups and of the functor Ω∞ : Sp → An(∗)
as a forgetful functor.

(3) Apart from the analogy with ordinary category theory, spectra are relevant to al-
gebraic topologists because the represent (co)homology theories, and in fact, every
(co)homology theory is represented by a spectrum. (This is often referred to as
Brown’s representability theorem).

(4) In ordinary algebra, we care about (commutative) rings (amongst others). Cate-
gorically, these are formed by taking (commutative) monoids for a new symmetric
monoidal structure on Ab, the tensor product, or more precisely, the tensor product
⊗Z over Z for which Z is the unit. The left adjoint of the forgetful functor Ab→ Set is
given by the free abelian group functor Z[−]. This functor turns out to be symmetric
monoidal for the cartesian product on Set and the tensor product on Z; In particu-
lar, it sends (commutative) monoids and groups to (commutative) rings. In higher
algebra, a similar result is true. There is a canonical symmetric monoidal structure

18Aka the ∞-category of spaces. It can be described as the ∞-category associated to the Quillen model
structure on topological spaces, or the Kan model structure on simplicial sets, or simply as the (Dwyer-Kan)
localization of the category of CW complexes at the homotopy equivalences.

19It is also the free cocompletion of a point, that is, for any cocomplete ∞-category C, the evaluation at
∗-functor Funcolim(An,C) → C is an equivalence.
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on Sp, denoted by ⊗ whose unit is called the sphere spectrum S.20 In analogy to the
notation in ordinary algebra, we denote by S[−] : An(∗) → Sp the left adjoint of the

forgetful functor Ω∞.21 Objects of CAlg(Sp) then represent (coherently commuta-
tive) multiplicative cohomology theories, in particular ones that come with a graded
commutative cup product, just like singular cohomology.

(5) The inclusion Ab ⊆ CGrp(An) ≃ Sp≥0 ⊆ Sp is canonically lax symmetric monoidal
for ⊗Z and ⊗; the inclusion Sp≥0 ⊆ Sp in fact is a symmetric monoidal subcategory.
In particular, S is connective (this is a consequence of the computations πk(S

n) = 0 for
k < n). In particular, Z is a commutative ring spectrum, i.e. an object of CAlg(Sp,⊗),
and therfore comes with a canonical map S. We then think of the functor Ab → Sp
as the restriction of scalars functor Mod(Z)→ Mod(S) associated to the map S→ Z.
Similarly, any (commutative) ring R gives rise to a (connective) (commutative) ring
spectrum again denoted by R. The cohomology theory represented by the spectrum
R is singular cohomology H∗(−;R) with coefficients in R.22 For a (commutative) ring
spectrum R, its graded homotopy groups π∗(R) form a Z-graded (commutative) ring,
as the functor π∗(−) : Sp→ grAb is naturally lax symmetric monoidal for the Koszul
sign symmetric monoidal structure on grAb.

(6) The sphere spectrum S is not an Eilenberg-MacLane spectrum. Indeed Ab ⊆ Sp is
the full subcategory on spectra X having the property that πk(X) = 0 for k ̸= 0;
the corresponding abelian group which fully characterises X is then of course π0(X).
The fact that S is not Eilenberg-MacLane simply means that S has more non-trivial
homotopy groups; these homotopy groups identify with the stable homotopy groups
of spheres, and are highly non-trivial. More examples of commutative algebras in Sp
which are not Eilenberg-MacLane spectra are given by real and complex topological
K-theory spectra KO and KU, as well as many bordism spectra like MO, MSO,23

MSpin, MU. There are also further examples which lie at the interface of homo-
topy theory and algebra, for instance the Lubin–Tate theories E(k,Γ) where k is a
perfect field of characteristic k and Γ is a fomal group (of height n) over k; These
are commutative ring spectra whose homotopy ring is an even and 2-graded Laurent
polynomial ring over the universal deformation ring of this formal group, which is
given by W (k)Ju1, . . . , un−1K. There are many more examples of commutative rings
spectra; among them the algebraic K-theory spectra of commutative rings we shall
define momentarily.

(7) Unlike in ordinary algebra, where monoid objects in monoids are commutative monoids
(this is called the Eckmann-Hilton trick), in higher algebra, this is not the case.
Rather, for each n ≥ 1∪{∞}, there is the notion of an En-algebra in Sp, we write the
category of such as AlgEn

(Sp); then Alg(Sp) = AlgE1
(Sp) and AlgE∞(Sp) = CAlg(Sp).

20There is a notion of pre-spectra, these are families of pointed spaces {Xn}n≥0 equipped with maps Xn →
ΩXn+1 (which need not necessarily be equivalences). Then Sp forms a full subcategory of pre-spectra, and this
inclusion admits a left adjoint, called spectrification. Examples of pre-spectra are the families {Sn ∧ X}n≥0

with structure maps adjoint to the identity; these are called suspension spectra. For X = S0, one obtains the
sphere pre-spectrum, which spectrifies to the sphere spectrum S.

21Classically, S[−] is denoted Σ∞
(+).

22Classically, this spectrum is denoted by HR and is called the Eilenberg-MacLane spectrum on R.
23Though the underlying associative algebras of MO and MSO(2) are what are called generalized Eilenberg–

Mac Lane spectra, that is, Z-algebra spectra.
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An En-algebra is informally given by n-many algebra structures which satisfy an ap-
propriate compatibility condition. One has AlgEn+m

(Sp) = AlgEn
(AlgEm

(Sp)). Thus,
unlike in the ordinary world, there is an infinite hierarchy between associative and
commutative higher algebras.24

(8) Much of the usual algebra one discusses in a course on (commutative) algebra hold
equally in the context of ring spectra. For instance, the notion of localising elements
in a ring has an analog in ring spectra (there, “elements of R” refer to “elements of
π∗(R)”. For a set S ⊆ π∗(R) of homogenous elements, a localization R[S−1] of R
away from S is then the universal object under R in which the elements of S become
invertible (as in the ordinary case, some care must be taken in the non-commutative
situation). In particular, this means that the restriction map MapAlg(R[S

−1], T ) →
MapAlg(R, T ) is the inclusion of those path components corresponding to ring maps
R→ T which send all elements of S to invertible elements of π∗(T ).

Having now surveyed some basic principles in higher category, let us also add some more
details. First, we shall make use of the following description of ∞-categories.

4.1. Definition Given an ∞-category C, let us consider the simplicial anima N(C) given by

[n] 7→ MapCat∞([n],C).

N(C) is called the Rezk nerve of C, the formation of Rezk nerves is the right adjoint of the
unique colimit preserving functor asscat : Fun(∆op,An) → Cat∞ whose restriction along the
Yoneda embedding gives the tautological inclusion ∆ ⊆ Cat∞. This left adjoint is called the
associated category functor.

To describe properties of the Rezk nerve functor it will be worthwhile to discuss the fol-
lowing properties of simplicial animae.

4.2. Definition Let X be a simplicial anima, i.e. an object of Fun(∆op,An) = sAn. Then X
is called Segal if for all [n] ∈ ∆, the maps ρi : [1]→ [n] given for 1 ≤ i ≤ n by 0 7→ i− 1 and
1 7→ i induce equivalences

Xn → X1 ×X0 · · · ×X0 X1.

For a Segal anima X and x, x′ ∈ X0 we define MapX(x, x
′) as the fibre of X1 → X0×X0 over

(x, x′) and obtain composition maps

MapX(x
′, x′′)×MapX(x

′, x) ⊆ X1 ×X0 X1
≃←− X2

d1−→ X1

observe: This canonically factors through the inclusion MapX(x
′′, x) ⊆ X1. The map s0 : X0 →

X1 provides for each x ∈ X0 the identity morphism idx ∈ MapX(x, x); check: this indeed
serves as identities for the above defined composition law. For a Segal anima, we therefore
think of Xn as collections of n composable morphisms in X1. We write SAn ⊆ sAn for the
full subcategory of Segal animae.

Given a Segal anima, one defines a new simplicial anima X× as follows: First, define X×
1

to be the collection of components in X1 consisting of morphisms which have a left and right
inverse (with respect to the just defined composition law), we call the morphisms in X×

1

24This might not be unfamiliar: Indeed, there is the notion of a monoidal category and the notion of a
symmetric monoidal category, and these two notions have something lying strictly between them: The notion
of a braided monoidal category. Indeed, the latter is simply an E2-algebra in the (2,1)-category Cat of ordinary
categories. The fact that this is a (2,1)-category rather than an (∞, 1)-category is the reason that E3-algebras
in Cat are already E∞, i.e. symmetric monoidal categories.
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isomorphisms. Note that X0 → X1 factors through X×
1 . For all n ≥ 1, let X×

n denote the
collection of components of Xn such that for all f : [1]→ [n], the image under f∗ : Xn → X1

lands in X×
1 ; that is X×

n consists of the collection of n composable isomorphisms in X1.
A Segal anima X is called complete if the unique degeneracy X0 → X1 induces an equiva-

lence X0 → X×
1 .

Exercise. The following condition on a Segal anima are equivalent.

(1) X is complete,
(2) X× is a constant simplicial anima,
(3) the diagram

X0 X3

X0 ×X0 X1 ×X1

s

∆ f×g
s×s

is a pullback, where f and g are induced by the two maps [1] → [3] in ∆ given by
0 7→ 0, 1 7→ 2 and 0 7→ 1, 1 7→ 3, respectively.

(4) The map X0 → MapsAn(J,X) induced by J → ∗ is an equivalence. Here, J denotes
the nerve of the contractible groupoid with two elements.

4.3. Theorem The Rezk nerve functor N: Cat∞ ⊆ Fun(∆op,An) is fully faithful with essen-
tial image consisting of the complete Segal anima.25

We will not prove this theorem here. But, as a consequence, we therefore find an equivalence
N: Cat∞ ≃ cSAn. Under this equivalence, we denote the left adjoint of cSAn ⊆ sAn by comp,
the completion functor. The inclusion An ⊆ Cat∞ has left adjoint | − | given by inverting all
morphisms in an∞-category. Under the equivalence Cat∞ ≃ cSAn, the inclusion An→ Cat∞
becomes the inclusion via constant diagrams. It then follows that the left adjoint | − | can
equivalently be thought of as taking the Rezk nerve, viewing it as a simplicial object and then
taking the colimit over this simplicial object (such colimits are called geometric realizations
and hence written | − |).

Some more information is useful (we will not prove this here, though):

4.4. Proposition For a Segal anima X, we have:

(1) ι(asscat(X)) = |X×|, where | − | denotes the colimit over the underlying simplicial
anima. In particular, π0(X0)→ π0(ι(asscat(X))) is surjective.

(2) For x, x′ ∈ X0, the map MapX(x, x
′)→ Mapasscat(X)(x, x

′) is an equivalence.

To move on, we also give definitions of (cartesian) monoids and commutative monoids in
an ∞-category with finite products.

4.5. Definition (Associative monoids) Let C be an ∞-category with finite products. We
define the category Mon(C) of monoids in C as Funred,Seg(∆op,C). Here, the superscripts refer
to reduced functors M , that is, those where M0 ≃ ∗, and Segal as in our above definition of
Segal animae, then means that Mn →M×n

1 is an equivalence.

25This is a higher categorical version of the possibly more familiar fact that the ordinary nerve functor from
categories to simplicial sets is fully faithful with explicit image.
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4.6.Remark Being a Segal object, we may interpretM1 as morphisms which we can compose.
Hence, in this situation, composition defines a multiplication on M1 with identity given by
the image of the degeneracy ∗ →M1. Exercise: For C = Set, the above really is an equivalent
way of defining an ordinary monoid.

Exercise. Let M ∈ Mon(An) be a monoid. When is M complete in the sense of our earlier
definitions?

4.7. Definition (Commutative monoids) Let C be an ∞-category with finite products. We
define the category CMon(C) of commutative monoids in C as Funred,Seg(Finp,C). Here, Finp
denotes the category of finite sets with partially defined maps.26 Reduced and Segal simply
means that A(∅) = ∗ and that for every finite set I, the collection of partially defined maps
I ⊇ {i} → {i} induce equivalences A(I)→

∏
i∈I A(i).

4.8. Lemma There is a canonical functor Cut: ∆op → Finp sending [n] to the set of Dedekind
cuts, that is, the subset of Hom([n], [1]) where the preimage of 0 and 1 are non-emtpy. A
functor A : Finp → C is a commutative monoid, i.e. is reduced and Segal, if and only if its
restriction ∆op → Finp → C is a monoid, i.e. reduced and Segal.

Proof. Hom∆(−, [1]) is a functor ∆op → Fin; For α : [m] → [n], note that the induced map
Hom([n], [1])→ Hom([m], [1]) as the preimage of a non-empty subset of [n] under α need not
be non-empty. But one can consider the subset of Cut([n]) where this is the case, and the
taking the preimage under α defines a partially defined map Cut([n])→ Cut([m]) as needed.
Now, there is a canonical bijection Cut([n]) = ⟨n⟩ = {1, . . . , n}, where j ∈ ⟨n⟩ corresponds
to the decomposition [n] = {0, . . . , n} = {0, . . . , j − 1} ∪ {j, . . . , n}. Let us then consider the
Segal maps ρi : [n]→ [1] in ∆. Under the Dedekind cuts functor, this gives rise to a partially
defined map ⟨n⟩ → ⟨1⟩ = {∗}; to see on which subset of ⟨n⟩ it is defined, we recall that it
is defined on the subset of cuts of [n] where the preimage under ρi is still a Dedekind cut,
concretely, this means that i− 1 and i have to be separated in the given cut of [n]. There is a
unique such cut, and under the bijection Cut([n]) ∼= ⟨n⟩ this is the element i ∈ ⟨n⟩. It follows
that the Segal maps in ∆ are sent to the Segal maps in Finp, showing the final claim. □

The functor Cut therefore induces a functor CMon(C)→ Mon(C) which we refer to as the
forgetful functor (it forgets the commutative structure and remembers only the underlying
associative structure of the multiplication).

4.9. Remark For any finite set I, we may consider the map I ⊇ I → ∗ in Finp (it is in fact
fully defined, not only partially so). For a commutative monoid A ∈ CMon(C), we obtain an
induced map ∏

I

A(∗)
∼=←− A(I)→ A(∗)

where the left hand equivalence comes from the Segal condition. The map A(I)→ A(∗) then
identifies with the multiplication map of the underlying associative monoid. In addition, we

26That is a morphisms from I → J consists of a pair I0 ⊆ I and a map I0 → J . An equivalent category is
the category Fin∗ of finite pointed sets, by sending a set I to the pointed set I+ and a partially defined map to
the same map which on the complement of the subseteq of definition takes everything to the basepoint. The
inverse functor is given by taking a pointed set to the complement of the basepoint.
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see that the map I → ∗ is invariant under the permutation action of ΣI on I. This expresses
the fact that the multiplication map of a commutative monoid is in fact commutative.

4.10. Remark The cartesian product of finite sets and partially defined maps defines a sym-
metric monoidal structure on Finp. Under the equivalence to Fin∗, this is the smash product
of pointed sets, im particular, this is not the cartesian monoidal structure. In particular,
there are associated functors Finp × Finp → Finp and ∆0 → Finp such that both composites
∆0 × Finp → Finp and Finp × ∆0 → Finp are canonically equivalent to the identity. One
checks that the functor Finp × Finp → Finp sends products of Segal maps to Segal maps and
deduces from this that one obtains a diagram

CMon(C) CMon(CMon(C)) CMon(C)

such that both composites are canonically identified with the identity functor.27 Here, the
two right maps are the two forgetful maps. It follows that the composite

CMon(C)→ CMon(CMon(C))→ Mon(CMon(C))→ Mon(C)

is the canonical forgetful functor: Indeed, unravelling the definitions, this functor is induced
by the restriction along

∆op ×∆0 → ∆op × Finp → Finp × Finp → Finp

which is just the canonical map ∆op → Finp. In particular, the simplicial diagram in C given
by the underlying associative monoid of a commutative monoid M in C is in fact a simplicial
diagram in commutative monoids in C. This will become relevant later, when comparing two
a priori different definitions of K-theory anima.

4.11. Remark Denoting by Cat ⊆ Cat∞ and Gpd ⊆ An the full subcategories on ordinary
categories and ordinary groupoids, one finds that Mon(Cat) and Mon(Gpd) are the categories
of monoidal categories and monoidal groupoids, respectively, and similarly that CMon(Cat)
and CMon(Gpd) are the categories of symmetric monoidal categories and symmetric monoidal
groupoids, respectively. Moreover, there are fully faithful inclusions Mon(Gpd) ⊆ Mon(An)
and CMon(Gpd) ⊆ CMon(An).

A categorial construction we have used in the definition of K0(R) is the group completion,
i.e. the fact that the inclusion Ab ⊆ CMon has a left adjoint. The higher categorical version of
this is also true, e.g. by means of the adjoint functor theorem. We will give some perspectives
on it a bit later.

4.12. Lemma The inclusion CGrp(An) ⊆ CMon(An) (and Grp(An) ⊆ Mon(An)) admits a
left adjoint which we again denote by (−)gp.

Now recall from Remark 4.11 that (ιProj(R),⊕) is naturally a symmetric monoidal groupoid,
and hence a commutative monoid in An.

4.13. Definition For a ring R, we denote by K(R) ∈ CGrp(An) the group completion
ιProj(R)gp of the commutative monoid ιProj(R) in An and for n ≥ 0, define πnK(R) as
the K-groups of R.

27And in fact it turns out that all three functors in this diagram are equivalences.
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4.14. Example There are many more examples of group completion that are interesting to
study:

(1) Let K be R,C,H and consider the topological category VectfdK . It is symmetric
monoidal under direct sum. Its groupoid core is then equivalent to the space

∐
nBGLn(K)

but GLn(K) carries the topology induced from the euclidean norm. Concretely, these
are equivalent to

∐
nBO(n),

∐
nBU(n) and

∐
nBSp(n). We denote the group com-

pletions by ko, ku, and ksp, respectively.
(2) Consider the topological groupoid Euc whose objects are the euclidean spaces Rd and

whose mapping spaces are given by the mapping spaces of homeomorphisms (in the
compact open topology). Again, this is a symmetric monoidal topological groupoid
under direct sum. Its underlying anima is equivalent to

∐
nBTop(n) and we denote

by ktop its group completion.
(3) Consider the symmetric monoidal ∞-groupoid Sph given by the full subgroupoid of

An≃ on objects of the form Sd−1. This is symmetric monoidal under the join. Its
underlying anima is given by

∐
nBG(n). We denote by Pic(S) its group completion.

(4) the forgetful functors give maps

VectH → VectC → VectR → Euc→ Sph

which are symmetric monoida. In particular, they group complete to maps in CGrp(An):

ksp→ ku→ ko→ ktop→ Pic(S).

which are often referred to as J-homomorphisms.

4.15. Remark Recall that for R commutative, we have indicated a symmetric monoidal
functor det : Proj(R)→ PicZ(R) and that the latter is a symmetric monoidal groupoid whose
associated commutative monoid in spaces is in fact a commutative group (such things are also
called symmetric monoidal Picard groupoids). It follows that there exists a unique extension
of detZ to a map of commutative groups in anima detZ : K(R)→ PicZ(R). By construction,
we have π0(PicZ(R)) = C(Spec(R),Z)⊕Pic(R) and π1(PicZ(R)) = R×. The map detZ hence
induces maps

π0K(R)→ C(Spec(R),Z)⊕ Pic(R), and π1K(R)→ R×

which of course bears resemblence with what we have discussed earlier.

4.16. Remark Here are some remarks on formulas for the group completion which will serve
useful. There is a functor B: Mon(An) → (Cat∞)∗, informally given by sending M to the
∞-category BM with a single object and M as endomorphisms (we give a more formal
argument below). This functor has a right adjoint given by taking a pointed category (C, x)
to the monoid EndC(x). The unit of the adjunction is then the identity so B is fully faithful.
By construction, this functor participates in a commutative diagram

Grp(An) An∗

Mon(An) (Cat∞)∗

where the vertical maps are full inclusions (recall that An ⊆ Cat∞ is the full subcategory on
∞-groupoids). It follows that B: Grp(An)→ An∗ is fully faithful and has right adjoint given
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by (X,x) 7→ ΩxX. For connected anima X, the canonical map BΩX ≃ X is an equivalence,
as it is fully faithful by construction and essentially surjective by the connectivity assumption
on X. Hence, B and Ω implement inverse equivalences between Grp(An) and An≥1

∗ . This
is often referred to as the recognition principle for loop spaces. We obtain the following
computation

MapGrp(An)(Ω|BM |, G) = MapAn∗(|BM |,BG)
= Map(Cat∞)∗(BM,BG)

= MapMon(An)(M,G)

showing that Ω|B(−)| is the left adjoint to the inclusion Grp(An) ⊆ Mon(An) where | −
| : Cat∞ → An is the left adjoint of the inclusion.

4.17. Remark Both functors in the adjunction

Mon(An) Grp(An)
Ω|B(−)|

i

preserves finite products and hence induces an adjunction

CMon(Mon(An)) CMon(Grp(An))
Ω|B(−)|

i

compatible with the above adjunction upon forgetting commutative monoid structures. It
turns out that the forgetful map CMon(Mon(An)) → CMon(An) is an equivalence, and
that, likewise, the forgetful map CMon(Grp(An)) → CMon(An) factors through an equiv-
alence CMon(Grp(An)) → CGrp(An). Under these equivalences, the right adjoint functor
CMon(Grp(An)) ⊆ CMon(Mon(An)) identifies with the inclusion CGrp(An) → CMon(An).
In particular, one obtains a commutative diagram

CMon(An) CGrp(An)

Mon(An) Grp(An)

(−)gp

(−)gp

in which both functors (−)gp can be identified with M 7→ Ω|BM |.

4.18. Remark Let us explain the following description of |BM | more closely related to the
definition. Namely, the anima |BM | can be computed as the geometric realization |Bar(M)|
where Bar(M) denotes the reduced Segal anima defining the monoid M . Often, we think
of a monoid M as an anima with the structure of multiplication maps encoded in the sim-
plicial object Bar(M), but of course, M = Bar(M) are in our definitions the same objects
– nevertheless, we find it useful to have a different name for the simplicial object as to not
overload notation all the time. Then it turns out that asscat(Bar(M)) = BM (this is either
a definition, or if one takes for granted that B(−) as a left adjoint exists as claimed, there
is a canonical functor from right to left which is essentially surjective and fully faithful as a
consequence of Proposition 4.4, so that it is an equivalence.) See Remark 4.19 for details. As
discussed earlier, we then find

|Bar(M)| = |asscat(Bar(M))| = |BM |.
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4.19. Remark In this remark, we explain in more detail the fact that the functor Mon(An)→
(Cat∞)∗/, M 7→ asscat(Bar(M)) admits a right adjoint, taking (C, x) to EndC(x). Via The-

orem 4.3, the functor is equivalently given by Mon(An) → cSAn∗/, M 7→ comp((̄M)). Since
the inclusion cSAn∗/ ⊆ SAn∗/ is a right adjoint (with completion as left adjoint), the desired

statement is implied by the statement that the functor Mon(An) → SAn∗/, M 7→ (̄M) ad-
mits a right adjoint. We describe the adjoint as follows: Let (X,x) ∈ SAn∗/ and consider

X0 : ∆
op
≤0 → An as a functor. We may right Kan extend it as follows:

∆op
≤0 An

∆op

X0

RX0

and the pointwise limit formula for Kan extensions gives (RX0)n = X×n+1
0 . The identity of

X0 then adjoins to a canonical map X → RX0 and the basepoint x of X can be viewed as a
map ∗ → X → RX0. We define the putative right adjoint R(X,x) by the pullback

R(X,x) X

∗ RX0

whose left vertical map is equipped with a splitting, making R(X,x) at the very least a
pointed simplicial anima. We need to check that R(X,x) is in fact reduced and Segal, i.e.
a monoid in anima. To that end, one checks that the three terms defining the pullback are
all Segal anima, from which it follows that so is R(X,x). Since the right vertical map is an
equivalence on 0-simplices, so is the left vertical map, showing that R(X,x) is reduced. To
see that the association (X,x) 7→ R(X,x) assembles into a right adjoint of the inclusion, it
then suffices to argue that for every M ∈ Mon(An), the map induced by the top horizontal
map R(X,x)→ X

MapsAn∗/
(M,R(X,x))→ MapsAn∗/

(M,X)

is an equivalence. Since the diagram

MapsAn∗/
(M,R(X,x)) MapsAn∗/

(M,X)

MapsAn∗/
(M, ∗) MapsAn∗/

(M,RX0)

is a pullback, it suffice to argue that MapsAn∗/
(M,RX0) is contractible. Now since RX0 is

right Kan extended, this mapping anima is equivalent to MapAn∗/
(∗, X0) which is indeed

contractible. It then remains to compute R(X,x)1, which is the pullback

R(X,x)1 X1

∗ X0 ×X0
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in which the right vertical map is given by (d1, d0). Consequently, we find R(X,x) =
MapX(x, x) as claimed.

4.20. Remark When M is commutative (as will be the case in all our situations), the Bar
construction simplifies: Indeed, for commutativeM , the Bar construction Bar(M) canonically
upgrades to a reduced Segal object in CMon(An) as noted in Remark 4.10. As such, it is the
left Kan extension of its restriction to ∆op

≤1 (and also of its restriction to ∆op
≤1,inj), which is

the diagram

M ∗
(or the same diagram with section removed), as one can check by a direct inspection of the
slice categories (∆op

≤1)/[n] involved in the pointwise formula for the left Kan extension that we
work out on the exercise sheet.

Here is an independent way of proving that in this situation, the Bar construction imple-
ments the group completion.

On general grounds, one can then consider the décalage dec(Bar(M)) obtained by precom-
posing the simplicial object with the (opposite of the) functor ∆ → ∆, [n] 7→ [1 + n]. The
maps d0 : [n]→ [1 + n] induce a natural map dec(X)→ X for any simplicial object, and for
a Segal object X, there is then a pullback diagram

const(X1) dec(X)

const(X0) X

showing that the fibre of dec(X) → X is given by const(fib(X1 → X0)). Moreover, it is a
general fact that |dec(X)| ≃ X0 (see Exercises). Hence in our case we obtain fibre sequence
of simplicial objects in CMon(An)

const(M)→ dec(Bar(M))→ Bar(M)

which gives, upon realisation, a commutative diagram

M ∗

∗ |Bar(M)|

This diagram turns out to be cocartesian in CMon(An):28 use that Bar is Kan extended
from ∆op

≤1,inj to see that its colimit is the pushout defining the internal suspension functor of

CMon(An). The above diagram also gives a canonical mapM → Ω|Bar(M)|, which is the unit
of the adjunction.29 It is a consequence of Rezk’s equifibrancy lemma, that ifM ∈ CGrp(An),
then the geometric realization preserves the above fibre sequence (see Exercise Sheets). From
this, it is a formal consequence that M 7→ Ω|Bar(M)| is a group completion, i.e. a left adjoint
to the inclusion CGrp(An) ⊆ CMon(An) (Exercise Sheet).

28Note that this really only makes sense for commutative monoids: For associative monoids, the square is
only one of anima, and is not cocartesian in anima.

29This map exists, however, for a general associative monoid.
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We now set out to prove that the just defined K-groups coincide with the ones we have
already defined. The first case is easy and requires almost nothing:

4.21. Corollary For every ring R, we have K0(R) ∼= π0K(R).

Proof. First note that for X ∈ An there is an equivalence π0(X) ≃ τ≤0(X) where we view
Set ⊆ An as the full subcategory on the 0-truncated objects. We now show more generally
that the square

CMon(An) CGrp(An)

CMon(Set) CGrp(Set)

(−)gp

τ≤0 τ≤0

(−)gp

commutes and then simply apply this to ιProj(R). Then the composite over the lower left
corner is K0(R) while the composite over the top right corner is π0K(R). To see that this
diagram commutes, we note that τ≤0 is the left adjoint of the fully faithful inclusion Set→ An.
Hence it is equivalent to show that the induced diagram of right adjoints commutes:

CMon(An) CGrp(An)

CMon(Set) CGrp(Set)

This is obvious as all functors are just the inclusions. □

To show that also the next two K-groups agree with our earlier ad hoc definitions, we will
need some more heavy machine.

4.2. The group completion theorem. The aim of this section is to prove the group com-
pletion theorem and to use it to identify more K-groups. To state it, let us first recall some
notation. For a commutative ring spectrum A ∈ CAlg(Sp) and M ∈ CMon(An), we denote
by E[M ] = E ⊗ S[M ] the monoid algebra over E. Note that there is a ring homormophism
π0(M)→ E0(M) = π0(M ⊗E), this is just the map induced by the ring map S[M ]→ E[M ]
on π0.

Next, let M ∈ CMon(An) and for ease of notation assume that there exists an element
m such that inverting m in π0(M) results in a group (which is then necessarily given by
π0(M)gp). In the case Proj(R), such an element is given by the π0-class of R. Denote by
M∞ = colim·mM . To see what kind of object M∞ is, let us think of the category of left
M -modules in anima, ModM (An), and let us read our definition of M∞ literally: Since M
is commutative, it is in particular an M -bimodule, and ·m refers to the right multiplication
map by m which is canonically left M -linear. Since colimits in ModM (An) are compatible
with the forgetful functor ModM (An) → An, we find that M∞ canonically refines to an
object of ModM (An). We also note that M is also a commutative monoid in CMon(An)
by Remark 4.10. Then ModM (CMon(An)) ≃ CMon(An)M/ as one is used to from ordinary
algebra where CAlgE = CAlgE/. In particular, the map M →Mgp of commutative monoids
makes Mgp into an M -module as well. We then obtain the following diagram of M -modules
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in anima:
M M∞

Mgp (Mgp)∞
≃

in which the lower horizontal map is an equivalence, as the image of m under M → Mgp

becomes invertible since Mgp is a group. We therefore obtain a factorization of the group
completion map M →Mgp (which is a map of commutative monoids) as a composite

M →M∞ →Mgp

where now both maps are (a priori) only maps of M -modules in anima.

4.22.Theorem (The group completion theorem I) LetM ∈ CMon(An) and let E ∈ CAlg(Sp).

(1) Then the map M →Mgp induces an equivalence

E[M ][π0(M)−1]→ E[Mgp]

of commutative E-algebras.
(2) The map M∞ →Mgp induces an isomorphism on E-homology.

4.23. Remark Since we assume that everything is commutative, we obtain

π∗(E[M ][π0(M)−1]) = E∗(M)[π0(M)−1]

where the second localization is in the purely algebraic sense. The same statements as in
Theorem 4.22 and also the above isomorphism of homotopy groups, hold in fact more generally
for (not necessarily commutative) monoids in An (and not necessarily commutative ring
spectra E) but such that π0(M) ⊆ π∗(E[M ]) satisfies the left (or right) Ore condition.

Moreover, it is a formal consequence that under the assumptions of Theorem 4.22, (1) and
(2) hold true upon replacing E with an arbitrary E-module spectrum A. Indeed, applying
the functor −⊗E A to the map appearing in (1), we obtain the map

A[M ][π0(M)−1]→ A[Mgp]

which is then again an equivalence. Similarly, we have a commutative diagram

E[M∞]⊗E A E[Mgp]⊗E A

A[M∞] A[Mgp]

whose vertical maps are isomorphisms.

Proof of Theorem 4.22. The map appearing in (1) is obtained from the map S[M ][π0(M)−1]→
S[Mgp] upon tensoring with E, since the functor E ⊗ − : CAlg(Sp) → CAlgE(Sp) is a left
adjoint. Now we simply compare universal properties: Consider a test commutative ring spec-
trum S, then by definition of localizations and adjunction, we find a fully faithful inclusion

MapCAlg(S[M ][π0(M)−1], S) ⊆ MapCMon(An)(M,Ω∞
× (S))

where Ω∞
× (S) denotes the anima Ω∞(S) equipped with the commutative monoid structure

coming from the multiplication on S30 and it is given by the collection of components on

30Formally, the fact that S[−] : An → Sp is symmetric monoidal gives the left adjoint S[−] : CMon(An) →
CAlg(Sp) whose right adjoint we denote by Ω∞

× .
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all those morphisms M → Ω∞
× (S) which send every element of M to an invertible element

of Ω∞
× (S), or equivalently to gl1(S), since gl1(S) is obtained from Ω∞

× (S) by applying the
right adjoint to the inclusion CGrp(An) ⊆ CMon(An) (which simply takes all connected
components whose π0 class is invertible). We arrive at

MapCAlg(S[M ][π0(M)−1], S) ≃ MapCMon(An)(M, gl1(S)) ≃ MapCMon(An)(M
gp, gl1(S)).

Running the same argument backwards then similarly gives

MapCMon(An)(M
gp, gl1(S)) ≃ MapCAlg(S[Mgp], S)

as needed.
For (2), we now prove that the map E[M ]→ E[M∞] exhibits the target as the localization

of the source at π0(M), so that in the commutative triangle

E[M ] E[M∞]

E[Mgp]

both the horizontal and the diagonal map are localizations at π0(M), and hence the vertical
map is an equivalence. Now, by our standing assumption, it suffices to see that this map
exhibits the target as E[M ][ 1m ]. But for this, we have to believe that the (correct version
of the) usual proof for existence of localisations of commutative rings holds in the context
of commutative ring spectra. Indeed, one way to proceed is to define the notion of m-local
modules, and to show that the inclusion admits an adjoint which can be implemented by
taking the filtered colimit over m. □

As a nice application of the group completion theorem we include the following:

4.24. Corollary Let M be a commutative monoid in sets, viewed as a commutative monoid
in anima. Then Mgp is again discrete (and coincides with the usual group completion of M).

Proof. By the above, we haveH∗(M
gp;Z) ∼= H∗(M ;Z)[π0(M)−1]. ButH∗(M ;Z) ∼= H0(M ;Z) =

Z[M ], so the localisation at the elements of M is still just an ordinary ring, so we find that
Hn(M

gp;Z) = 0 for n > 0. From this we conclude that all components of Mgp have the
same homology as a point. Since these components are simple, it follows that they are in fact
contractible, so Mgp is again discrete. □

4.25. Example To see concrete examples where the map M∞ → Mgp fails to be an equiva-
lence, consider the symmetric monoidal groupoid ιFin of finite sets with bijections. Then we
find ιFin =

∐
nBΣn. We find thatM∞ is then given by Z×BΣ∞, and the generator 1 ∈ BΣ1

induces the map Σ∞ → Σ∞ which sends a permutation ρ to (id⨿ ρ) using 1 +∞ =∞. This
map is not surjective, and hence the map ·1: {0}×BΣ∞ → {1}×BΣ∞ is not an equivalence.

4.26. Example Consider Proj(R) and the element R in it. Then Proj(R)∞ has many compo-
nents (in fact, K0(R) many) and the component of P ∈ Proj(R) is given by colimnBAutR(P⊕
Rn). In particular, the component of 0 itself is given by BGL(R) = colimBGLn(R). It follows
that the map BGL(R)→ Ω∞

0 K(R), where the latter denotes the component of 0 in the space
K(R), induces an isomorphism on every homology theory; in particular on integral ordinary
homology.
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4.27. Corollary For a ring R, we have K1(R) ∼= π1K(R).

Proof. As discussed in Example 4.26, Proj(R)∞ → Proj(R)gp = K(R) induces a bijection on
path components, and for the component of 0, we obtain the map BGL(R) → Ω∞

0 K(R). It
fits into a commutative diagram

π1(BGL(R)) π1(K(R))

H1(BGL(R);Z) H1(Ω
∞
0 K(R);Z)

∼=
∼=

where the lower horizontal map is an isomorphism again by Example 4.26. The right vertical
map is also an isomorphism by the Hurewicz theorem (recall that π1K(R) is abelian since
K(R) is a group), and the lower left corner canonically identifies by another application of
the Hurewicz theorem with GL(R)ab = K1(R). □

4.28. Example Let R be a ring. As discussed in Example 4.26, Proj(R)∞ → Proj(R)gp =
K(R) induces a bijection on path components, and for the component of 0, we obtain the
map BGL(R)→ Ω∞

0 K(R) which on π1 induces the canonical map GL(R)→ GL(R)ab. This
map is an isomorphism if and only if E(R) = {1} which in turn is the case if and only if R is
the zero ring. This shows that for M = Proj(R), the map M∞ → Mgp is (essentially) never
an equivalence.

Having seen these examples, one might wonder whetherM∞ is ever equivalent toMgp. This
can be characterized precisely, as we show below. To formulate the result, recall first that
M∞ is an M -module. Let us say that an M -module M ′ is π0(M)-local if for all m ∈ π0(M),
the induced map ·m : M ′ →M ′ is an equivalence. Moreover, recall that part of the definition
of a commutative monoid gives a Σn-equivariant multiplication map M×n → M of anima,

or equivalently, a map M×n
hΣn
→ M . Since for m ∈ M the map ∗ (m,...,m)−−−−−→ M×n is also Σn-

equivariant, one obtains a map BΣn = ∗hΣn → M×n
hΣn
→ M . On π1, we this induces a map

Σn = π1(BΣn)→ π1(M,mn). With these preliminaries out of the way, we have the following
second part of the group completion theorem:

4.29. Theorem (Group completion theorem II) Then the following statements are equivalent:

(1) M∞ is π0(M)-local,
(2) M →M∞ is the initial map to a π0(M)-local space,
(3) the map M∞ →Mgp is an equivalence,
(4) for all m ∈M , π1(M∞,m) is abelian,
(5) for all m ∈M , π1(M∞,m) is hypoabelian, that is, every perfect subgroup is trivial31

(6) for all m ∈M , the map C3 ⊆ Σ3 → π1(M,m3)→ π1(M∞,m
3) is trivial,

(7) for all m ∈M there is an n ≥ 2 such that the map Cn → Σn → π1(M∞,m
n) is trivial.

Proof sketch. (1)⇒(2): We need to show that for a map M → Y with Y π0(M)-local, there
exists a unique extension to M∞. I.e. we need to show that the map

MapM (M∞, Y )→ MapM (M,Y )

is an equivalence. But its source is equivalent to MapM (M, lim·m Y ) ≃ MapM (M,Y ) since
Y is π0(M)-local and hence all the transition maps in the diagram computing lim·m Y are

31Equivalently the maximal perfect subgroup is trivial.
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equivalences. (2)⇒(3): It is a general fact that a module localization is also the localization
in CMon, i.e. that the initial map to a π0(M)-local space is a map of commutative monoids
(with target a group) and initial among such.32 (3)⇒(4)⇒(5) are clear. (4)⇒(6): Follows
since C3 → Σ3 → Σab

3 = Z/2 is trivial. (5)⇒(7): Note that An ⊆ Σn is simple for n ≥ 5,
and hence in particular perfect. It follows that the hypoabelianization of Σn is Z/2, at least
when n ≥ 5. Again, Cn → Σn → Z/2 is trivial for odd n, giving the result. (7)⇒(1): we
need to show that ·m : M∞ → M∞ is an equivalence. For this, we need to recall how to
define this induced map. In fact, it will be more insightful to recall how to define the map
·x : M∞ →M∞ for general x ∈M . It is induced by the following map of diagrams:

M M M . . .

M M M . . .

·m

·x

·m

·x ·x

·m ·m

and the 2-cells witnessing commutativity come from the commutativity of the multiplication
on M , that is from the general homotopy witnessing xm ≃ mx. Now, for x = m, these this
is in general not the trivial homotopy witnessing the tautological equality x2 ≃ x2. Rather,
The trivial homotopy, for x = m, would be the map inducing the identity upon passing to
horizontal colimits. Now, glueing together (n−1)-many of the adjacent squares gives the 2-cell
witnessing mn = mn via the cycle permutation Cn ⊆ Σn → π1(M,mn). If this map becomes
trivial upon mapping to M∞, one can then deduce that the map on horizontal colimits is an
equivalence as needed. □

4.30. Example To see that the equivalent conditions of Theorem 4.29 do happen in practice,
consider rather than Proj(R) the commutative monoids in anima discussed in Example 4.14:
There, we discussed in particular the monoids M being VectK, Euc, and Sph. In these cases,
M∞ is (as an anima) given as follows:

(1) (VectR)∞ = Z× BO,
(2) (VectC)∞ = Z× BU,
(3) (VectH)∞ = Z× BSp,
(4) Euc∞ = Z× BTop, and
(5) Sph∞ = Z× BG.

Now, π1(BO) = π1(BTop) = π1(BG) = Z/2 and π1(BU) = π1(BSp) = 0 (Exercise). In
particular, all these groups are abelian. From Theorem 4.29 (4)⇒(3), we deduce the following
equivalences of anima:

(1) ko ≃ Z× BO,
(2) ku ≃ Z× BU,
(3) ksp ≃ Z× BSp,
(4) ktop ≃ Z× BTop, and
(5) Pic(S) ≃ Z× BG.

32In the category of M -modules, one can perform the operation X 7→ X∞. Under assumption (2), it follows
that X∞ is π0(M)-local for all X and that the map X → X∞ is the initial map to a π0(M)-local M -module.
This then shows that operation X 7→ X∞ refines to a symmetric monoidal localisation from M -modules to
π0(M)-modules. In particular, the image of M is itself a commutative monoid and one checks that it is then
given by Mgp by comparing universal properties.
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To move on, we next aim to describe the map M∞ → Mgp in terms of Quillen’s plus
construction. We recall this construction first.

4.31. Theorem (Quillen) For every anima X, there is a map t : X → X+ satisfying the
following properties:

(1) X+ is hypoabelian,
(2) the map t induces an isomorphism on homology.

Proof. We will define X+ for each component of X individually, so may assume X is con-
nected. Let P be the maximal perfect subgroup of π1(X). We construct X+ in two steps.
First, define X ′ via the pushout ∐

s∈P S
1 X

∐
s∈P ∗ X ′

⨿s

i

Then, by Seifert–van Kampen, we find π1(X
′) ∼= π1(X)/P . We show that π1(X)/P is hy-

poabelian. Indeed, subgroups H of π1(X)/P correspond bijectively to a subgroups P ⊆ H̄ ⊆
π1(X) by taking preimages along the projection π1(X)→ π1(X)/P . In particular, we have a
short exact sequence

1→ P → H̄ → H → 1

and consequently (since P ab = 1) an isomorphism H̄ab → Hab so that H is perfect if and
only if H̄ is perfect which is the case if and only if P = H̄ by the maximality of P .

Now, the map i : X → X ′ is not acyclic, but has only relative homology in degree 2. Indeed,
the long exact sequence of the defining pushout for X ′ reads as follows.

H2(X)→ H2(X
′)→ H2(

∨
P

S2)→ H1(X)→ H1(X
′)

but we have just argued that the map is an isomorphism, as it is isomorphic to the map
π1(X)ab → [π1(X)/P ]ab. We can therefore lift the basis elements of the free abelian group in
the middle of this sequence to elements of H2(X

′). In fact, we can lift them to elements of
π2(X

′) as we show now.
To that end, let Y ′ → X ′ be the universal cover of X ′, i.e. the fibre of the canonical map

X ′ → τ≤1X
′ and define Y → X via the pullback diagram

Y Y ′

X X ′i

It follows that π1(Y ) → π1(X) identifies with the inclusion P ⊆ π1(X). Moreover, we may
consider the defining pushout square for X ′ and pull it back along the map Y ′ → X ′. Since
the pullback functor An/X′ → AnY ′ identifies with the functor Fun(X ′,An) → Fun(Y ′,An),
it preserves colimits. We therefore find a pushout∐

s∈P S
1 ×X′ Y ′ Y

∐
s∈P ∗ ×X′ Y ′ Y ′
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and we have pullback diagrams

S1 ×X′ Y ′ ∗ ×X′ Y ′ Y ′

S1 ∗ X ′

so from ∗ ×X′ Y ′ = π1(X
′) = π1(X)/P , we find an equivalence S1 ×X′ Y ′ ≃ S1 × π1(X)/P .

In total, we therefore have a pushout∐
P×π1(X)/P S

1 Y

∐
P×π1(X)/P ∗ Y ′

and consequently, we obtain the following (diagram of) exact sequence

H2(Y ) H2(Y
′) H2(

∨
P×π1(X)/P S

2) H1(Y ) = 0 0

H2(X) H2(X
′) H2(

∨
P S

2) H1(X) H1(Y )
∼=

since H1(Y ) = π1(Y )ab = P ab and P is perfect. Here, the middle vertical map is the map
induced by the projection P × π1(X)/P → P and is therefore the projection onto a direct
summand. Consider then the commutative diagram

π2(Y
′) H2(Y

′)

π2(X
′) H2(X

′)

∼=

∼=

in which the left vertical map is an isomorphism since Y ′ → X ′ is a covering map and the
top horizontal map is an isomorphism by the Hurewicz theorem, as we recall that Y ′ is
simply-connected. We deduce that the composite

π2(X
′)→ H2(X

′)→ H2(
∨
P

S2)

is surjective, so that for each element p ∈ P , we can choose a (pointed) map αp : S
2 → X ′

whose composite with the map X ′ →
∨
P S

2 is the inclusion of the wedge summand indexed
by p ∈ P . Then we define X+ as the pushout∨

P S
2 X ′

∗ X+

∨pαp
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Using Seifert–van Kampen again, we see that the map π1(X
′)→ π1(X

+) is an isomorphism,
so that X+ is indeed hypoabelian. Consider then the diagram consisting of pushout squares

∨
p∈P S

2 ∗

X X ′ X+

∗
∨
P S

2 X+/X

∨pαp

By construction, the middle vertical composite is the identity, so we deduce that X+/X ≃ ∗,
showing that X → X+ indeed induces an isomorphism on homology. □

In fact, the map t : X → X+ is acyclic, as we explain next. First, we have the following
lemma.

4.32. Lemma Let f : X → Y be a map of anima. Then the following conditions are equivalent.

(1) For every local coefficient system L on Y , the map f∗ : H∗(X; f∗L)→ H∗(Y ;L) is an
isomorphism,

(2) the map X ×Y Ỹ → Ỹ induces an isomorphism upon applying H∗(−;Z); here Ỹ → Y
denotes the universal cover, and

(3) for every point y ∈ Y , the map fiby(f) → ∗ induces an isomorphism upon applying
H∗(−;Z).

A map satisfying any of the above conditions is called acyclic.

Proof. Exercise 1 Sheet 5. □

4.33. Remark In this remark, we explain that the map t : X → X+ is in fact acyclic by

showing that the map Y = X ×X+ X̃+ → X̃+ induces an isomorphism on homology. To see
this, consider the following pullback diagrams

Y Y ′ X̃+

X X ′ X+
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and note that Y ′ → X ′ is a universal cover since X ′ → X+ is a π1-isomorphism. Now, as in
the proof above, one the shows that there is a commutative diagram of pushout squares∐

π1(X)/P

∨
P S

2
∐
π1(X)/P ∗

∨
P×π1(X)/P S

2 ∗

Y Y ′ X̃+

∗
∨
P×π1(X)/P S

2 X̃+/Y

and that the middle the middle vertical map
∨
P×π1(X)/P S

2 →
∨
P×π1(X)/P S

2 is an equiv-

alence, showing that X̃+/Y is contractible, and therefore that Y → X̃+ induces an isomor-
phism on homology.

4.34. Corollary The map t exhibits X 7→ X+ as left adjoint to the inclusion Anhypo ⊆ An of
hypoabelian anima into all anima.

Proof. For a hypoabelian space Y we need to show that the induced map

Map(X+, Y )→ Map(X,Y )

is an equivalence. Since X → X+ induces a bijection on π0, we may assume that X,X+ and
Y connected. We induct over the Postnikov tower of Y . The start case is Y = BG with G
hypoabelian. In this case, the map under consideration is given by HomGrp(π1(X)/P,G)hG →
HomGrp(π1(X), G)hG where G acts via conjugation on the set of group homomorphisms,
thought of as an anima. Indeed, this follows from the fibre sequence

Map∗(T,BG)→ Map(T,BG)→ BG

which exists for every anima T and the fact that for T connected, we have Map∗(T,BG) ≃
Map∗(Bπ1(T ), BG) which is discrete and its π0 is canonically bijective to HomGrp(π1(T ), G),
see [Lan24, Lemma 4.35]. See also [Lan24, Remark 4.36] for a more direct argument. Now,
before taking homotopy orbits of the conjugation action on group homomorphisms, the re-
striction map HomGrp(π1(X

+), G)→ HomGrp(π1(X), G) is injective with image those group
homomorphisms f : π1(X) → G that are trivial upon restriction to P . But f(P ) ⊆ G is a
subgroup which is a quotient of the perfect group P , and hence itself perfect. Since G is
hypoabelian, f(P ) = {1}, so that the map HomGrp(π1(X

+), G) → HomGrp(π1(X), G) is a
bijection. Consequently, upon applying homotopy orbits, the map remains an equivalence
and the induction start is shown. In the inductive step, we obtain a commutative diagram

Map(X+,K(πn(Y ), n)) Map(X+, τ≤nY ) Map(X+, τ≤n−1Y )

Map(X,K(πn(Y ), n)) Map(X, τ≤nY ) Map(X, τ≤n−1Y )
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in which the right vertical map is an equivalence by induction and the left vertical map is an
equivalence, since its induced map on πk is given by Hn−k(X+;πn(Y )) → Hn−k(X;πn(Y ))
which is an isomorphism because the plus construction induces an isomorphism on homology.
Finally, we use that in the commutative diagram

Map(X+, Y ) Map(X,Y )

limnMap(X+, τ≤nY ) limnMap(X, τ≤nY )

≃ ≃

≃

the vertical maps are equivalences as the functor Map(X,−) commutes with limits, and the
lower horizontal map is an equivalence as it is an inverse limit of equivalences as we have just
shown. □

Exercise. Without using the construction, show that if the inclusion Anhypo ⊆ An admits
a left adjoint L, then the unit map X → LX induces an isomorphism on homology. Hint:
Show that a map which induces an isomorphism on cohomology also induces an isomorphism
on homology.

Exercise. Show that the canonical map (X × Y )+ → X+ × Y + is an equivalence for all
anima X and Y .

As a consequence, ifM ∈ CMon(An), we find that the mapM →M+ is one of commutative
monoids, in particular, M+ is canonically an M -module. Moreover, for X an M -module, we
find that X+ is canonically an M+-module.

4.35. Theorem (Group completion theorem III) Let M ∈ CMon(An). Then there are canon-
ical equivalences (M+)∞ ≃ (M∞)+ ≃Mgp and therefore (Mgp)0 = [(M∞)0]

+.

Proof. Let us consider the following square

(M∞)+ Mgp

(M+)∞ (M+)gp≃

in which the top horizontal map is induced by M∞ → Mgp using that Mgp is in particular
hypoabelian. The lower horizontal map is an equivalence due to Theorem 4.29: Indeed, since
the map Cn → π1((M

+)∞,m
n) factors through π1(M

+,mn) which is hypoabelian, the claim
follows from the observation that Σn → C2 is a hypoabelianization for n ≥ 5 and has Cn
in its kernel when n is odd. In particular, (M+)∞ is hypoabelian. The left vertical map is
then the colimit-interchange, i.e. induced by the map M∞ → (M+)∞ using that (−)+ is left
adjoint to the inclusion Anhypo ⊆ An; this is an equivalence because (−)+ is a left adjoint and
hence commutes with the colimit describing (−)∞. It then remains to prove that the map
Mgp → (M+)gp is also an equivalence. The map is one of commutative groups and is hence
simple. Consequently, it suffices to show that the map induces an isomorphism on homology.
But by Theorem 4.22, on homology this map induces the map

H∗(M)[π0(M)−1]→ H∗(M
+)[π0(M)−1]

which is an isomorphism since the map H∗(M)→ H∗(M
+) is an isomorphism of commutative

rings. □
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4.36. Example Coming back to Example 4.36, it turns out that Z × BΣ+
∞ ≃ (Fin≃)gp = S

is the sphere spectrum; this is called the Barratt–Priddy–Quillen theorem. Indeed, consider
the free commutative monoid functor An → CMon(An), i.e. the left adjoint of the inclusion
functor. It is a general fact that this admits a formula as follows: X 7→

∐
n≥0(X

×
n )hΣn . For

X = ∗, we obtain
∐
n≥0BΣn ≃ Fin≃. Hence, we find that ιFingp is the free commutative

group on ∗. Using that CGrp(An) ≃ Sp≥0, the free commutative group functor identifies with
the functor Ω∞, so we deduce that ιFingp = S[∗] = S.

4.37. Example As anima, we have K(R) = K0(R) × K(R)0 and K(R)0 ≃ BGL(R)+. We
warn that this is really only an equivalence of anima, and is not compatible with the group
structure in general. Here, we regard BGL(R)+ ≃ K(R)0 as a group. Indeed, such product
decompositions are not true on the level of spectra. For instance, we claim that S → K(Z)
induces an equivalence τ≤1S→ τ≤1K(Z). Indeed, we have just argued in Example 4.36 that
S = Z × BΣ+

∞ and K(Z) = Z × BGL(Z)+, so it suffices to show that Σ∞ → GL(Z) induces
an isomorphism on abelianizations. But as spectrum one can show that

τ≤1S = fib(Z Sq2◦red2−−−−−→ Σ2Z/2)

which is not equivalent to Z ⊕ ΣZ/2 (this is equivalent to saying that Sq2red2 is not null-
homotopic). Therefore, there is also no equivalence of spectra K(Z) ≃ K0(Z)× BGL(Z)+.

4.38. Lemma Let f : X → Y be acyclic. Then for all x ∈ X, the map π1(X) → π1(Y ) is
surjective with perfect kernel. Moreover, if f induces an isomorphism on π1 of all components,
then f is an equivalence.

Proof. Exercise 4 Sheet 5. □

4.39. Lemma Let F → E → B be a fibre sequence with B hypoabelian. Then F+ → E+ → B
is again a fibre sequence.

Finally, let us also identify π2K(R). To that end we have:

4.40. Proposition Let G be a discrete group with maximal perfect subgroup P . Let f : BG→
(BG)+ be the plus construction of its classifying space and let F = fib(f). Then there is an
induced short exact sequence

1→ π2((BG)
+)→ π1(F )→ P → 1

and this is the universal central extension of P .

Proof. The long exact sequence in homotopy groups gives an exact sequence

π2(BG)→ π2((BG)
+)→ π1(F )→ G→ G/P → 1

since BG→ (BG)+ induces G→ G/P on π1, the kernel of which is P . Moreover, π2(BG) = 0
so we have the claimed short exact sequence; here we use that we know that the image
of the boundary map π2((BG)

+) → π1(F ) is central, which is in fact true for any fibre
sequence. By Proposition 3.66 it now remains to show H1(π1(F )) = H2(π1(F )) = 0. By
Remark 4.33, the plus construction is acyclic, so we deduce H∗(F ) = H∗(∗). Now in general,
H1(X)→ H1(π1(X)) is an isomorphism, andH2(X)→ H2(π1(X)) is surjective, since Bπ1(X)
is obtained from X by attaching cells of dimension ≥ 3. Hence we deduce H1(π1(F )) =
H2(π1(F )) = 0 as needed. □
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Applying this to GL(R), we obtain:

4.41. Corollary For a ring R, there is a canonical equivalence K2(R) ∼= π2(K(R)).

Proof. Indeed, we have just argued that π2K(R) is the kernel group of the universal central
extension of E(R) as this is the maximal perfect subgroup of GL(R). Earlier, we have argued
that K2(R) is also the kernel of the universal central extension of E(R), so we obtain the
desired result. □

4.42. Remark Recall that K1(R) ∼= H1(GL(R)) and K2(R) ∼= H2(E(R)). One may wonder
whetherK3(R) = π3K(R) also has such a homological description. The answer is yes: Gersten
observed that one has K3(R) ∼= H3(St(R)). To see this, consider the fibre sequence

BE(R)→ BGL(R)→ BK1(R).

It is a general fact that applying the plus construction to a fibre sequence whose base anima
is hypoabelian yields another fibre sequence, see the exercises. In particular, it follows that

BE(R)+ → BGL(R)+ → BK1(R)

is again a fibre sequence, so BE(R)+ is 1-connected. Similarly, there is a fibre sequence

BSt(R)+ → BE(R)+ → K(K2(R), 2)

so BSt(R)+ is 2-connected. It follows that H3(BSt(R)) ∼= H3(BSt(R)+) ∼= π3(BSt(R)+) ∼=
π3(BE(R)+) ∼= π3(BGL(R)

+) ∼= π3K(R).

4.43. Remark A slightly different way to obtain the comparison K2(R) ∼= π2K(R) (but still
using the isomorphism K2(R) = H2(E(R))) goes as follows. Use that the 2-truncation of
K(R) is, as space, a product, i.e. τ[1,2]Ω

∞K(R) ≃ K(K2(R), 2) ×K(K1(R), 1).
33 It follows

that

H2(Ω
∞
0 K(R)) ∼= H2(K2(R))⊕H2(K1(R))

and hence K2(R) ∼= ker[H2(Ω
∞
0 K(R)) → H2(K1(R))]. Then one can deduce from the fibre

sequence

BE(R)→ BGL(R)→ BK1(R)

and the Serre spectral sequence that π2K(R) ∼= H2(E(R)).

4.3. Milnor patching. In this section, we want to further motivate the definition of K1 by
establishing the excision exact sequence of Bass, Milnor, Murthy. The argument is based
on Milnor’s patching construction. The basic setup uses the following definition. We will
consider a commutative square of rings

A B

A′ B′

f

p′ p

f ′

4.44. Definition A square of rings as above is called a Milnor square if it is a pullback and
the map p : B → B′ is surjective.

33This is a result about arbitrary 2-fold loop sapces, but it is not quite obvious, see [Arl90].
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4.45. Remark Assume I ⊆ A is an ideal of A and that f : I → f(I) is an isomorphism onto an
ideal f(I) ⊆ B. Then setting A′ = A/I and B′ = B/f(I) is a Milnor square. Conversely, if a
square is a Milnor square, then A→ A′ is also surjective, and for I = ker(p′ : A→ A′), the map
f : I → f(I) is an isomorphism (since the diagram is a pullback), and f(I) = ker(p : B → B′).

Moreover, for a Milnor square, the underlying diagram of abelian groups is also a pushout,
i.e. the sequence

0→ A
(p′,f)−−−→ A′ ⊕B f ′−p−−−→ B′ → 0

is exact.

4.46. Example (The coordinate axes) Let k be a commutative ring. Then the square

k[X,Y ]/(XY ) k[Y ]

k[X] k

is a Milnor square.

4.47. Example (The nodal curve) Let k be a commutative ring with 2 ∈ k×. Then the square

k[X,Y ]/(Y 2 −X3 −X2) k[T ]

k k × k

f

p (ev1,ev−1)

∆

where p(X) = p(Y ) = 0 and f(X) = T 2 − 1 and f(Y ) = T (T 2 − 1), is a Milnor square.

4.48. Example (The cuspidal curve) Let k be a commutative ring. Then the square

k[X,Y ]/(Y 2 −X3) k[T ]

k k[T ]/(T 2)

f

q pr

where q(X) = q(Y ) = 0 and f(X) = T 2 and f(Y ) = T 3, is a Milnor square.

4.49. Example (Rim’s square) Let p be a prime. Then

Z[Cp] Z[ζp]

Z Fp

is a Milnor square.

4.50. Example (Group rings) Let G be a finite group of order N . Let M be a maximal
Z-order in Q[G] containing Z[G]. Then I = N ·M turns out to be a common ideal in Z[G]
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and M, and the square

Z[G] M

Z[G]/I M/I

is a Milnor square.

Now suppose given a Milnor square as above. Then we may apply Proj(−) to it to obtain
a commutative diagram of (symmetric monoidal, under direct sum) categories

Proj(A) Proj(B)

Proj(A′) Proj(B′)

Consequently, we obtain a functor θ : Proj(A) → Proj(A′) ×Proj(B′) Proj(B). An object in
the target of this functor consist of a triple (P,Q, α) where P ∈ Proj(A′), Q ∈ Proj(B) and

α : P ⊗A′ B′ ∼=−→ Q⊗B B′ is an isomorphism of B′-modules. Morphisms between such objects
are given as the pullback

Hom×((P,Q, α), (P
′, Q′, α′)) HomB(Q,Q

′)

HomA′(P, P ′) HomB′(P ⊗A′ B′, Q′ ⊗B B′)

in which the right vertical map sends f : Q→ Q′ to the composite

P ⊗A B′ α−→ Q⊗B B′ f⊗BB
′

−−−−→ Q′ ⊗B B′

and the lower horizontal map sends g : P → P ′ to the composite

P ⊗A′ B′ g⊗A′B′

−−−−−→ P ′ ⊗A′ B′ α′
−→ Q′ ⊗A′ B′.

Given this, we now have the following theorem due to Milnor.

4.51. Theorem (Milnor patching) The just described functor

θ : Proj(A)→ Proj(A′)×Proj(B′) Proj(B)

is an equivalence of categories.

Proof. To prove fully faithfulness, we need to show that for P, P ′ ∈ Proj(A), the square

HomA(P, P
′) HomB(P ⊗A B,P ′ ⊗A B)

HomA′(P ⊗A A′, P ′ ⊗A A′) HomB′(P ⊗A B′, P ⊗A B′)
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is a pullback diagram. But using the extensions-and-restrictions of scalars adjunctions, this
square is isomorphic to the square

HomA(P, P
′) HomA(P, P

′ ⊗A B)

HomA(P, P
′ ⊗A A′) HomA(P, P

′ ⊗A B′)

which in turn is obtained by applying the (exact) functor HomA(P,−) to the square obtained
from the original Milnor square upon applying P ′ ⊗A −. Since P ′ is projective, the tensored
square is again cartesian (because it can equivalently be described as applying the left exact
functor HomA(DP

′,−)) and again, it remains cartesian upon further applying HomA(P,−).
The meat in Milnor’s theorem is therefore to prove that θ is essentially surjective. To that

end, pick an element in its target (P,Q, α) consisting of a finite projective A′-module P , a
finite projective B-module Q and an isomorphism of B′-modules α : P ⊗A′ B′ → Q ⊗B B′.
Consider then the pullback diagram

M(P,Q, α) Q

P Q⊗B B′

i

f

where f is the composite P → P ⊗A′ B′ α−→ Q ⊗B B′. Then i and f are tautologically A-
linear, so M(P,Q, α) is canonically and A-module and the square is one of A-modules. On
the exercise sheet we will prove:

(1) M(P,Q, α) is finite projective over A,
(2) the canonical maps M(P,Q, α) ⊗A A′ → P and M(P,Q, α) ⊗A B → Q are isomor-

phisms, and
(3) the resulting isomorphism

P ⊗A′ B′ ∼=M(P,Q, α)⊗A B′ ∼= Q⊗B B′

is precisely the isomorphism α.

These then give the essential surjectivity of θ. □

4.52. Remark One of the ingredients of the steps in the proof above is the following result
which we will also make explicit use of: Assume that S is in the image of an invertible matrix
T ∈Mn,m(B). Then M(A′n, Bm, α) ∼= An is finite free.

4.53. Corollary For a Milnor square, the associated sequence

K0(A)
(f,p′)−−−→ K0(A

′)⊕K0(B)
f ′−p−−−→ K0(B

′)

is exact.

Proof. That the composite is trivial is immediate. Let (x, y) ∈ K0(A
′)⊕K0(B) be such that

f ′∗(x) = p∗(y). Write x = [P ]− [A′n] and y = [Q]− [Bm]. Replacing then x by x+[A′n+m] and
y by y+[Bn+m] (and noting that [An+m] lifts [A′n+m] and [Bn+m], we see that we may assume
that x = [P ] and y = [Q]. In that case, we obtain that P ⊗A′ B′ and Q⊗B B′ represent the
same element in K0(B

′), so they become isomorphic after adding B′k for sufficiently large k,
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via an isomorphism α. Therefore, (P⊕A′k, Q⊕Bk, α) is an object of Proj(A)⊗Proj(B′)Proj(B).
By Milnor’s theorem, there is then a finite projective A-module M such that

f∗[M ] = [P ] + [A′k] and p′∗[M ] = [Q] + [Bk].

We find that [M ]− [Ak] ∈ K0(A) is a preimage of ([P ], [Q]), giving the desired exactness. □

4.54. Remark In general, the map K0(A
′)⊕K0(B)→ K0(B

′) need not be surjective. Indeed,
in the case of the nodal curve over a field of characteristic ̸= 2, we have the maps

K0(k)⊕K0(k[T ])
∆∗−(ev1,ev−1)∗−−−−−−−−−−→ K0(k × k)

Now recall that k[T ] is a PID, so K0(k) → K0(k[T ]) is an isomorphism. We then see that
the map in question sends a pair (x, y) to the pair (x − y, x − y), and is consequently not
surjective. This phenomenon leads to the introduction of negative K-groups, and once they
are in place, the above sequence extends to the right indefinitely. We will come to this later.

4.55. Remark In general, the map K0(A)→ K0(A
′)⊕K0(B) need not be injective. Indeed,

let us analyze its kernel concretely. So assume [P ]− [An] ∈ K0(A) maps to zero. This simply
means that P⊗AA′ and P⊗AB are stably isomorphic to A′n and Bn, respectively. Therefore,
for suitable k ≥ 0, we have (P ⊕Ak)⊗A A′ ∼= A′n+k and (P ⊕Ak)⊗A B ∼= Bn+k. Hence, by
Milnor’s patching Theorem 4.51 we obtain

P ⊕Ak ∼=M(A′n+k, Bn+k, α)

for a suitable isomorphism α : B′n+k → B′n+k.

4.56. Lemma For a Milnor square, there is a canonical map

∂ : K1(B
′)→ K0(A)

induced by sending an invertible matrix S ∈ GLn(B
′) to [M(A′n, Bn, S)] − [An]. This map

surjects onto the kernel of K0(A)→ K0(A
′)⊕K0(B).

Proof. First we note that

∂[S] = [M(A′n, Bn, S)]− [An] = [M(A′n+1, Bn+1, S ⊕ 1]− [An+1] = ∂[S ⊕ id]

so the described map gives a well-defined map GL(B′)→ K0(A). We claim that this map is
a monoid homomorphism, this will also be part of the exercise sheet. Hence ∂ : GL(B′) →
K0(A) as described above is a group homomorphism and hence induces the map ∂ : K1(B

′)→
K0(A) by the universal property of abelianizations. The fact that the image of this map is
the kernel of K0(A)→ K0(A

′)⊕K0(B) is the argument of Remark 4.55. □

4.57. Theorem (Bass, Milnor, Murthy) For a Milnor square, the associated sequence

K1(A)
(p′,f)−−−→ K1(A

′)⊕K1(B)
f ′−p−−−→ K1(B

′)
∂−→ K0(A)

(p′,f)−−−→ K0(A
′)⊕K0(B)

f ′−p−−−→ K0(B
′)

is exact.

Proof. First, we show that the composite K1(A
′)⊕K1(B)→ K1(B

′)→ K0(A) is trivial. To
do so, it suffices to show that K1(A

′) → K1(B
′) → K0(A) and K1(B) → K1(B

′) → K0(A)
are trivial. To see this, let S ∈ GLn(A

′) represent an element of K1(A
′). Then by definition,

the image of the composite is given by [M(A′n, Bn, S)]− [An] which vanishes by Remark 4.52;
note that here, we also denote by S the image under the map GL(A′) → GL(B′). The
same argument applies to the second composite under investigation. Now let S ∈ GLn(B

′)
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represent an element of ker(∂). This means that for k ≥ 0 large enough M(A′k, Bk, S) –
where we abusively denote S ⊕ id again by S – is isormorphic to Ak, via an isomorphism ϕ.
Then the maps

A′k ϕ⊗AA
′

−−−−→M(A′k, Bk, S ⊕ id)⊗A A′ ∼= A′k

and

Bk ϕ⊗AB−−−−→M(A′k, Bk, S ⊕ id)⊗A B′ ∼= Bk

are again isomorphisms ϕA′ and ϕB, which fit into a commutative diagram

Ak A′k ⊕Bk

M(A′k, Bk, S) A′k ⊕Bk

(p′,f)

ϕ (ϕA′ ,ϕB)

where the horizontal maps are the canonical inclusions part of the Milnor square and defining
pullback square forM(A′k, Bk, S). The claim is that this implies that S = [ϕB⊗BB′]·[ϕA′⊗A′

B′]−1, showing that S is indeed in the image of the map K1(A
′)⊕K1(B)→ K1(B

′). Finally,
for exactness of the sequence at K1(A

′) ⊕ K1(B
′), it is clear that the relevant composite is

trivial. So consider a pair of matrices (S, T ) ∈ GL(A′)×GL(B) such that f ′(S)p(T )−1 = idB′

or in other words, where f ′(S) = p(T ). Then this equation holds for all entries of the matrix,
so that the exact sequence associated to the Milnor square

A
(p′,f)−−−→ A′ ⊕B f ′−p−−−→ B′

shows that there is a matrix U ∈Mn(A) with p
′(U) = S and f(U) = T . The same argument

applies to the respective inverses of S and T , showing that U is in fact invertible. □

4.58. Remark Consider a map between Milnor squares, that is, a commutative cube where
to parallel faces are Milnor squares:

A B C D

⇒

A′ B′ C ′ D′

Then the diagram of Bass–Milnor–Murthy sequences

K1(A) K1(A
′)⊕K1(B) K1(B

′) K0(A) K0(A
′)⊕K0(B) K0(B

′)

K1(C) K1(C
′)⊕K1(D) K1(D

′) K0(C) K0(C
′)⊕K0(D) K0(D

′)

∂

∂

commutes. This is a direct consequence of the functoriality of K1(−) and K0(−) except for
the diagram involving the boundary maps ∂. Denote by φ the map A→ C and by ψ : B′ → D′

the maps part of the map of Milnor squares. To see that the remaining diagram commutes,
consider S ∈ GLn(B

′). Then we claim that there is an isomorphism

M(A′n, Bn, S)⊗A C ∼=M(C ′n, Dn, ψ(S))
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from which the desired commutativity follows readily. To see this isomorphism, recall that
M(A′n, Bn, S) is a finite projective A-module. It follows that the square

M(A′n, Bn, S)⊗A C M(A′n, Bn, S)⊗A D

M(A′n, Bn, S)⊗A C ′ M(A′n, Bn, S)⊗A D′

is again a pullback square. Moreover, we have

M(A′n, Bn, S)⊗A D ∼=M(A′n, Bn, S)⊗A B ⊗B D ∼= Bn ⊗B D ∼= Dn

and similarly

M(A′n, Bn, S)⊗A C ∼= Cn and M(A′n, Bn, S)⊗A D′ ∼= D′n

as follows from point (2) in the list appearing in the proof of Milnor’s patching Theorem 4.51.
Consequently, there is a pullback square

M(A′n, Bn, S)⊗A C Dn

C ′n D′n

and it follows from point (3) in the same list that the vertical map Dn → D′n is the canonical

one, while the map C ′n → D′n in the above diagram is the composite C ′n → D′n ψ(S)−−−→ D′n.
Consequently, we find

M(A′n, Bn, S)⊗A C ∼=M(C ′n, Dn, ψ(S))

as desired.

4.59. Remark We will later define negative K-groups Kn(R) for n < 0 and any ring R. The
Bass–Milnor–Murthy excision sequence then continues indefinitely to the right with these
negative K-groups; compare with Remark 4.54. Indeed, we recall that K−n−1(R) is a direct
summand of K−n(R[t

±1]) and given by the cokernel of the map

K−n(R[t])⊕K−n(R[t
−1])→ K−n(R[t

±1]).

Then we observe that tensoring a Milnor square (over Z) with Z[t±1], Z[t], or Z[t−1] yields
another Milnor square. Consequently, we obtain an exact sequence

K1(A[t
±1])→ K1(A

′[t±1])⊕K1(B[t±1])→ K1(B
′[t±1])→ K0(A[t

±1])→ . . .

and similarly for polynomial rings in place of Laurent polynomials; the BMM sequence for
the polynomial rings maps to the above BMM sequence for the Laurent polynomial rings by
Remark 4.58, so passing to the cokernels, using that they form direct summands, we obtain
an exact sequence

K0(A)→ K0(A
′)⊕K0(B)→ K0(B

′)→ K−1(A)→ K−1(A
′)⊕K−1(B)→ K−1(B

′)

This procedure may be continued inductively, so that the Bass–Milnor–Murthy sequence
associated to a Milnor square continues indefinitely to the right.
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4.60. Example We compute K0 of the coordinate axes, the nodal curve, and the cusp over a
field k (of characteristic different from 2 is case of the nodal curve) using the BMM sequence.
The outcome is

(1) K0(k[X,Y ]/(XY )) = Z,
(2) K0(k[X,Y ]/(Y 2 −X3 −X2)) = k× ⊕ Z,
(3) K0(k[X,Y ]/(Y 2 −X3)) = k ⊕ Z.

Taking for granted that K−n(k) = K−n(k[T ]) = K−n(k[T ]/T
2) = 0 for all n > 0 (we will

perhaps prove this later), we also find

(1) K−1(k[X,Y ]/(XY )) = 0,
(2) K−1(k[X,Y ]/(Y 2 −X3 −X2)) = Z,
(3) K−1(k[X,Y ]/(Y 2 −X3)) = 0.

All even lower K-groups vanish as follows immediately from the above fact. This is no
accident: Recall that Weibel’s conjecture (which is now a theorem) says that there are no non-
trivial negative K-groups beyond −dim(X) in case X is Noetherian of finite Krull dimension.
In the case of regular Noetherian schemes, we might also show that all negative K-groups
vanish.

4.61. Example Let us analyze the BMM sequence for the Rim square. It reads as follows:

K1(Z)⊕K1(Z[ζp])→ K1(Fp)→ K0(Z[Cp])→ K0(Z)⊕K0(Z[ζp])→ K0(Fp)→ . . .

Since Z[ζp]× → F×
p is surjective andK0(Z)→ K0(Fp) is an isomorphism, the mapK0(Z[Cp])→

K0(Z[ζp]) ∼= Z ⊕ Cl(Z[ζp]) is an isomorphism and K−n(Z[Cp]) = 0 for all n > 0 since Z,Fp
and Z[ζp] are all regular Noetherian and hence have trivial negative K-groups.

We end this part on lower K-groups with a theorem of Swan’s, saying that the above
excision sequence cannot be extended to the left in general.

4.62. Theorem (Swan) There is no functor F : Rings→ Ab such that for any Milnor square,
there is an associated exact sequence

F (A)→ F (A′)⊕ F (B)→ F (B′)
∂−→ K1(A)→ K1(A

′)⊕K1(B)→ . . .

Proof. Fix a commutative ring k ̸= 0. Consider then the rings

R =
{(

a b
0 a

)
| a, b ∈ k

}
and S =

{(a b
0 c

)
| a, b, c ∈ k

}
and note that R is commutative. There are then ring maps R→ k and S → k × k given by(

a b
0 a

)
7→ a and

(
a b
0 c

)
7→ (a, c).

Both these maps admit sections, by setting the off-diagonal entry zero. There is then a Milnor
square

R S

k k × k
If there exists a functor F with the prescribed property, the split surjectivity of S → k × k
shows that F (S)→ F (k×k) is also surjective, resulting in the injectivity of the map K1(R)→
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K1(S)⊕K1(k). This, however, is not the case. To see this, pick 0 ̸= x ∈ k and consider the

element

(
1 x
0 1

)
in R× \ {1}. Since R is commutative, this element is non-trivial in K1(R).

Its image in K1(k) is represented by 1 ∈ k and hence trivial. Now assume that k is such that
there exists x ∈ k \ {0} such that 1− x ∈ k× is invertible; e.g. let k be a field with at least 3
elements and pick x ∈ k \ {0, 1}. Then we have that(

1− x −1
0 1

)
is invertible with inverse given by(

(1− x)−1 (1− x)−1

0 1

)
.

Moreover (
1 1
0 1

)(
1− x −1
0 1

)(
1 −1
0 1

)(
(1− x)−1 (1− x)−1

0 1

)
=

(
1 x
0 1

)
showing that the right hand element is a commutator of invertible elements in S, and is hence
in particular trivial in K1(S). □

4.63. Remark In fact, for any commutative ring k with x ∈ k \ {0}, the invertible element(
1 x
0 1

)
in S represents the trivial element in K1(S). You can think about this as an exercise,

or wait a bit. I’ll add the argument here soon.

The fact that the BMM-sequence therefore cannot be extended to the left has been a
hindering fact for further computations in higher K-groups. In joint work with Tamme
[LT19], this problem has been rectified to some extend. We might come to this theorem and
some of its applications later.

5. K-theory for ∞-categories

It is a crucial fact about K-theory that it is really defined for reasonably general categories;
for instance at this point it is not clear how to defineK(X) for a scheme X: Group completing
vector bundles over X, for instance, already has the wrong π0, since in K0(X), we want to
convert short exact sequences of vector bundles into sums – and this is in general not true when
X is not affine. In principle, we could try to formally extend K-theory from affine schemes to
all schemes, say via right Kan extension along Affop ↪→ Schop, or we could consider K-theory
as a presheaf on Aff and sheafifiy with respect to the Zariski topology; the result then formally
extends to a Zariski sheaf on schemes; both these definitions in fact are the “correct” ones,
but this is largely due to the fact that K : Affop → Sp≥0 is already a Zariski sheaf. However,
to prove this, it is very convenient to have a definition of K-theory for suitable categories.
With the group completion definition we gave, it is not so clear that K-theory is a sheaf
(at least, I do not know of a way of proving this directly from, say, the group completion
theorem).
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5.1. K-theory of exact ∞-categories. There are different categorical setups one can
choose for the domain of a K-theory functor on categories. I’ve chosen to use that of ex-
act ∞-categories for this course. These contain exact 1-categories in Quillen’s sense as well
as stable ∞-categories as examples; this is the reason for my choice: I like to think in stable
∞-categories, but Quillen’s original arguments are in terms of exact 1-categories. Most of
the following material on exact∞-categories is taken from [SW25, Sau23]. I thank Christoph
Winges for answering several questions of mine.

5.1. Definition An ∞-category C is called

(1) pointed if it admits a zero object 0; that is, an initial object which is also terminal.
(2) semi-additive if it is pointed, admits finite coproducts which are also finite products.

We write ⊕ for the resulting binary (co)product.
(3) additive if it is semi-additive and every object x ∈ C is group-like, that is, the map

x⊕ x→ x⊕ x given by the fold map in the first product factor of the target and the
projection in the second product factor of the target, is an equivalence.

(4) stable if it is additive, admits finite colimits, and a square in C is a pushout if and
only if it is a pullback.34

We say that a functor between pointed categories is reduced if it preserves the zero object,
between semi-additive categories is additive if it preserves finite (co)products, and between
stable categories is exact if it is additive and preserves pushout squares.35 We denote by Cat∗∞,
CatΠ∞, Catst∞ the ∞-categories of pointed, additive, and stable ∞-categories (with reduced,
additive, and exact functors, respectively).

5.2. Lemma The ∞-categories CatΠ∞ and Catst∞ are semi-additive.

Proof. Since (co)limits in product categories are formed factor-wise, it is readily checked that
the product of two additive or stable categories is again additive or stable. This shows that
CatΠ∞ and Catst∞ have finite products. The empty product is given by the terminal category
∗; this is stable (exercise) and since exact and additive functors are in particular reduced, we
find that ∗ is also initial in CatΠ∞ and Catst∞; we then write 0 for this category. Now we have
to show that if C,C′ are additive or stable, then the functors C× 0 → C× C′ ← 0× C′ make
C× C′ into a coproduct of C and C′. For this, one observes the equivalence

(x, y) = (x, 0)⊕ (0, y) ∈ C× C′

so that given additive or exact functors F : C → D and F ′ : C′ → D, the only compatible
additive extension to C × C′ is given by (x, y) 7→ F (x) ⊕ F ′(y). Exercise: Check that this
functor is in fact additive or exact. □

5.3.Definition An exact ∞-category is an additive∞-category E together with subcategories
inE and prE of inclusions and projections satisfying the following conditions.

(1) For all x ∈ E, the map 0→ x is an inclusion and the map x→ 0 is a projection.
(2) the class of inclusions is stable under pushouts (along arbitrary maps)
(3) the class of projections is stable under pullbacks (along arbitrary maps)

34It follows from this definition that a stable ∞-category also has finite limits and that the suspension and
loop functors are inverse equivalences.

35Equivalently, an exact functor between stable ∞-categories preserves finite colimits. Moreover, a functor
between stable ∞-categories is exact if and only if it preserves finite limits.
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(4) For a commutative square

x y

x′ y′

i

p q

j

the following are equivalent:
(a) i is an inclusion, p is a projection, and the square is a pushout,
(b) j is an inclusion, q is a projection, and the square is a pullback,
Any such square is called exact. Exact squares with x′ = 0 are called exact sequences.

For E,E′ exact ∞-categories, we let Funex(E,E′) be the full subcategory on functors which
preserves exact squares. An exact subcategory of an exact ∞-category E is an additive
subcategory A ⊆ E such that for any exact sequence

X Y Z

with X,Z ∈ A, it follows that Y ∈ A. With the restricted inclusions and projections, A ⊆ E

then becomes an exact functor. We denote by Catex∞ the ∞-category of exact ∞-categories.

5.4. Remark Let E be an exact ∞-category. Then Eop is canonically exact with inEop = prE
and prEop = inE. Similarly, the opposite of an exact functor is again exact.

5.5. Remark A Waldhausen ∞-category is a pointed ∞-category W equipped with a sub-
category inW of inclusions satisfying the following axioms:

(1) for all x ∈W, the map 0→ x is an inclusion,
(2) the class of inclusions is closed under pushouts.

A functor between Waldhausen ∞-categories is called exact if it is reduced and preserves
inclusions and pushouts along inclusions. In particular, an exact ∞-category (E, inE,prE)
gives rise to two Waldhausen categories: (E, inE) and (Eop,pr(E)op = in(Eop)) and it follows
from Lemma 5.12 that a functor between exact ∞-categories is exact if and only if the same
functor viewed as functors between the above two induced Waldhausen categories is exact.

5.6. Remark The ∞-category Catex∞ is also semi-additive: For this, note that if E and E′ are
exact ∞-categories, E×E′ carries an induced exact structure given by in(E×E′) = inE× inE′

and pr(E × E′) = prE × prE′. With this definition, it is immediate to see that E × E′ is a
product in Catex∞. Therefore, we need to show again that it is also a coproduct. As in the
case of stable ∞-categories, this follows from the fact that the sum of two exact squares is
exact (exercise).

5.7. Example A stable∞-category C can be viewed as an exact∞-category by letting inC =
prC = C. This yields a fully faithful inclusion Catst∞ ⊆ Catex∞: Indeed, a functor between stable
categories is exact if and only if it is so when viewed as a functor between exact∞-categories.

5.8. Example There is a fully faithful inclusion CatΠ∞ ⊆ Catex∞ whose image consists of
exact ∞-categories with minimal exact structure, i.e. where inclusions are maps of the form
A→ A⊕B and where the projections are maps of the form A⊕B → B. In fact, this functor
is left adjoint to the forgetful functor Catex∞ → CatΠ∞, which forgets the exact structure of E
(in other words, this forgetful functor is a Bousfield colocalization). Indeed, an exact functor
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out of a minimal exact ∞-category is really just an additive functor (Exercise. Hint: Use
Lemma 5.12).

5.9. Example An abelian category A is canonically an exact category where inclusions are
the monomorphisms and projections are the epimorphisms (see Exercise Sheet 8). Exact
sequences in an abelian category are then the same datum as exact sequences in its associated
exact category.

5.10. Remark Finally, an exact (and additive) ∞-category can well be an ordinary category.
In fact, ordinary exact categories in the sense of Quillen are examples of exact ∞-categories
(Exercise). However, a stable ∞-category is an ordinary category if and only if it is the zero
category 0, so stable categories are really a phenomenon of higher category theory having no
direct classical counterpart.36

5.11. Lemma Let E be an exact ∞-category and consider a commutative square in E

x y

z w

i

f g

j

in which i and j are inclusions. Then the square is a pushout if and only if y/x→ w/z is an
equivalence. Here y/x = cofib(i) and w/z = cofib(j) are the cofibres of i and j, respectively.

Proof. If the square is a pushout, then the map on horizontal cofibres is indeed an equivalence.
So let us prove the converse. First, we note that the square under investigation is a pullback:
Indeed, it participates in a commutative diagram

x y

z w

0 w/z

whose outer and lower squares are exact by the assumption that y/x→ w/z is an equivalence.
Hence, they are pullbacks, so pasting pullbacks, we find that the square in question is a
pullback. Denote by p = z ⨿x y the pushout of the above square. We obtain an induced
map p → w whose composite with z → p is j. Moreover, z → p is again an inclusion, since
inclusions are closed under pushouts. Hence, if we show the conclusion of the lemma in the
case where x→ z is the identity of x, then the general case follows. In this case, we note that

36Its closest such counterpart is that of a triangulated category, but this is of different nature: Being stable
is a property, whereas a triangulated category is an additive category equipped with extra structure satisfying
various axioms.
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the square participates in the following big commutative diagram

x x⊕ x x⊕ y

x x⊕ x x⊕ y

0 x y

0 x w

(id,−id)

sh

id⊕i

sh′

i1 id⊕i

pr2 pr2

i

g

j

where sh is given by the matrix

(
1 0
1 1

)
and sh′ is given by the matrix

(
1 0
i 1

)
; note that

both are equivalences since E is in particular additive. All squares in this diagram except for
the bottom right one are exact squares and in particular pullbacks and pushouts and we have
already observed that the bottom right square is a pullback.

The right most vertical composite is also the left vertical composite in the diagram

x⊕ y y

x⊕ w w

w w/x

pr2

id⊕g g

pr2

j+id

whose top square is both a pullback and a pushout (it is a sum of two such squares). Exercise:
In an additive ∞-category, a square is a pullback if and only if the induced map on (vertical
or horizontal) fibres is an equivalence. It follows that the bottom square is a pullback as
well, as the induced map on horizontal fibres is the identity of x. Moreover, the right vertical
composite is equivalent to y → y/x→ w/x whose latter map is an equivalence by assumption
and whose former map is a projection. We deduce that in the big upper diagram, the right
most vertical composite is a projection. It follows that the big combined square is an exact
square, and hence also a pushout. It follows that also the square under investigation is a
pushout as claimed. □

5.12. Lemma An exact functor between exact ∞-categories preserves inclusions, projections,
pushouts along inclusions, pullbacks along projections, and is additive.

Proof. Let F : E → E′ be an exact functor and consider an inclusion x ↪→ y in E. Then the
associated squares

x y Fx Fy

0 y/x 0 F (y/x)

are exact. Hence by axiom (4), we find that in the right square Fx→ Fy is an inclusion, Fy →
F (y/x) ≃ Fy/Fx is a projection, and the square is also a pullback square. It follows that F
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preserves inclusions, the same argument applied to F op : Eop → E′op, compare Remark 5.4,
shows that F also preserves projections.

Now consider in addition an arbitrary morphism x→ z and the diagrams

x y Fx Fy

z w Fz Fw

in which the left square is a pushout. Since F is exact, it preserves cofibres, so the right
square above is a pushout as a consequence of Lemma 5.11. The same argument applied to
F op shows that F preserves pullbacks along projections. Finally, to see that F is additive,
we note that for x, y ∈ E, we have a pushout diagram

0 y

x x⊕ y

which is preserved by F as we have just shown. Since F is reduced, we deduce that F (x⊕y) ≃
Fx⊕ Fy as needed. □

Let us now mention some concrete examples of exact categories.

5.13. Example (1) Let A be an abelian category. Then it admits an exact structure with
inclusions the monomorphisms and projections the epimorphisms. Exact sequences
are then simply exact sequences in the usual sense. Hence, any exact subcategory of
an abelian category is canonically an exact category.

(2) In particular, for a scheme X, the category QCoh(X) is an exact category. Concretely,
the projections are the maps which are epimorphisms on stalks, and the inclusions
are kernels of projections.

(3) LetX be a scheme. The category Vect(X) of vector bundles onX is an exact category;
projections and inclusions are the same as in QCoh(X), i.e. Vect(X) ⊆ QCoh(X) is
an exact subcategory.

(4) Let X be a scheme with OX coherent or R a coherent ring. The category Coh(X) or
Coh(R) of coherent sheaves on X or coherent R-modules is an exact subcategory of
QCoh(X), and we have Vect(X) ⊆ Coh(X) ⊆ QCoh(X).

5.14. Example Examples of stable ∞-categories are:

(1) the category Sp of spectra,
(2) for a (commutative) ring spectrum A, the category Mod(A) of A-modules in Sp,

similarly the category of perfect A-modules Perf(A),37

(3) for a (commutative) ordinary ring R, the derived ∞-category D(R) of R, similarly
the prefect objects Perf(R) therein.

37Here, perfect modules are the smallest stable subcategory containing A which is in addition closed under
retracts. This coincides with compact objects, and if A is commutative, also with dualizable objects.
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(4) for a (qcqs) scheme X, the derived ∞-category D(X) of quasi-coherent sheaves and
the subcategory of dualizable objects Perf(X).38

(5) If C is stable, and I is small, then Fun(I,C) is a stable category.

5.15. Construction Let E be an exact ∞-category. Associated to it is its category of spans
Span(E) = Span(E,prE, inE) which is informally given as follows: The objects are the objects
of E, and morphisms in Span(E) from X to Y are given by spans

Z

X Y

and composition is obtained by forming the diagram

U

Z W

X Y V

in which the square is a pullback, and then taking the big span. Formally, this goes as follows.
Recall that the twisted arrow category Tw(∆n) of ∆n is a category whose objects are pairs
i ≤ j in [n], and morphisms from (i ≤ j) to (k ≤ l) correspond to a relation (i ≤ k ≤ l ≤ j),
i.e. a factorization of (i ≤ j) through (k ≤ l). The association [n] 7→ Tw(∆n) is then naturally
a cosimplicial category, since the association C 7→ Tw(C) is functorial.

One then defines a simplical space [n] 7→ Qn(E) with Qn(E) ⊆ Fun(Tw(∆n),E) the full
subcategory on diagrams in which the maps X0≤j → X0≤j−1 are projections for all j, the
map Xj≤n → Xj+1≤n are inclusions for all j, and for all i ≤ k ≤ l ≤ j the squares

Xi≤j Xk≤j

Xi≤l Xk≤l

are exact squares in E. Note that Q0(E) = E and that Q1(E) is precisely the category of
spans with left leg a projection and right leg an inclusions. Objects of Qn(E) are depicted by
diagrams as follows:

X0≤n

. . . . . .

X0≤2 . . . . . . Xn−2≤n

X0≤1 X1≤2 . . . Xn−2≤n−1 Xn−1≤n

X0≤0 X1≤1 X2≤2 . . . Xn−1≤n−1 Xn≤n

38Or equivalently, those objects whose restriction to any affine open is dualizable, compact, or perfect.
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where all squares are exact and morphisms are natural transformations of such diagrams. In
this picture, the Segal maps ρi : Q(E)n → Q(E)1

Qn(E)→ Q1(E)×E · · · ×E Q1(E)

simply extract the lower two rows of the above diagram. Since the rest of the diagram can
be reconstructed from it by iteratively taking pullbacks, we find that Q(E) is a Segal object
in Cat∞. Moreover, Q(E) turns out to be a complete Segal object as we show now. To that
end, it suffices to prove that the square

E Q3(E)

E× E Q1(E)×Q1(E)

is a pullback. We observe that for all n, the degeneracy E→ Qn(E) is fully faithful (its image
consists of constant functors and Tw(∆n) is contractible). Since pullbacks of fully faithful
functors are also fully faithful, it follows that the map from E to the pullback of the above
square is also fully faithful. Its essential image consists of those diagrams in Q3(E)

X0≤3

X0≤2 X1≤3

X0≤1 X1≤2 X2≤3

X0≤0 X1≤1 X2≤2 X3≤3

in which all maps are equivalences. The pullback itself consists of the diagrams where the
maps X0≤0 ← X0≤2 → X2≤2 and X1≤1 ← X1≤3 → X3≤3 are equivalence. Since all squares
are pullbacks and pushouts (and pullbacks and pushouts of equiavlences are equivalences),
we deduce that in fact all arrows are equvialences, showing the desired essential surjectivity.
Since complete Segal anima are equivalent to∞-categories via the associated category functor,
we arrive at the definition Span(E,prE, inE) = asscatιQ(E).

5.16. Definition Let (E, prE, inE) be an exact∞-category. We define its connective K-theory
space as Ω0|Span(E,prE, inE)|.

5.17. Remark We claim that the association E 7→ K(E) refines to a functor K : Catex∞ → An.
To see this, we note that E 7→ Fun(Tw(∆•),E) defines a functor Catex∞ × ∆op → Cat∞. To
see that E 7→ Q(E) is also a functor, we then need to check that for an exact functor E→ E′

and [n] ∈ ∆, the induced functor Fun(Tw(∆n),E) → Fun(Tw(∆n),E′) restricts to a functor
Qn(E) → Qn(E

′); this follows from the definition of exact functors and Lemma 5.12. Then
we may use that Ω| − | : sAn→ sAn is also a functor.

We leave the proofs of the following two lemmata as exercises.

5.18. Lemma Let E be an exact∞-category. There is a canonical equivalence K(E) ≃ K(Eop).
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5.19. Lemma Let E : I → Catex∞ be a filtered diagram of exact ∞-categories. The induced
map colimiK(Ei)→ K(colimi Ei) is an equivalence.

5.20. Lemma There is a canonical equivalence Span(E⊕ E′) ≃ Span(E)× Span(E′).

Proof. Indeed, this is checked readily on for Q(E ⊕ E′) as the exact structure on E ⊕ E′ is
defined componentwise. Then we can use the product of complete Segal anima corresponds
to the product of ∞-categories under the associated category functor. □

Therefore, Span: Catex∞ → Cat∞ preserves products and hence canonically upgrades to a
functor Catex∞ → CMon(Cat∞). As the functor Ω| − | also preserves products (and takes
values in groups), we arrive at the following definition.

5.21. Definition The K-anima functor is the functor

K : Catex∞ → CGrp(An)
≃←− Sp≥0, E 7→ Ω|Span(E, prE, inE)|

taking values in commutative groups in anima, or equivalently, connective spectra.

5.22. Remark We note that |Span(E,pr(E), in(E))| is canonically equivalent to |ιQ(E)|, i.e.
the colimit over the simplicial anima ιQ(E). Moreover, since Q(E) takes values in additive
∞-categories and ι preserves finite products, we find that ιQ(E) is really a simplicial object
in commutative monoids in anima.

5.23. Definition We define the K-theory functor on stable ∞-categories as the composite

Catst∞ → Catex∞
K−→ Sp≥0. Hence K(C) = Ω|Span(C)| where the spans are unrestricted since

in a stable category, every morphism is an inclusion and a projection. We will study several
pleasent properties of the K-theory functor on stable ∞-categories soon.

First, let us define the K- and G-theory of rings and schemes as follows:

5.24. Definition Let X be a scheme or a ring. We define its naive K-theory Knaive(X)
to be K(Vect(X)). For a scheme (X,OX) or ring R where OX or R is coherent we set
G(X) = K(Coh(X)).

5.25. Remark For a coherent ring R he have Coh(R) = Modfp(R) is simply the (abelian)

category of finitely presented modules. If R is Noetherian, then Coh(R) = Modfg(R) is the
(abelian) category of finitely generated modules. In full generality, the category of coherent
modules over a ring R is an abelian category, but if R is not coherent, we will not be able
to say much about it, and so choose not to consider it explicitly. Note that for a coherent
ring or scheme with coherent structure sheaf, any finite projective module or vector bundle
is coherent and hence there is a canonical map Knaive(X)→ G(X) – this, for instance, is not
true for rings which are not coherent: Surely, R is a finitely generated projective, but not
coherent.

5.26. Definition For qcqs schemes X, we will define K(X) = K(Perf(X)) where Perf(X) is
a stable ∞-category of perfect OX -modules. This will turn out to agree with Knaive(X) in
many, but not all cases.

Similarly, we will define G(X) = K(APerfb(X)) where APerfb(X) is the stable∞-category
of bounded and almost perfect (aka pseudocoherent) modules. In the case where X is a
coherent ring R, this is the same as the full subcategory of D(R) on those complexes where
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all but finitely many homology groups are trivial, and the non-trivial ones are all coherent
R-modules. We will come back to these definitions later.

Most of the next results we present are due to Quillen in the context of exact categories.

5.2. + = Q. Firstly, we have now competing definitions of K(R) for a ring R. Indeed, we
have already defined K(R) as ιProj(R)gp. However, we may also view Proj(R) as an additive
(and hence as a minimal exact) category and take its K-theory in the sense of Definition 5.16.
These definitions turn out to agree:

5.27. Theorem (Group-completion or “Q=+”) For any additive∞-category A, the canonical
map (ιA)gp → K(A) is an equivalence.

For the proof of Theorem 5.27, it is useful to first compare |Span(A)| = |Q(A)| with a
slightly smaller construction, namely the S-construction39 first prominently used by Wald-
hausen in his work on the algebraic K-theory of spaces; for a general exact category, it is also
induced by a simplicial construction. To explain it, recall that Ar(∆n) has objects (i ≤ j)
and a morphism from (i ≤ j) to (k ≤ l) if i ≤ k and j ≤ l.

5.28. Construction Consider for [n] ∈ ∆ the full subcategory Sn(E) ⊆ Fun(Ar(∆n),E) con-
sisting of those functors X such that Xi≤i = 0 for all i and where for all i ≤ j ≤ k ≤ l, the
square

Xi≤k Xi≤l

Xj≤k Xj≤l

is exact. Objects of Sn(E) are given by diagrams as follows:

0 X0≤1 X0≤2 . . . X0≤n

0 X1≤2 . . . X1≤n

0 . . . . . .

0 Xn−1≤n

0

in which all horizontal arrows are inclusions, all vertical arrows are projections, and all squares
are exact. Note that [n] 7→ Sn(E) is a simplicial ∞-category, i.e. that the simplicial struc-
ture maps on Fun(Ar(∆•),E) restrict to S(E), and that similarly as for Q(E), this simplicial
category is functorial exact functors E→ E′.

We also note that extracting the top row

0 = X0≤0 → X0≤1 → X0≤2 → · · · → X0≤n

39The S stands for Segal.
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of a diagram in Sn(E) describes Sn(E) as the full subcategory of Fun(∆n−1,E) on those
objects all whose structure morphisms are inclusions (but the natural transformations of such
diagrams need not be inclusions). Indeed, the remaining part of the a diagram in Sn(E) is
obtained by taking iterated pushouts.

5.29.Remark Similarly to Remark 5.22, we have that ιS(E) is a simplicial object in CMon(An).

Our first goal now is to show that there is a canonical equivalence K(E) ≃ Ω|ιS(E)| and to
then analyze the latter. To that end, we need to talk about the following construction:

5.30. Construction (Edgewise subdivision) There is a functor sd: ∆ → ∆ given by [n] 7→
[n] ⋆ [n]op = {0l ≤ · · · ≤ nl ≤ nr ≤ · · · ≤ 0r}; the subscripts refer to whether the element of
[n] is viewed in the left or the right joint factor. Note that [n]⋆ [n]op ∼= [2n+1] but the former
way of writing it makes the functoriality in [n] apparent. Precomposition with sd defines an
endo-functor of simplicial anima

sd∗ : sAn→ sAn

called the edgewise subdivision functor.

Let us first indicate the following general result.

5.31. Lemma Let X ∈ sAn be a simplicial anima. There is a canonical equivalence |X| ≃
|sd∗(X)|.

Proof. Indeed, to see this, note that sd∗ : sAn→ sAn preserves colimits; it is hence uniquely
determined by its restriction along the Yoneda embedding h : ∆ ⊆ sAn. Exercise: for [n] ∈
∆ ⊆ sAn, we have that sd∗[n] is ordinary nerve of the 1-category Tw(∆n), thought of as
a simplicial set. Hence, we have colim sd∗[n] ≃ |Tw(∆n)| ≃ ∗ for all [n] since Tw(∆n) has
an initial object. As a consequence, colim ◦sd∗ ◦ h identifies with the constant with value ∗
functor ∆→ An, just like colim itself. □

5.32. Proposition There is a natural equivalence sd∗(S(E))→ Q(E)op between the (opposite
of the40 ) Q-construction and the edgewise subdivision of the S-construction.

Proof. Consider the natural functor Tw(∆n) → Ar([n] ⋆ [n]op) given by sending (i ≤ j) to
(il ≤ jr), where the subscripts denote in which of the join factors the object lies. Restriction
along this functor induces a map Fun(Ar([n] ⋆ [n]op),E)→ Fun(Tw(∆n),E) which one checks
to restrict to a map (sd∗S)n(E)→ Qn(E) for each [n], and in fact to map of simplicial anima
sd∗S(E) → Q(E)op. This is the desired equivalence as one checks directly. To see more
concretely what this does, let us analyze some low dimensional cases. For instance, on 1-
simplices, we need to have an equivalence S3(E) = sd1(S(E)) → Q1(E), which we take to be

40There is a functor op: ∆ → ∆ with op[n] = [n] and for f : [m] → [n], op(f)(i) = n − f(m − i).
Precomposition with op defines a functor (−)op : Fun(∆op,C) → Fun(∆op,C) for any ∞-category C.
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the functor which extracts from a diagram

0 X0≤1 X0≤2 X0≤3

0 X1≤2 X1≤3

0 X2≤3

0

the span

X0≤2

X1≤2 X0≤3

as an element of Q1(E)
op. Notice that the whole upper S-construction diagram can be re-

produced from this span by taking appropriate pullbacks and pushouts. Similarly, a general
n-simplex in the subdivided S-construction is sent to zig-zag

Xn≤n+1 ← Xn−1≤n+1 → Xn−1≤n+2 ← Xn−2≤n+2 → · · · ← X0≤2n → X0≤2n+1

determining the lower two rows (and hence all of the diagram) in Qn(E)
op. □

5.33. Corollary There is a canonical equivalence |ιQ(E)| ≃ |ιS(E)|, natural in exact ∞-
categories E.

Proof. This follows from combining Lemma 5.31 and Proposition 5.32 together with the ob-
servation that there is a canonical equivalence |ιQ(E)| ≃ |ι(Q(E)op)|.41 □

Proof of Theorem 5.27. By Corollary 5.33, it suffices to prove that ιA → Ω|S(A)| is a group
completion. Let us first observe what the Segal maps are in the simplicial object S(E) for
a general exact ∞-category E. Since they are induced by the maps [1] → [n] giving the
morphism (i − 1 ≤ i), we obtain that the associated Segal map extracts from a diagram
X : Ar(∆n) → E the term Xi−1≤i. Hence, if E is an exact category, we find that the Segal
maps

Sn(E)→
n∏
i=1

S1(E) =
n∏
i=1

E

takes a diagram X to the tuple (X0≤1, X1≤2, . . . , Xn−1≤n). If E = A has the minimal exact
structure, these maps are equivalences since in the diagrams in Sn(A) all squares are exact
and the horizontal maps are direct summand inclusions. Recall from Remark 5.29 that ιS(A)
is a simplicial object in CMon(An) and note that

ιS(A)|∆op
≤1
≃ Bar(ιA)|∆op

≤1

41In the case at hand, this is equivalent to the statement that for an ∞-category C, there is a canonical
equivalence |C| ≃ |Cop|.
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as functors taking values in CMon(An). Moreover, Bar(ιA), again viewed as an object of
Fun(∆op,CMon(An)), is left Kan extended from its restriction to ∆op

≤1 as discussed in Re-
mark 4.20. We hence obtain a canonical map

Bar(ιA)→ ιS(A)

which induces an equivalence on 0- and 1-simplices and where source and target are both
Segal objects. Such a map is an equivalence as we have noted in the proof of Remark 4.20.
Hence we obtain:

K(A) = Ω|ιQ(A)| ≃ Ω|ιS(A)| = Ω|Bar(ι(A))| ≃ (ιA)gp,

where the last equivalence was discussed in Remark 4.16. □

5.34. Corollary Let R be a ring. Then K(R) ≃ K(Proj(R)) = Knaive(R).

Proof. For a ring R, Proj(R) is viewed as an additive category when forming K(Proj(R)), so
the result follows from Theorem 5.27. □

5.35. Remark Note that for X a non-affine scheme, Knaive(X) is not the group completion
of Vect(X): Indeed, for non-affine schemes, vector bundles are not in general projective, so
the exact structure on Vect(X) is not the minimal one. Hence, one cannot apply the group
completion, or Q = + Theorem 5.27 above.

Another consequence of the above comparison between the Q- and the S-construction is
the following.

5.36.Corollary Let E be an exact∞-category. Then K0(E) is generated by equivalence classes
of objects x ∈ E, with relations given by [x] + [z] = [y] for every exact sequence x ↪→ y ↠ z in
E.

Proof. It is a general fact that for a simplicial anima X with X0 ≃ ∗, one has

π1(|X|) ∼= ⟨π0(X1) | π0(X2)⟩
where by the symbols on the right hand side we more concretely mean the following: The
group π1(|X|) is generated by π0(X1) and for each point y ∈ π0(X2) we have the relation

d1(y) = d2(y) ⋆ d0(y)

where ⋆ is the multiplication in the free group generated by π0(X1) and di are the face
operators of the simplicial anima X. Now let us specialize this to S(E). By definition, we
have

(1) S0(E) = ∗,
(2) S1(E) = E, and
(3) S2(E) = Ex(E), the ∞-category of exact sequences in E.42

The face operators di : Ex(E) = S2(E)→ S1(E) = E are then concretely given as follows: For
an exact sequence e = [x ↪→ y ↠ z] in S2(E) we have that d0(e) = z, d2(e) = x and d1(e) = y,
giving the desired result. □

In what follows, we will often make use of the following result.

5.37. Proposition (Quillen’s theorem A) Let f : C → D be a functor between ∞-categories.
Then f is cofinal if and only if for all d ∈ D, the category Cd/ is contractible. Moreover, if f
is cofinal, then |f | : |C| → |D| is an equivalence.

42As noted before, this is the equivalently given by the full subcategory of Ar(E) on inclusions.



ALGEBRAIC K-THEORY 73

5.3. Resolution. An important tool for invariance properties of K-theory is the notion of
resolving functors of exact ∞-categories:

5.38. Definition Let E be an exact ∞-category and i : A→ E be a full inclusion of an exact
subcategory.43 Then i is called resolving if the following conditions hold:

(1) For every exact sequence x ↪→ y ↠ z in E with y ∈ A, it follows that x ∈ A.
(2) For every z ∈ E, there exists an projection y ↠ z with y ∈ A.

If iop is resolving, we call i op-resolving.

5.39. Remark In the setup of Definition 5.38, i is resolving if and only if it satisfies the
following conditions:

(1’) For every exact sequence x ↪→ y ↠ z in E with y, z ∈ A, it follows that x ∈ A.
(2’) For every z ∈ E, there exists an exact sequence x ↪→ y ↠ z with x, y ∈ A.

Indeed, we first note that (1) implies (1’), (1) + (2) implies (2’), and (2’) implies (2). In
particular, a resolving functor satisfies (1’) and (2’). Now assume i satisfies (1’) and (2’).
We need to show that (1) holds. By (2’), we may pick an exact sequence x′ ↪→ y′ ↠ z with
x′, y′ ∈ A. Consider then the pullback square

y ×z y′ y′

y z

Since the square is a pullback, the induced maps on vertical and horizontal fibres are equiva-
lences. The (common) vertical fibre is given by x′, so the left vertical fibre sequence, together
with the assumption that y ∈ A and that A is extension closed in E implies that y×z y′ ∈ A.
Since y′ ∈ A as well, it follows from (1’) that the (common) horizontal fibre x lies in A as
needed.

Quillen’s resolution theorem states:

5.40. Theorem (Resolution theorem) Let i : A → E be an (op) resolving functor of exact
∞-categories. Then the induced map K(A)→ K(E) is an equivalence.

Proof. We consider the functor Span(A) → Span(E) and denote by B its essential image, so
that we obtain a factorization

Span(A)
g−→ B

f−→ Span(E).

We will show that g is coinitial and that f is cofinal, both using Quillen’s theorem A. To
show that f is cofinal we need to show that Bx/ is weakly contractible. By construction,
Bx/ is the full subcategory of Span(E)x/ on those objects whose target lies in A, that is, on
objects which are represented by spans x ↞ y ↪→ a with a ∈ A and where the inclusion
and projections are in E. Morphisms from x ↞ y ↪→ a to x ↞ y′ ↪→ a′ are diagrams of the

43Recall from Definition 5.3 that this means that A ⊆ E is an additive subcategory closed under extensions,
and the a map in A is an inclusion if and only if it is one in E and its cofibre lies in A; similarly for projections.
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following shape

y′

y y′′

x a a′

with middle square exact in E. Let B
req
x/ denote the full subcategory of Bx/ on those spans

where the right pointing map y ↪→ a is an equivalence. One computes that Breq
x/ is equivalent

to the category whose objects consist of projections a→ x and whose morphisms from a↠ x
to a′ ↠ x consist of projections a′ ↠ a making the evident triangle commute. In particular,
we find that this category admits binary products, given by (a↠ x)×(a′ ↠ x) = a×xa′ ↠ x,
where we again use the axioms of resolving functors and the fact that A ⊆ E is closed under
extensions to see that a×z a′ ∈ A: the fibre of the map a×x a′ → a is equivalent to the fibre
of a′ ↠ x which is in A by axiom (1) of resolving functors. In particular, it follows from an
exercise below that Breq

x/ is contractible. Moreover, we claim that Breq
x/ → Bx/ admits a right

adjoint. To that end, consider a span x ↞ y ↪→ a in Bx/. Note that axiom (2) of resolving

functors implies that y ∈ A, so the span x ↞ y = y is an object in B
req
x/ . We now argue

that (x ↞ y ↪→ a) 7→ (x ↞ y = y) is right adjoint to the inclusions. Indeed, the datum of a
diagram

y′

y y′′

x a a′
≃

which describes a morphism in Bx/ from from the left small span to the big span (with the

left small span being an object of Breq
x/ ), is indeed equivalent to the datum of a projection

a′ ↠ a whose composite with a ↠ x is identified with a′ ↠ x. This in turn is precisely the
datum of a map in B

req
x/ from x ↞ a = a to x ↞ a′ = a′ as needed. We now deduce from

Proposition 5.37 that f is cofinal and hence induces an equivalence |B| → |Span(E)|.
Next, we show that g : Span(A) → B is coinitial, so pick an object a ∈ B and will show

that Span(A)/a is contractible. This category has objects given by spans x ↞ y ↪→ a all

whose objects lie in A and whose inclusions and projections are those in E.44 A morphism in
Span(A)/a from x↞ y ↪→ a to x′ ↞ y′ ↪→ a consists of a diagram

y

y′′ y′

x x′ a

∈A ∈A

where the label ∈ A means that these morphisms are in fact projections and inclusions in A

(i.e have cofibre, respectively fibre also contained in A).

Dually to before, we may consider the full subcategory Span(A)leq/a ⊆ Span(A)/x on those

objects whose left pointing map x↞ y is an equivalence. As before, we note that Span(A)leq/a

44But: from axiom (1) of resolving functors, we find that y ∈ A, and using the same axiom again, we find
that the fibre of y → x is also in A, i.e. y → x is in fact a projection in A.
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is equivalently described as having objects y ↪→ a being inclusions in E between objects in
A, and morphisms from y ↪→ a to y′ ↪→ a are inclusions y ↪→ y′ in A making the triangle
commute. This category has an initial object given by 0 ↪→ a. Moreover, we observe that

Span(A)leq/x → Span(A)/x admits a left adjoint given by (x↞ y ↪→ a) 7→ (y = y ↪→ a). Indeed,

the datum of a diagram
y

y′′ y′

x x′ a

∈A ∈A
≃

which describes a morphism in Span(A)/a from the big span to the right small span, is
equivalently described by the datum of y ↪→ y′ making the composite with y′ → a identified
with y ↪→ a. Moreover, the map y ↪→ y′ is an inclusion in A since the square appearing
above is in particular a pushout, and hence the cofibre of y → y′ indeed lies in A. Again
using Proposition 5.37, we conclude that g is coinitial and hence induces an equivalence
|Span(A)| → |B|, so the theorem is proven. □

Exercise. Show that a non-empty category which admits finite products is contractible.
Hint: for X ∈ C, consider the functor F = −×X : C→ C. It comes with natural transforma-
tions to the identity and the constant functor at X.

5.41. Definition Let R be a coherent ring. We denote by Modfp≤n(R) the full subcategory of

Modfp(R) consisting of those finitely presented R-modules which have projective dimension

≤ n and by Modfpfpd(R) =
⋃
nModfp≤n(R) the full subcategory of finitely presented modules

with finite projective dimension.

5.42. Corollary Let R be a coherent ring. Then K(R)→ K(Modfpfpd(R)) is an equivalence.

Proof. We note that Proj(R) = Modfp≤0(R). We now show that for all n ≥ 0, the functor

Modfp≤n(R)→ Modfp≤n+1(R)

is resolving. First, we note that indeed both categories are exact, as is the canonical inclusion.
To prove property (1), given an exact sequence

0→M ′ →M →M ′′ → 0

with pdim(M) ≤ n and pdim(M ′′) ≤ n+1, we need to show that pdim(M ′) ≤ n as well. For
this, consider an arbitrary R-module N . Then there is an exact sequence

ExtkR(M,N)→ ExtkR(M
′, N)→ Extk+1(M ′′, N)

so if k ≥ n+1 the first and the last term vanish, and hence so does the middle term, showing
pdim(M ′) ≤ n. To prove property (2), it suffices to recall that any finitely presented module
admits by definition a surjection from a finite projective module. The result now follows from
Theorem 5.40. □

5.43. Corollary Let R be regular coherent. Then K(R)→ G(R) is an equivalence.

Proof. By definition of regular coherent rings, we have Modfp(R) = Modfpfpd(R), so the result

follows from the definitions and Corollary 5.42. □
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5.44. Example Typical examples of regular coherent rings are regular Noetherian rings and
valuation rings (or, in the non-local situation more generally Bezout domains); note that a
valuation ring is Noetherian if and only if it is a discrete valuation ring (in which case it is in
fact a principal ideal domain).

Let us also mention the global versions of the above results. To that end, we make the
following definition.

5.45. Definition A quasi-compact and quasi-separated scheme X is called divisorial if its
structure sheaf is coherent and it admits an ample family of line bundles, that is, a family
{Li}i∈I of line bundles Li such that for each coherent OX -module F , there exists a finite
subset J ⊆ I and for each j ∈ J a number nj > 0 and a surjection

⊕
j∈J L

⊗ni
i → F .

5.46. Example Quasi-projective schemes over commutative rings are divisorial by a theorem
of Serre; in fact for such schemes, O(−1) is an ample line bundle. Moreover, separated
regular Noetherian schemes are also divisorial by a theorem of Illusie (here, really only an
ample family exists in general). Subschemes of divisorial schemes are also divisorial.

The analog of Corollary 5.43 for schemes is then:

5.47. Lemma Let X be a divisorial scheme. Then Knaive(X)→ G(X) is an equivalence.

Proof. Let Coh≤n(X) be the full subcategory of Coh(X) on those coherent modules which
have a length n resolution by vector bundles. We claim that the inclusion Coh(X)≤n →
Coh(X)≤n+1 is resolving. To see (1), we need to show that given an exact sequence

0→ F ′ → F → F ′′ → 0

such that F has a vector bundle resolution of length n and F ′′ has one of length n+ 1, then
F ′ also has one of length n. This will be on this week’s exercise sheet. Part (2) is again
trivial since by definition of divisorial, every coherent sheaf admits a surjection from a vector
bundle. Then we note that Coh(X)≤0 = Vect(X), moreover, for a divisorial scheme, we have
Coh(X) = Coh(X)≤∞ =

⋃
nCoh(X)≤n. The resolution theorem, together with the fact that

K-theory commutes with filtered colimits then gives that the mapK(Vect(X))→ K(Coh(X))
is an equivalence as claimed. □

5.4. Dévissage.

5.48. Theorem (Dévissage) Let A be an abelian category and B ⊆ A a full additive subcate-
gory45 with the following properties:

(1) For every exact sequence a ↪→ b↠ a′ in A with b ∈ B, it follows that a, a′ ∈ B,46

(2) every object of a ∈ A admits a finite filtration whose filtration quotient lies in B, that
is, there is a sequence

0 = a0 ↪→ a1 ↪→ a2 ↪→ · · · ↪→ an = a

such that ai+1/ai ∈ B for all i.

Then the inclusion B→ A induces an equivalence K(B)→ K(A).

45That is, 0 ∈ B and B is closed under finite sums in A.
46That is, B is closed under subobjects and quotients in A.
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Proof. First, let us note that B is itself abelian and the inclusion B ⊆ A is exact; recall
also that abelian categories are viewed as exact categories as in Example 5.9, see Exercise
Sheet 8. Moreover, we claim that Span(B) ⊆ Span(A) is fully faithful. Indeed, this follows
since inclusions in A between objects in B are already inclusions in B, and likewise for
projections, by assumption (1). We prove that the map Span(B)→ Span(A) is coinitial. So
let a ∈ Span(A) and let us aim to prove that Span(B)/a is contractible. By assumption there
exists a sequence

0 = a0 ↪→ a1 ↪→ a2 ↪→ · · · ↪→ an = a

giving rise to a sequence of functors

Span(B)/0 → Span(B)/a1 → Span(B)/a2 → · · · → Span(B)/a.

Since 0 ∈ B, we deduce from the fully faithfulness of Span(B) → Span(A) that Span(B)/0
is contractible. It hence suffices to show that all the functors appearing above are weak
equivalences. All of these are functors of the kind

Span(B)/x → Span(B)/y

for some x ↪→ y whose cokernel lies in B. Let us therefore show, that any such functor is a
weak equivalence. For this, consider the full subcategory Span(B)x/y of Span(B)/y consisting

of those spans b↞ a ↪→ y in A with b ∈ B and giving rise to a commutative diagram

p x

a y

where p = ker(a ↠ b). Note that the existence of that dashed arrow is indeed a property,
thanks to x ↪→ y being a monomorphism in A. We obtain a canonical factorization of the
functor under investigation as

Span(B)/x
c−→ Span(B)x/y

i−→ Span(B)/y.

We claim that the first functor c admits a right adjoint r given by the following construction:
It takes a span b ↞ a ↪→ y to the span (a ∩ x)/p ↞ a ∩ x → x. Moreover, the functor i
admits a left adjoint l given by taking a span b ↞ a → y to the span a/(p ∩ x) ↞ a ↪→ y
where p = ker(a → b). Since p ∩ x → a → y evidently factors through x → y, to see
that this is well-defined, it remains to show that a/p ∩ x ∈ B. To that end, consider the
composite a→ b⊕ y → b⊕ y/x. Its kernel is given by the intersection of p = ker(a→ b) and
ker(a → y → y/x) = a ∩ x, and hence is given by p ∩ x. Hence we have a monomorphism
a/p ∩ x → b ⊕ y/x so that the assumption y/x ∈ B and condition (1) on B implies that
a/p ∩ x ∈ B as desired. Now, one computes readily that rc = id. Moreover, cr is the functor
given by

(b↞ a ↪→ y) 7→ ((a ∩ x)/p↞ a ∩ x ↪→ y)

There is a natural transformation between cr and the identity depicted objectwise by the
following diagram:

a ∩ x

(a ∩ x)/p a

(a ∩ x)/p b y
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I recommend writing out explicitly that this really is a map in Span(B)/y from cr(−) to id(−).
Similarly, we have li = id and il(b ↞ a ↪→ y) = (a/(p ∩ x) ↞ a ↪→ y). The following

diagram then witnesses a natural map between id and li:

a

a/(p ∩ x) a

b = a/p a/(p ∩ x) y

Hence, both functors under investigation induce equivalences upon geometric realization as
needed. □

5.49.Corollary Let R be a coherent ring and I a two-sided nilpotent ideal. Then the canonical
map G(R)→ G(R/I) is an equivalence.

Proof. Consider the full inclusion of abelian categories Modfp(R/I) ⊆ Modfp(R), with image
consisting of those R-modules on which I acts trivially (note that the restriction functor
indeed sends finitely presented modules to finitely presented modules if we assume I is itself
finitely generated. Since I is the filtered colimit over its finitely generated sub R-modules
and K-theory commutes with filtered colimits, we may restrict to the case where I is finitely
generated). Note that the composite Modfp(R/I)→ Modfp(R)→ Modfp(R/I) is the identity,
so it suffices to prove that the former functor induces an equivalence on K-theory. We show
that this follows from Theorem 5.48: It satisfies assumption (1) of Theorem 5.48 evidently.
For assumption (2), let n ≥ 0 be such that In = 0, consider a finitely presented R-module M
and consider its filtration given by

0 =MIn ⊆MIn−1 ⊆ · · · ⊆MI ⊆M
and note that its associated gradedMIk/MIk+1 is tautologically an R/I-module. Hence, the
above functor induces the claimed equivalence G(R/I)→ G(R). □

5.50. Corollary Let A be an abelian category such that every object has finite filtration with
associated graded consisting of simple objects in A. Then there is a canonical equivalence

K(A) ≃
⊕
Ts∈S

K(EndA(Ts))

where S is the set of isomorphism classes of simple objects Ts.

Proof. Let B ⊆ A be the subcategory of semi-simple objects, i.e. finite sums of simple objects.
Then the inclusion B ⊆ A satisfies the assumptions of Theorem 5.48, so it suffices to show
that K(B) is as described in the theorem. For a finite subset I ⊆ S, let BI be the subcategory
of B given by finite sums of the simple objects Ti with i ∈ I. Then B = colimI⊆S BI and the
colimit is filtered. Moreover, the canonical map

∏
i∈I B{i} → BI , given by taking the sums is

an equivalence of categories: It is essentially surjective by construction, and fully faithfulness
follows from the fact that Hom(Ti, Tj) = 0 if i ̸= j. Finally, on Exercise Sheet 8 we show that
B{s} ≃ Proj(EndA(Ts)), giving the desired result. □

To give another application of the dévissage theorem, we consider the following situation.
Let R be a coherent ring, x ∈ R a central element47. Denote by Modfpx (R) the kernel of the

localisation functor Modfp(R) → Modfp(R[x−1]), that is, the full subcategory of Modfp(R)

47This is merely to avoid talking about general localisations of noncommutative rings.
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consisting of finitely presented R-modules M with M ⊗R R[x−1] = 0. There is an evident

functor Modfp(R/x)→ Modfpx (R) induced by the restriction of scalars along R→ R/x.

5.51. Corollary In the situation above, the map G(R/x)→ K(Modfpx (R)) is an equivalence.

Proof. (1) of Theorem 5.48 is readily checked by exactness of the functor − ⊗R R[x−1]. For
(2), note that sinceM is finitely presented, there exists N ≥ 1 such that xN ·M = 0. Then we
may filter M by the submodules Mk = {m ∈ M | xkm = 0}, giving rise to a finite filtration
having the property that x(Mk+1/Mk) = 0, i.e. so that the associated graded is indeed a
module over R/x. □

5.52. Example The typical example is Z and p ∈ Z: In this case we find that Proj(Fp) as a
subcategory of p-primary torsion abelian groups induces an equivalence in K-theory.

Again, we describe briefly the geometric analog. For this let X be a scheme with coherent
structure sheaf and Z ⊆ X a closed subscheme. We denote by CohZ(X) the coherent modules
F which are supported at Z, i.e. which satisfy F|X\Z = 0. There is again an evident functor
i∗ : Coh(Z)→ Coh(X) which extends a sheaf on Z by 0 to a sheaf on X.

5.53. Corollary In the situation above, the map G(Z)→ K(CohZ(X)) is an equivalence.

Proof. We use here the fact from algebraic geometry that i∗ : Coh(Z) → Coh(X) is well-
defined and indeed has image contained in CohZ(X). Similarly as in the situation of rings,
the exactness of the functor j∗ : Coh(X) → Coh(X \ Z) gives property (1) of Theorem 5.48
and property (2) is also proven similarly as in the case of rings. □

To make efficient use of the last two examples, we briefly mention the following result
but will only prove its stable version later. To formulate it, we say that a full subcategory
B ⊆ A of an abelian category A is a Serre subcategory if it is closed under sums, subobjects,
quotients, and extensions. In that case, B is itself abelian and the inclusion B ⊆ A is exact.
Moreover, there exists an abelian category A/B together with an exact functor p : A→ A/B
having the following universal property: For any abelian category A′, the restriction functor

Funex(A/B,A′)→ Funex(A,A′)

is fully faithful and has essential image those exact functors which vanish on B. Moreover,
B = ker(p). The abelian category A/B is called the quotient abelian category. It can be
constructed as follows: The objects are the same as that of A and

HomA/B(a, b) = colim
a′⊆a,b̃⊆b

s.t. a/a′,b′∈B

HomA(a
′, b/b̃).

Exercise: Show that these are the homsets in an abelian category and that it satisfies the
desired universal property.

Let us consider an example.

5.54. Example Let R be a coherent ring and S a central multiplicatively closed subset and
denote by R → R[ 1S ] the localisation map. Then Modfp(R) → Modfp(R[ 1S ]) is the abelian
quotient category by the full subcategory of S-torsion R-modules, i.e. the kernel of the functor
Modfp(R)→ Mod(R[ 1S ]).

Similarly, if X is a scheme with coherent structure sheaf, i : Z ↪→ X a closed subscheme
with open complement U , then i∗ : Coh(Z) ⊆ Coh(X) is the inclusion of a Serre subcategory
and the canonical functor Coh(X)/Coh(Z)→ Coh(U) is an equivalence.
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5.55. Theorem (Abelian Localization) Let B ⊆ A be the inclusion of Serre subcategory. Then
there is a fibre sequence

K(B)→ K(A)→ K(A/B)

where A/B is the quotient abelian category.

As an application, of the above localization theorem together with the dévissage theorem,
one can obtain the following:

5.56. Theorem Let D be a Dedekind domain and T a multiplicative subset of D. Then there
is a fibre sequence ⊕

p∈S
K(Fp)→ K(D)→ K(D[ 1T ])

where S ranges through the non-zero prime ideals p of D such that p ∩ T ̸= ∅.

Proof. As indicated above, the localisation functor Modfp(D) → Modfp(D[ 1T ]) is the abelian

quotient by the full subcategory of Modfp(D) on the T -torsion submodules. We claim that

this category identifies with the category colimS′⊆S
∏

pinS′ Modfpp (D), where S′ is a finite

subset of S and Modfpp (D) denotes the p-torsion submodules. This category is equipped

with a functor Vect(Fp)→ Modfp(D) which satisfies the assumption of Theorem 5.48. Since
K-theory commutes with filtered colimits, the K-theory of the T -torsion modules is indeed
as claimed. To finish the proof, it then suffices to note that D and D[ 1T ] are Dedekind

domains, so that Corollary 5.43 gives that the canonical maps K(D) → K(Modfp(D)) and

K(D[ 1T ])→ K(Modfp(D[ 1T ]) are equivalences. □

5.57. Remark Later, we might see that more generally, the following holds true: Let D be a
Dedekind domain and S a set of non-zero prime ideals of R. Then there is a fibre sequence⊕

p∈S
K(Fp)→ K(D)→ K(DS)

where DS denotes the localization of D away from S and Fp = D/p is the residue field at p.
Here, we recall that DS can be described as follows. It is given by evaluating the structure

sheaf OD on the set U = Spec(D) \ S. In case S is not finite, U is not open. In this case,
by OD(U) we denote the colimit over OD(V ) where V ranges through the open subsets of
Spec(D) which contain U . Concretely, DS may be identified with the subring of the fraction
field K of D consisting of the elements x ∈ K such that the p-adic valuation νp(x) ≥ 0 for all
p ∈ U . Recall here that the localization Rp of R at p is a discrete valuation ring, so K obtains
a p-adic valuation. In general, DS is not obtained from D by inverting a set of elements in
D. However, D → DS is flat and DS ⊗D DS → DS is an isomorphism, so it shares many
properties of a localization at a set of elements.

We have the following special cases of the construction DS .

(1) S = Spec(D) \ {0}. In this case DS = K is the fraction field.
(2) Given a multiplicative subset T ⊆ D, consider the set S = {p | p ∩ T ̸= ∅}. Then

DS = D[ 1T ].

(3) If S = {p1, . . . , pn} and pr11 · · · prnn = (x), then DS = D[ 1x ].

In particular, Theorem 5.56 is indeed a special case of the above. However, since D → DS

is not a localisation by a set of elements, I do not want to claim here that Modfp(D) →
Modfp(DS) is a quotient abelian category, though it might well be.
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5.58. Example As a special case of Theorem 5.56, we obtain an exact sequence⊕
p∈P

K2(Fp)→ K2(Z)→ K2(Q)→
⊕
p∈P

K1(Fp)→ K1(Z)→ K1(Q)→
⊕
p∈P

K0(Fp)→ K0(Z)→ K0(Q)

Now recall that from Matsumoto’s theorem, we have K2(Fp) = 0 and that Milnor proved that
K2(Z) = Z/2. Moreover, we have K1(Z) = Z×, K1(Q) = Q×, and K1(Fp) = F×

p = Z/(p− 1).
It follows that there are short exact sequences

0→ Z/2→ K2(Q)→
⊕
p∈P

Z/(p− 1)→ 0

and

0→ Z/2→ Q× →
⊕
p∈P

Z→ 0

the latter of which splits since the quotient is free. The former sequence in fact also splits:
We have indicated earlier that K(Z) → K(R) → ko induces an isomorphism on π2, see
Remark 3.70.

5.59. Example In fact, for F any number field, we have a fibre sequence⊕
p∈S

K(Fp)→ K(OF )→ K(F )

where all Fp are finite fields and hence again have vanishingK2(−); moreover as we have noted
earlier (Theorem 3.58) that K1(OF ) = O×

F and hence injects into K1(F ) = F×. Consequently,

we deduce that K2(F ) ̸= 0 for all number fields. Nevertheless, it turns out that K2(Q) = 0.
Writing Q as a filtered colimit of number fields, it is the transition maps on K2(−) that
make the colimit trivial. Recall also that in the introduction to these lectures, we have stated
Suslin’s theorem that K(Q)/n = ku/n; Exercise: See how these two results are compatible.
Does one imply the other?

Finally, let us keep the promise made in Remark 3.73.

5.60. Example Let F be a finite field. Then F [t] is a PID with fraction field F (t). The
localisation sequence from Theorem 5.56 then reads as follows:⊕

f∈I
K(F [t]/(f))→ K(F [t])→ K(F (t))

where I denotes the set of equivalence classes of irreducible elements in F [t]. Again, F [t]/(f) is
a finite field and hence has vanishing K2(−). Moreover, we will argue later that the canonical
map K(F )→ K(F [t]) is an equivalence, so it also has vanishing K2. Consequently, we obtain
an exact sequence

0→ K2(F (t))→
⊕
f∈I

[F [t]/(f)]× → F× ↪→ F (t)×

the latter of which is injective. In particular, as promised in Remark 3.73, K2(F (t)) is a big
sum of the finite abelian groups [F [t]/(f)]×.
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5.5. K-theory of stable ∞-categories. Next, we will be interested in understanding more
about the relation between stable and exact categories (and their K-theory). To begin, we
need the following general result:

5.61. Lemma The ∞-category Catst∞ of small stable ∞-categories has cofibres and fibres.48.

Proof. Given a functor f : C → D between stable ∞-categories, define its kernel ker(f) to
be the full subcategory of C on objects which are sent to 0. This evidently is a fibre of f .
To construct a cofibre of f , one finds that we may replace f by the inclusion of its essential
image, and hence restrict to the case where f is fully faithful. In this case, define D/C as
the localisation of D at all morphisms whose fibre lies in C. Then one can show that D/C is
stable, the localisation functor D→ D/C is exact and

C→ D→ D/C

is indeed a cofibre sequence in Catst∞. In addition, one has the following computation of
mapping spectra in D/C:

colim
β : z→y∈C/y

mapD(x, cofib(β))→ mapD/C([x], [y])

is an equivalence; see e.g. [CDH+25, Appendix A] for a thorough discussion. The stable
∞-category D/C is called the Verdier quotient of D by the full stable subcategory C. □

To that end, we first record the following result.

5.62. Proposition The inclusion Catst∞ → Catex∞ admits a left adjoint, E 7→ St(E). The unit
of the adjunction E→ St(E) is fully faithful and exhibits E as a full exact subcategory of St(E).

Proof. There are several constructions. We give the following. First, consider Funπ(Eop,An),
the category of product preserving presheaves on E. Since E is additive, this is equivalent to
the category Funπ(Eop, Sp≥0), and since representable functors preserve products, the Yoneda
embedding gives a fully faithful functor E → Funπ(Eop,Sp≥0). Since Sp≥0 ⊆ Sp preserves
products, we obtain fully faithful functors

E→ Funπ(Eop,Sp≥0)→ Funπ(Eop, Sp).

where the latter category is stable (exercise). Denote by Stadd(E) the smallest stable sub-
category of Funπ(Eop, Sp) which contains the Yoneda embedding E ⊆ Funπ(Eop,Sp), and let
h : E → Stadd(E) denote the induced embedding. Then Stadd(E) is generated under finite
colimits from E, so that for any stable ∞-category D, we have

h∗ : Funex(Stadd(E),D)→ Funπ(E,D)

is an equivalence; In other words, E → Stadd(E) is a left adjoint of the forgetful functor
Catst∞ → Catπ∞ from stable to additive ∞-categories; note that we have not made use of
the exact structure on E at this point. Let us do this now, and consider an exact sequence
e = [x ↪→ y ↠ z] in E. Then there is a canonical morphism in Stadd(E) given by

cofib[h(x)→ h(y)]→ h(z).

48In fact, it has all limits and colimits, but we shall not use this now.
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Denote the cofibre of this morphism in Stadd(E) by E(e) and let Ac(E) ⊆ Stadd(E) be the
smallest stable subcategory of Stadd(E) containing Ac(E). Then define St(E) as the Verdier
quotient Stadd(E)/Ac(E). By the universal property of Verdier quotients, we find that

Funex(St(E),D)→ Funex(Stadd(E),D)→ Funπ(E,D)

is fully faithful and has image those additive functors E→ D which send exact sequences to
fibre sequences; indeed, an exact functor Stadd(E)→ D lies in the image of the first functor if
and only if it vanishes on objects of the form E(e). This in turn is equivalent to the statement
that its restriction to E along h sends exact sequences to fibre sequences as claimed. Exercise:
Such functors are precisely the exact functors from E to D.

It follows that E 7→ St(E) is a left adjoint of the inclusion Catst∞ ⊆ Catex∞. I will not
prove the remaining claims in the lectures, but see e.g. [SW25, Thm. 3.13] or the following
remark. □

5.63. Remark An alternative route to St(E) goes as follows, see [NW25] for details: Consider
the ∞-category Funlex(Eop, Sp≥0) of left exact Sp≥0-valued presheaves on E. Left exact here
means that exact squares in E are sent to pullback squares in Sp≥0. Since exact squares in E

are pushout squares, it follows that the representable presheaves are left exact, so there is a
tautological Yoneda embedding E→ Funlex(Eop,Sp≥0). Now, one can show that this category
is prestable, that is, it is pointed, admits finite colimits, the suspension functor is fully faithful,
and all morphisms x→ Σy in Funlex(Eop, Sp≥0) admit a fibre f → xmaking the fibre sequence

f → x → Σy also a cofibre sequence. Define then S̃t(E) = colimΣ Funlex(Eop, Sp≥0); this is
often called the Spanier–Whitehead stabilization of a prestable ∞-category. In particular,
this is stable, and by the fully faithfulness of Σ, the functor Funlex(Eop,Sp≥0) → S̃t(E) is

again fully faithful. One also writes S̃t(E)≥0 := Funlex(Eop, Sp≥0). One then also obtains that
for all stable D, the functors

Funex(S̃t(E),D)→ Funrex(S̃t(E)≥0,D)→ Funex(E,D)

are equivalences. In particular, St(E) ≃ S̃t(E). Under this equivalence, St(E)≥0 is the smallest
subcategory of St(E) closed under finite colimits and containing the Yoneda image E.

5.64. Remark One can characterize the essential image of Stadd(−) : Catπ∞ → Catst∞ as
those stable ∞-categories that admit a bounded weight structure and the essential image
of St(−) : Catex∞ → Catst∞ as those which admit a bounded heart structure. We will not really
need any of these notions at this point, and will hence refrain from explaining this structure;
see [Sau23, SW25] for definitions and discussions.

5.65. Remark It follows that an exact ∞-category E actually has two canonical K-theories,
namely that of E and that of its stabilization St(E). What we know so far is that there is
a canonical comparison functor K(E) → K(St(E)) induced by the exact functor E → St(E)
which is the unit of the adjunction from Proposition 5.62. We will argue that this comparison
map is an equivalence in Theorem 5.68.

The notion of resolving functors of exact ∞-categories also has implications for the stabi-
lization:

5.66. Proposition Let i : A → E be an (op) resolving functor of exact ∞-categories. Then
St(A)→ St(E) is an equivalence.
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Proof. We will only indicate why the result is true, for one formal proof, see [Sau23, Lemma
2.7] or Remark 5.67. By Yoneda and adjunction, it suffices to show that for all stable D, the
map

i∗ : Funex(E,D)→ Funex(A,D)

is an equivalence. If i is resolving, there is at most one extension of an exact functor F : A→ D

to an exact functor F̂ : E→ D: Indeed, given z ∈ E, there exists an exact sequence x ↪→ y ↠ z
with x, y ∈ A, so we must have

F̂ z = cofib(F̂ x→ F̂ y) = cofib(Fx→ Fy).

We might try to define F̂ via this formula49, and once we see that this yields a well-defined
and exact functor, this construction defines an inverse of i∗. Let us at least indicate why this
the putative value of F̂ on an object z ∈ E does not depend on the choice of an exact sequence
resolving z. To that end, let x′ ↪→ y′ ↠ z be another exact sequence. Then let us consider
the diagram

w x 0

y ×z y′ y z

where the right hand square is exact in E and the left hand square is defined to be a pullback.
Observe then that the map y×z y′ → y has fibre equivalent to x′ and is hence a projection in
A. Since exact functors preserve pullbacks along projections, we deduce that the square

F (w) F (x)

F (y ×z y′) F (y)

is a pullback and hence a pushout as D is stable. As a result, the induced map on vertical
cofibres is an equivalence. The same argument applies to the square with x→ y replaced by
x′ → y′, showing the “independence” of F̂ on the choice of a resolution. Let us also show
that the “resulting” functor F̂ is exact. To that end, consider an exact sequence x ↪→ y ↠ z
in E and pick x′ ↪→ y′ ↠ z with x′, y′ ∈ A. We obtain a diagram

x′ x′ 0

x×y y′ y′ z

x y z

in which each row and column is an exact sequence and all terms appearing except for x, y
are objects of A. Using the “uniqueness” of F̂ , we may compute F̂ of the lower sequence by
applying F to the upper part of the diagram and then passing to vertical cofibres. But since
F is exact, it sends the upper horizontal sequences to cofibre sequences, and so the claim
follows from the fact that cofibres of cofibre sequences are again cofibre sequences. □

5.67. Remark Let A ⊆ E be an exact full subcategory. This inclusion is called left-special if
for every projection x ↠ a with x ∈ E and a ∈ A, there exists a map b→ x with b ∈ A such
that the composite b→ x→ a is a projection in A. In [SW25, Theorem 1.2] it is shown that

49It turns out that this formula is in hindsight the formula for the left Kan extension – the problem is only
that it is not a priori clear that the left Kan extension exists if D is stable (and e.g. only has finite colimits).
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left-special inclusions A ⊆ E induce fully faithful functors St(A) ⊆ St(E) on stabilizations. A
resolving functor is left special: given a projection x→ a with a ∈ A, we can pick b↠ x with
b ∈ B. Then b → x → a is again a projection in E, and part of the definition of a resolving
functor says that if c → b → a is the associated exact sequence, then c ∈ A, so b → a is
indeed a projection in A. We deduce that if i : A → E is resolving, then St(A) → St(E) is
fully faithful. But it is also essentially surjective: Indeed, for this, we only need to show that
E lies in the essential image, since it generates St(E) as a stable category. But by definition
of resolving functors, for each x ∈ E there is an exact sequence a→ b→ x with a, b ∈ A. By
construction, we then see that there is a fibre sequence in St(E) given by h(a)→ h(b)→ h(x),
and the former two lie in St(A), showing that every object in E lies in the essential image of
the inclusion St(A) ⊆ St(E). This gives another proof of Proposition 5.66.

5.68.Theorem (Stable Comparison) For any exact∞-category E, the canonical map K(E)→
K(St(E)) is an equivalence.

Proof. Let us use the following notions for an object x ∈ St(E), see [SW25, Def. 5.1].

- We say that x admits a length 0 resolution by E if x is in the essential image of the
Yoneda embedding h : E ⊆ St(E).

- For n ≥ 0, we say that x admits a length n+1 resolution by E if there exists a cofibre
sequence in St(E) as follows z → h(y)→ x where z admits a length n resolution by E.

We note that objects which admit a length n-resolution are contained in St(E)≥0. We write
St(E)n for the full subcategory of St(E)(≥0) on objects which admit a length n resolution by
E.

We will show the following results about St(E)n on the exercise sheet.

(a) We have St(E)n ⊆ St(E)n+1, and
(a) St(E)n is closed under extensions in St(E).

In particular, it follows that St(E)n is canonically an exact∞-category: The inclusions/projections
are those maps in St(E) whose cofibre/fibre are again contained in St(E)n. Next, we show:

(1) We have St(E)≥0 =
⋃
n St(E)n.

(2) The inclusion functor St(E)n ⊆ St(E)n+1 is resolving.
(3) The inclusion Ωn(St(E)≥0) ⊆ Ωn+1St(E)≥0 is op-resolving.

For the statement of (3), we use the fact that St(E)≥0 is prestable, in particular, that its
suspension functor is fully faithful: This indeed implies ΩnSt(E)≥0 = ΩnΩΣ(St(E)≥0) ⊆
Ωn+1St(E)≥0. Now, to see (1), it suffices to know that the collection of objects which admit
a finite length resolution by E is closed under finite colimits in St(E)≥0 and contains E. The
latter is clear as E = St(E)0. For the former, it suffices to show closure under direct sums
and under cofibres. For direct sums this follows immediately by induction, and for cofibres
we argue as follows. Suppose x → y → z is a cofibre sequence in St(E)≥0 such that x and y
have finite length resolutions, we may assume that both x and y have a length n resolution.
Pick h(b)→ y such that its fibre f has a resolution of length n− 1 and consider the diagram

c h(b) z

x y z
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Then c is an extension of x and f , both of which have a length n resolution, so it follows
from the closure under extensions that c also has a length n resolution. The upper cofibre
sequence then shows that z has a resolution of length n+ 1.

To see (2), we need to show that for every object x ∈ St(E)n+1, there exists a surjection
in St(E)n+1 of the form a → x with a ∈ St(E)n. But by definition, there is a map h(y) → x
whose fibre is in St(E)n ⊆ St(E)n+1, and h(y) ∈ St(E)0 ⊆ St(E)n. Moreover, we need to show
that for every exact sequence x→ y → z in St(E)n+1 with y ∈ St(E)n, then also x ∈ St(E)n.
This will also appear on the exercise sheet.

For now, we leave (3) unproven (we will give a different argument for its implications to this
proof later). Note however, that by the fact that St(E) is the Spanier–Whitehead stabilization
of St(E)≥0, we find that for all x ∈ St(E), there exists k ≥ 0 such that Σkx ∈ St(E)≥0; i.e.
St(E) =

⋃
nΩ

n(St(E)≥0). Now we obtain the following. The maps

K(E) ≃ K(St(E)0)
≃−→ K(St(E)n)

are equivalences for all n ≥ 0 by the resolution theorem together with part (2) above. Using
that K-theory commutes with filtered colimits, we find that K(E)→ K(St(E)≥0) is an equiv-
alence. Similarly, we then also obtain from (3) and the what we have observed above, that
the maps

K(St(E)≥0)→ colim
n

K(ΩnSt(E)≥0)→ K(St(E))

are equivalences. This is the statement of which we also give a separate proof, see ??. □

Having now settled the relation between K-theory of exact ∞-categories and their stable
∞-categories, we now stick to properties ofK-theory of stable∞-categories. The first relevant
result is the stable analog of the abelian localization Theorem 5.55. To formulate it, we make
the following definition.

5.69. Definition A bifibre sequence

C→ D→ E

of stable∞-categories is called a Verdier sequence. Such a Verdier sequence is called left/right
split, if both functors admit left/right adjoints. It is called split if both functors admit both
left and right adjoints.

5.70. Remark That C → D → E is a Verdier sequence is hence equivalent to the condition
that C → D is fully faithful and that the resulting functor D/C → E is an equivalence. In
particular, the functor D→ E in a Verdier sequence is essentially surjective.

Left/right split Verdier sequences are also called semi-orthogonal sequences in the litera-
ture (or equivalently, t-structures on D whose connective and coconnective parts are stable
subcategories). Split Verdier sequences are then also called orthogonal decompositions and
are also equivalent to stable recollements (the notion of recollements exists in the non-stable
context, but simplifies stably to split Verdier sequences).

This implies that a right split Verdier sequence is equivalently given by a functor p : D→ E

which admits a fully faithful right adjoint r, and denoting by C the kernel of p, the sequence

C→ D→ E

turns out to be a right split Verdier sequence; see Proposition 5.76 for the argument that
C→ D has a right adjoint in this situation. The same results hold true for left split and split
Verdier sequences. See e.g. [CDH+25, Appendix A] for a discussion of these things.
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5.71. Theorem (Localization theorem) K(−) : Catst∞ → Sp is localizing, i.e. it sends Verdier
sequences to fibre sequences of spectra.

The proof of the localization theorem will proceed in two steps; first we prove the following
additivity theorem.

5.72. Theorem (Additivity theorem) K(−) : Catst∞ → Sp is additive, i.e. sends split Verdier
sequences to fibre sequences of spectra.

Proof. We wish to show that for a split Verdier sequence C→ D→ E, the resulting sequence

K(C)→ K(D)→ K(E)

is a fibre sequence of spectra. Note that since D → E is a localisation, any adjoint is fully
faithful. That is, the composite E → D → E is an equivalence. It follows that the map
K(D) → K(E) also admits a splitting. Moreover, all K-theory spectra are connective, by
definition of K-theory. Since Ω∞ is conservative on connective spectra, it follows that it is
sufficient to show that the sequence of underlying anima

K(C)→ K(D)→ K(E)

is a fibre sequence in anima.
Now, we show that p : D → E is a bicartesian fibration. Indeed, first, we recall that a

morphism d→ d′ in D is p-cocartesian if and only if for all z ∈ D, the square

mapD(d
′, z) mapD(d, z)

mapE(pd
′, pz) mapE(pd, pz)

is a pullback. Since p admits a left adjoint, say l, the lower map identifies with mapD(lpd
′, z)→

mapD(lpd, z) and under this identification, the square becomes the one obtained from

lpd lpd′

d d′

by applying the functor mapD(−, z); here, the vertical maps are the counit of the adjunction
(l, p). By Yoneda, we deduce that d → d′ is p-cocartesian if and only if this square is a
pushout in D. In particular, it follows that the collection of p-cocartesian edges is closed
under pullbacks. Now let pd→ e be a morphism in E and consider the pushout square

lpd le

d d′

First, we note that pd→ pd′ is the pushout of plpd→ ple, as p preserves pushouts. But since
p is a localization, l is fully faithful and hence pl = idE. Hence, d → d′ is a lift of pd → e.
Moreover, we claim that d → d′ is p-cocartesian which follows from the fact that under the
equivalence pd ≃ e, the left vertical map in the above pushout is the counit lpd → d. Now,
since p also admits a (fully faithful) right adjoint, applying the same arguments to pop, we
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find that p is a bicartesian fibration. We will now show that this implies that the induced
functor

Span(p) : Span(D)→ Span(E)

is a cocartesian fibration. The canonical equivalence Span(−) ≃ Span(−)op then implies that
it is also a cartesian fibration. Indeed, we claim that a morphism in Span(D) is Span(p)-
cocartesian if and only if it is given by a span

y
f←− x g−→ z

where f is p-cartesian and g is p-cocartesian. We show that such spans are Span(p)-cocartesian;
this is enough for our purposes. To that end, suppose given diagram

py′

py py′′

px pz pz′

representing a 2-simplex in Span(E), in particular, the square appearing in the middle is a
pullback, and the solid part of the diagram

y′

y y′′

x z z′
f g

to see that the span appearing in the lower left part of this diagram is Span(p)-cocartesian,
we need to show that there are essentially unique dashed arrows making the middle square
a pullback, and such that p applied to this diagram is the upper solid diagram. Now, since
f is p-cartesian, there exists an essentially unique y′ → y lying over py′ → py making the
composite with f the given map y′ → x. Since the collection of p-cocartesian morphisms
are closed under pullbacks, we know that the map y′ → y′′ (if it exists) is p-cocartesian over
py′ → py′′, so let us simply choose such a p-cocartesian lift. Then the dashed arrow y′′ → z
again exists essentially uniquely with the property that its composition with y′ → y′′ is the
given map y′ → z′ and that its image under p is the given map py′′ → pz. Similarly, there
is an essentially unique map y′′ → z whose image under p is the given map py′′ → pz and
whose composite with y′ → y′′ is the composite y′ → y → z. It remains to note that the so
constructed square is a pushout. To that end, consider the map of squares induced by the
counit of the adjunction (l, p):

y′ y′′

lpy′ lpy′′

y z

lpy lpz
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The front face is a pullback since l preserves pullbacks, likewise the bottom and top horizontal
faces are pullbacks since y′ → y′′ and y → z are p-cocartesian. It follows that the back face
is also a pushout as desired.

Next, we need to show that given a morphism α in Span(E) from p(y) to e, then there
exists a Span(p)-cocartesian morphism in Span(D) form y to z lying over α. To that end,
write α as a span

p(y)
f̄←− e′ ḡ−→ e

Since p is a cartesian fibration, we can find a p-cartesian morphism f : x → y lying over f̄ .
Since p is cocartesian, we can then find a p-cocartesian morphism g : x→ z lying over ḡ.

We then obtain a cartesian diagram of ∞-categories

Span(C) Span(D)

∗ Span(E)0

in which the right vertical map is a bicartesian fibration. To see that the square is cartesian,
we can use the Segal space model for the span categories given by the Q-construction. We then
appeal to the exercise Sheet on which we show that bicartesian fibrations, like Span(D) →
Span(E) are realization fibrations, i.e. that the square

|Span(C)| |Span(D)|

∗ |Span(E)|

is again cartesian. The claim then follows from the fact that K(−) = Ω|Span(−)| and that Ω
preserves pullbacks. □

5.73. Remark We note that we have in fact shown that the functor |Span(−)| : Catst∞ → Sp≥0

is additive.

5.74. Remark We also note that the adjoints in a split Verdier sequence induce maps on
K-theory. Therefore, for a split Verdier sequence

C→ D→ E

there is a canonical equivalence

K(D) ≃ K(C)⊕K(E).

The prototypical example of a split Verdier sequence is the sequence

C→ Ar(C)
t−→ C

where the first functor sends an object x to the morphism x → 0. The left functor, sending
x ∈ C to the unique arrow x → 0, admits a splitting by taking the source s of a morphism.
We deduce that the source-and-target functor (s, t) : Ar(C)→ C× C induces an equivalence

(s, t)∗ : K(Ar(C))
≃−→ K(C)⊕K(C).

It follows that the endofunctor of Ar(C) sending a morphism f : x→ y to the zero morphism
0: x → y induces the identity on K-theory. Therefore, the effect of cofib: Ar(C) → C,
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sending f : x → y to cofib(f), on K-theory, is the same as that of the functor taking f to
y ⊕ Σy = cofib(0: x → y). This gives another proof of the result we have seen earlier that
for any exact sequence x → y → z in C, there is the equality [y] = [x] + [z] ∈ K0(C). The
same arguments apply for |Span(−)| in place of K(−), as we have only used the additivity
theorem.

5.75. Remark In fact, the sequence C→ Ar(C)→ C is not only the prototypical split Verdier
sequence; one can show that it is the universal one in the following sense. Let C → D → E

be a split Verdier sequence. Then there exists a (cartesian) square

D Ar(C)

E C

whose induced map on vertical fibres is the identity functor of C; that is, any split Verdier
sequnce is pulled back from the universal split Verdier sequence C→ Ar(C)→ C.

5.76. Proposition The functor |Span(−)| : Catst∞ → Sp≥0 sends left or right split Verdier
sequences to fibre sequences. In particular, K(−) takes left or right split Verdier sequences to
fibre sequences.

Proof. We prove the right split case. The left split case follows similarly or by passing to
opposite categories. So let as suppose that

C D E
i p

s r

be a right split Verdier sequence, that is r and s are right adjoint to p and i. We first explain
the relation between r and s. To that end, consider the unit map id→ rp as endofunctor of
D. The triangle equalities imply that this map is an equivalence after applying p. Therefore,
its fibre takes values in the kernel of p, and hence in the image of i. Since i is fully faithful,
we may think of fib(id→ rp) as a functor D→ C which we claim to be right adjoint to i, and
hence equivalent to s. Indeed, we need to show that there is a canonical equivalence

mapD(ix, y) ≃ mapC(ix, fib(y → rpy)).

but this follows immediately from the fibre sequence fib(y → rpy)→ y → rpy and the fact that
mapD(ix, rpy) = mapE(pix, py) = 0 since pi = 0. Consequently, we deduce that there is an
exact sequence of functors is→ idD → rp. Since |Span(−)| takes values in CGrp(An) ≃ Sp≥0

(recall that π0|Span(−)| ∼= {∗}), we may consider the maps

|Span(C)| ⊕ |Span(E)| |Span(D)|
(i,r)

(s,p)

and show that both composites are equivalent to the respective identities. The composite
(s, p) ◦ (i, s) is an equivalence since si = idC, pr = idE, and pi = 0 = sr. The other composite
is, by construction, the map induced on |Span(−)| by the functor D → D sending d to
is(d)⊕ pr(d). This functor is the composite of

D→ Ar(D)
cofib−−−→ D
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where the first functor takes d to the arrow 0: Ωpr(d) → is(d). Now, there is also the
functor D→ Ar(D) sending d to ∂ : Ωpr(d)→ is(d), the boundary map in the fibre sequence
is(d) → d → pr(d). The composite with the cofibre functor is then by construction the
identity of D. Now, in Remark 5.74 we have argued that both of the two functors D→ Ar(D)
just described induce the same map on |Span(−)|, since the argument there only used the
additivity theorem which holds for |Span(−)|. It follows that the composite of these two
functors with cofib: Ar(D) → D also induce the same map, showing that the map under
investigation is equivalent to the identity of |Span(D) as needed. □

Proof of Localization theorem. We recall what we need to prove: Given a bifibre sequence
C→ D→ E in Catst∞, we need to show that the induced sequence K(C)→ K(D)→ K(E) is a
fibre sequence of spectra. Since D→ E is essentially surjective, we deduce from Corollary 5.36
that K0(D)→ K0(E) is surjective. As in the proof of the additivity theorem, it hence suffices
to show that K(C) → K(D) → K(E) is a fibre sequence in anima. Since the loop functor
preserves fibre sequences, this is implied by the statement that

|Span(C)| → |Span(D)| → |Span(E)|

is a fibre sequence; this is the statement we will establish. To do so, we will argue as follows

(1) We show that there exists an X and a fibre sequence |Span(C)| → |Span(D)| → X,50

(2) and we show that there is a canonical equivalence X→ |Span(E)|.
To begin, for a category I, denote by FunC(I,D) the full subcategory of Fun(I,D) consisting
of those functors F such that cofib(Fi→ Fj) ∈ C for all morphisms i→ j in I. Since C is a
full stable subcategory of D, FunC(I,D) is a full stable subcategory of Fun(I,D). Consider
then the simplicial anima X given by [n] 7→ |Span(FunC([n],D))| and Y the simplicial stable
category given by [n] 7→ FunC([n],D) so that X = |Span(Y )|; note that this is indeed well-
defined since for all f : [n] → [m], the induced map Fun([m],D) → Fun([n],D) restricts to a
map FunC([m],D) → FunC([n],D). As discussed in Exercise 2 Sheet 4, we have a pullback
diagram

const(X1) dec(X)

const(X0) X

d0 d0

Now note that Y0 = D and that there is a pullback diagram

Y1 Ar(D)

C D

cofib

i.e. X1 consists of arrows d → d′ whose cofibre lies in c. Under this identification, the map
d0 : X1 → X0 is the map sending d→ d′ to d′. Since cofib differs from the target projection by
an automorphism of Ar(D), we find from Remark 5.74 that there is a split Verdier sequence

D→ Y1 → C

50This in fact holds true more generally for any full stable subcategory inclusion C → D.
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where the first map takes d to the arrow idd and a splitting of Y1 → C is given by sending c
to Ωc→ 0. By the Additivity Theorem 5.72 and Remark 5.73, we see that

|Span(D)| → |Span(Y1)| → |Span(C)|
is a split fibre sequence and hence that the two maps D × C → Y1 just described induce an
equivalence on K-theory. As a result, we find that d0 : X1 → X0 identifies with the map
|Span(D)| ⊕ |Span(C)| → |Span(D)| given by the projection on the first factor. Since the
constant functor preserve pullbacks, we obtain a pullback diagram

const|Span(C)| dec(X)

0 X

d0

Now we will show that the map dec(X) → X is a cartesian transformation. It then follows
from Exercise 1 Sheet 4 that the above square remains cartesian after applying geometric
realization, and using that |dec(X)| ≃ X0 ≃ |Span(D)|, we obtain

|Span(C)| |Span(D)|

0 colim
[n]∈∆op

|Span(FunC([n],D))|

so the term in the right lower corner serves property (1) of the object X we alluded to in
the beginning of the proof. To see that the transformation is indeed cartesian, note that
dec(Y ) → Y is concretely, in simplicial level n, given by the functor that forgets the first
morphism of sequence of composable morphisms. This has a fully faithful right adjoint given
by the map sending x0 → · · · → xn to x0 = x0 → · · · → xn, and hence participates in a right
split Verdier sequence (see Remark 5.70)

C→ dec(Y )n = FunC([1 + n],D)
d0−→ Yn = FunC([n],D).

Indeed, note that the kernel of d0 consists of diagram b0 → b1 → · · · → b1+n with bi = 0
for all i ≥ 1, so only b0 remains as part of the datum, and b0 lies in C since by definition of
FunC([1 + n],D) the cofibre of b0 → b1, which is Σb0 lies in C and C is a stable subcategory.
Now for f : [m]→ [n], we get a commutative diagram

|Span(C)| dec(X)n Xn

|Span(C)| dec(X)m Xm

d0

dec(f) f

d0

whose horizontal sequences are fibre sequences by Proposition 5.76 and whose left vertical
map is readily checked to be induced by the identity functor of C. Since all objects appearing
in the right had square are groups, this suffices to deduce that the right square is cartesian.
Hence, d0 : dec(X)→ X is a cartesian transformation and we obtain a fibre sequence

|Span(C)| → |Span(D)| → colim
[n]∈∆op

|Span(FunC([n],D))| = X

as explained above. It remains to construct an appropriate equivalence X ≃ |Span(E)|. To
that end, we note that the map D → E induces a functor Fun([−],D) → Fun([−],E) which
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restricts to a map FunC([−],D) → Fun(|[−]|,E). But since for all n ∈ ∆, we have |[n]| ≃ ∗,
this provides a map FunC([−],D)→ const(E). The theorem is proven once we show that the
induced map

colim
[n]∈∆op

|Span(FunC([n],D))| → |Span(E)|

is an equivalence. We recall that

|Span(−)| = colim
[k]∈∆op

ιQk(−).

and therefore need to analyze Qk(Fun
C([n],D). To that end, denote by Tk the subcategory

of Tw([k]) given by

(0 ≤ 0)← (0 ≤ 1)→ (1 ≤ 1)← (1 ≤ 2)→ · · · ← (k − 1 ≤ k)→ (k ≤ k)
and note that Qk(−) ≃ Fun(Tk,−) and that Tk is a finite poset. As a consequence, we find a
canonical equivalence

Qk(Fun
C([n],D) ≃ FunQk(C)([n],Qk(D))

where we note that Qk(C) → Qk(D) is again a full inclusion of a stable subcategory. Now
the fact that Tn is a finite poset (in particular a strongly finite category as in [CDH+23, Def.
6.5.1]) implies that the sequence

Qk(C)→ Qk(D)→ Qk(E)

is again a Verdier sequence (it is clear that it is a fibre sequence, but not clear that it is a
cofibre sequence and this is where the finiteness of Tk enters), see e.g. [CDH+23, Prop. 6.5.6].
Therefore, if we can show that for all Verdier sequences C→ D→ E, the map

colim
[n]∈∆op

ιFunC([n],D)→ ιE

is an equivalence, we deduce

colim
[n]∈∆op

|Span(FunC([n],D)| = colim
([n],[k])∈(∆op)2

ιQk(Fun
C([n],D))

≃ colim
([n],[k])∈(∆op)2

ιFunQk(C)([n],Qk(D))

≃ colim
[k]∈∆op

ιQk(E)

≃ |Span(E)|
as desired. It hence now remains to show that for all Verdier sequences C→ D→ E, the map
|ιFunC([−],D)| → ιE is an equivalence. To do that, we note that there is a pullback diagram

FunC([n],D) Fun([n],D)

Fun([n], ιE) Fun([n],E)

natural in [n] ∈ ∆op; this in fact uses that C is closed under retracts in D. Since ι preserves
pullback squares, we deduce that there is a canonical equivalence

ιFunC([n],D) ≃ ιFun([n],D×E ιE)

natural in [n]. Hence, the simplicial anima [n] 7→ FunC([n],D) is the complete Segal anima
associated to the∞-category D×E ιE. The task is then to show that the functor D×E ιE→ ιE
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is an equivalence after geometric realization, or equivalently, is a localization. At this point, we
use a result of Cisinski’s [Cis19, Cor. 7.6.9]which implies that certain well-behaved localization
functors X→ Y have the property that the map X×YιY→ ιY is again a localization. Moreover,
the Verdier projection D → E is such a well-behaved localization. This finishes the proof of
the theorem. □

5.77. Theorem (Cofinality) If C0 → C is a dense inclusion of stable ∞-categories, then
K(C0)→ K(C) induces an isomorphism on positive homotopy groups and an injection on π0.

Proof. The π0-part of the statement was proven in Exercise 4 Sheet 8. Now, similarly as in
the proof of the localization theorem, we claim that the sequence

|Span(C0)| → |Span(C)| → colim
[n]∈∆op

|Span(FunC0([n],C))|

indeed, we mentioned explicitly that this part of the proof of the localization theorem only
uses that C0 ⊆ C is a full stable subcategory, not that it is closed under retracts (which kernels
of functors always are). Moreover, we have

|Span(FunC0([n],C))| = colim
[k]∈∆op

ιQkFun
C0([n],C) ≃ colim

[k]∈∆op
ιFunQk(C0)([n],Qk(C)).

Now for a general full inclusion C0 ⊆ C of stable categories ιFunC0([−],C) is the complete
Segal anima associated to the subcategory C⟨C0⟩ of C consisting of all maps whose cofibre
lies in C0. If C0 ⊆ C is closed under retracts, this is equivalent to the condition that the map
becomes an equivalence in C/C0, this is what we have used in the proof of the localization
theorem, but if this is not the case, the we can pick x ∈ C \ C0 and consider the map 0→ x.
Its cofibre is x which is not contained in C0, but it becomes an equivalence in C/C0 = 0. An
adaption of Cisinski’s argument shows that |C⟨C0⟩| is discrete with π0 equal to K0(C)/K0(C0).
Hence we need to compute

colim
[k]∈∆op

K0(Qk(C))/K0(Qk(C0))

which, similarly to an earlier argument we made can be identified with the edge-wise subdi-
vision of the Bar construction of the group A = K0(C)/K0(C0), and is hence equivalent to
BA. We therefore find a fibre sequence

|Span(C0)| → |Span(C)| → BA

and the theorem is proven. □

5.78. Remark Suppose E0 ⊆ E is an extension closed and dense subcategory of an exact ∞-
category E. Then the inclusion is also left special, see Remark 5.67 for the definition: Given
a projection x→ a with a ∈ E0 and fibre z ∈ E, we may choose z′ ∈ E such that z ⊕ z′ ∈ E0.
Then we have a fibre sequence

z ⊕ z′ → x⊕ z′ → a

so that x⊕ z′ ∈ E0 as E0 is closed under extensions in E, and the projection x⊕ z′ → x gives
the desired property of left-special inclusions.

As a consequence, the induced map St(E0) → St(E) is fully faithful and we claim that
it is again dense. For this, we observe that in general for an inclusion A ⊆ B of a stable
subcategory is dense if and only if B/A = 0 (Exercise). But since St(−) is a left adjoint, we
find that St(E)/St(E0) ≃ St(E/E0) and one checks directly that 0 is a quotient of the exact
inclusion E0 → E: Any exact functor F : E → E′ which vanishes on E0 in fact vanishes. As
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a result of the stable comparison theorem and the above cofinality theorem, we deduce that
K(E0)→ K(E) also induces an isomorphism on positive homotopy groups.

Let us discuss some examples of Verdier sequences to which the localization theorem may
be applied.

5.79. Example First, we record that a sequence C → D → E is a Verdier sequence of small
stable ∞-categories if and only if

(1) D→ E is essentially surjective,
(2) the right adjoint of the functor Ind(D)→ Ind(E) is fully faithful,
(3) the kernel of the functor Ind(D)→ Ind(E) is compactly generated.

Now if R ∈ CAlg(Sp) ans S ⊆ π∗(R) is a subset consisting of homogenous elements, then

Mod(R)→ Mod(R[S−1])

has a fully faithful right adjoint: Indeed, the right adjoint is given by the restriction of scalars
functor. Since this preserves colimits, the claim reduces to the statement that the counit
map R[S−1]⊗R R[S−1] → R[S−1] is an equivalence. This holds true since the action of S is
invertible on R[S−1], and in fact holds more generally in case R ∈ Alg(Sp) and S satisfies
the left/right Ore condition. Moreover, the kernel of Mod(R) → Mod(R[S−1]) turns out to
be generated by the collection of compact R-modules cofib(s) where s ranges through the
elements of S. Denoting by Perf ′(R[S−1]) the essential image of Perf(R) → Perf(R[S−1])
(which turns out to be a dense subcategory of Perf(R[S−1])) we obtain a Verdier sequence

Perf(R on S)→ Perf(R)→ Perf ′(R[S−1])

where the first term is simply defined to be the kernel of the latter map. See [CDH+25,
Appendix A.4] for a thorough discussion of examples of these kind. As a result of the cofinality
theorem, we find that the sequence

K(Perf(R on S))→ K(Perf(R))→ K(Perf(R[S−1])

is a fibre sequence of anima.

5.80. Remark We record also that if R is an ordinary ring, then Perf(R) is equivalent to
St(Proj(R)). As a consequence of the stable comparison theorem and the the + = Q theorem,
we deduce that K(Perf(R)) ≃ Knaive(R) ≃ K(R).

To make efficient use of the above fibre sequence in K-theory associated to a localisation
R → R[S−1], we need a better understanding of K(Perf(R on S)). This is where the notion
of t-structures enters, which we now briefly discuss.

5.81. Definition A t-structure on a stable ∞-category C consists of a pair of subcategories
C≥0 (the connective objects) and C≤0 (the coconnective objects) such that

(1) C≥0 and C≤0 are closed under extensions in C; C≥0 is closed under colimits and C≤0

is closed under limits.
(2) For every object X ∈ C there is a fibre sequence Y → X → Z with ΩY ∈ C≥0 and

Z ∈ C≤0.
(3) We have π0mapC(A,B) = 0 whenever ΩA ∈ C≥0 and B ∈ C≤0.

For n ∈ Z, we write C≥n for the full subcategory of objects X which satisfy ΩnX ∈ C≥0,
and similarly, C≤n for the full subcategory of objects X which satisfy ΩnX ∈ C≤0. We write
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C♡ = C≥0 ∩ C≤0 and call it the heart of the t-structure. A t-structure is called bounded if for
every object X, there exists an n ≥ 0 such that X ∈ C≤n ∩ C≥−n.

5.82. Remark Given a t-structure (C≥0,C≤0) on a stable ∞-category C, it follows that the
mapping anima MapC(A,B) = {∗} for all A ∈ C≥1 and B ∈ C≤0. Indeed, this is equivalent
to showing that for all n ≥ 0, we have πn(MapC(A,B)) = 0, and we have πn(MapC(A,B)) =
π0(Map(A,ΩnB) which indeed vanishes as ΩnB ∈ C≤0 since B is and C≤0 is closed under
limits in C. As a consequence, we compute that for B ∈ C≤0 and X ∈ C with fibre sequence
as in Definition 5.81 Item 3 we have a fibre sequence

MapC(Z,B)→ MapC(X,B)→ MapC(Y,B)

and as just argued, MapC(Y,B) is contractible. This shows that the association X 7→ Z
refines to a left adjoint τ≤0 : C → C≤0 of the inclusion. Similarly, X 7→ Y refines to a right
adjoint τ≥0 : C→ C≥0 of the inclusion.

It follows from the above mapping anima computations that C♡ is in fact a 1-category, that
is for X,Y ∈ C♡, we have that all components of the anima MapC(X,Y ) are contractible.
Moreover, C♡ turns out to be an abelian category (Exercise: construct kernels and cokernels
in C♡ and show that C♡ is indeed abelian).

5.83. Example The category Sp of spectra has a t-structure with Sp≥0 = {X ∈ Sp | πn(X) =
0 for n < 0} and Sp≤0 = {X ∈ Sp | πn(X) = 0 for n > 0}. Indeed, the same argument as in
anima show that the inclusions Sp≥0,Sp≤0 ⊆ Sp have the required adjoints, and it is readily
checked that this implies the t-structure. This t-structure is not bounded: π∗(S) is non-trivial
in infinitely many degrees (we will learn about this in Topology V next term).

5.84. Example Let R ∈ Alg(Sp) be a ring spectrum. There exists a t-structure on Mod(R)
such that Mod(R)≤0 = {M ∈ Mod(R) | πn(M) = 0 for n > 0}; here we do not give the
forgetful functor Mod(R) → Sp a name (but use it implicitly to form the homotopy groups
of R-modules). Moreover, Mod(R)≥0 is the smallest colimit closed subcategory of Mod(R)
containing R. If the underlying spectrum of R is connective, then Mod(R)≥0 are precisely
the R-modules whose underlying spectrum is connective. If R is coconnective, then R ∈
Mod(R)♡, and vice versa.

5.85. Proposition Let R be an ordinary ring. Then the t-structure on Mod(R) restricts to
a t-structure on Perf(R) if and only if R is regular coherent. This t-structure is moreover
bounded.

Proof. The fact that the t-structure (if it exists) is bounded follows from the fact that a perfect
R-module only has finitely many non-trivial homotopy groups. Now, for the t-structure to
restrict, we show that τ≤0 : Mod(R)→ Mod(R) preserves perfect modules and show that this
implies that the left orthogonal to Perf(R)≤0 = Perf(R) ∩Mod(R)≤0 is indeed Perf(R)≥1 =
Perf(R) ∩Mod(R)≥1. The non-trivial part is to see that if M ∈ Perf(R) is left orthogonal
to Perf(R)≤0, then M ∈ Mod(R)≥1, i.e. that M is also left orthogonal to Mod(R)≤0. So let
N ∈ Mod(R)≤0. Since Mod(R) = Ind(Perf(R)), we can write N = colimi∈I Ni where Ni is
perfect for all i ∈ I and I is filtered. Then we find that N = τ≤0N = colimi∈I τ≤0Ni, since τ≤0

is a left adjoint and filtered colimits commute with homotopy groups and hence the displayed
colimit is already coconnective. By assumption τ≤0Ni lies in Perf(R)≤0. Since M is perfect,
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we find

MapR(M,N) = MapR(M, colim
i∈I

τ≤0Ni) = colim
i∈I

MapR(M, τ≤0Ni) = 0

as needed. Next we argue that τ≤0 : Mod(R)→ Mod(R) restricts to Perf(R) if and only if for
all M ∈ Perf(R)≥0, i.e. perfect R-modules which are connective, we have π0(M) ∈ Perf(R).
Again, for the non-trivial direction, assume that M is perfect. Then it has only finitely many
non-trivial homotopy groups, and the assumption implies that its lowest homotopy group,
say πk(M) is perfect. But then there is a fibre sequence τ≥k+1M → M → πk(M), showing
that also τ≥k+1M is perfect, and hence that πk+1(M) is perfect by a repetition of the same
argument as form M . Inductively, we deduce that all homotopy groups of M are perfect, and
since Perf(R) is a stable subcategory of Mod(R), this implies that τ≤0(M) is also perfect.

Finally, we show that R is regular coherent if and only if for all connective and perfect
R-modules M , we have π0(M) is perfect, i.e. the t-structure restricts to Perf(R) by what
we have just argued. If R is regular coherent, then any finitely presented module admits
a finite resolution by finite projective R-modules. In particular, any finitely presented R-
module is perfect, and π0(M) is finitely presented if M is perfect and connective. For the
converse direction, we first show that R is coherent, that is, that all finitely generated ideals
I of R are finitely presented. To that end choose a finite generating set F of I and consider
the map f : RF → R with image I. Then cofib(f) is perfect and connective and moreover
π0cofib(f) = R/I. Therefore, R/I is perfect (by assumption) and hence we learn from the
fibre sequence I → R → R/I that I is also perfect and hence finitely presented as needed.
It remains to show that any finitely presented module admits a finite resolution by finite
projective R-modules (i.e. is perfect). For this, it suffices to show that submodules of finite
free R-modules are perfect: Pick a finite presentation F → F ′ →M → 0, then F ′ and kernel
F ′ → M are perfect, and hence so if M . This is shown by an induction over the rank of the
finite free module, finishing the proof of the proposition. □

The following theorem due to Barwick [Bar15] is of great importance in algebraic K-theory.

5.86. Theorem (Theorem of the heart) Let C be a stable ∞-category with a bounded t-
structure. Then the map St(C♡)→ C induces an equivalence K(C♡)→ K(C).

Let us discuss some applications of these results. First, we observe:

5.87. Proposition Let R be a regular coherent ring and S ⊆ π∗(R) a multiplicative subset
satisfying the Ore condition (e.g. S is central or even R is commutative). Then the t-structure
on Perf(R) restricts to a bounded t-structure on Perf(R on S) whose heart consists of the
ordinary abelian category of discrete finitely presented R-modules which vanish upon applying
the exact functor −⊗R R[S−1].

Proof. Since the localization R[S−1] is flat, we see that the extension of scalars functor
Perf(R) → Perf(R[S−1]) is t-exact, that is, it preserves (co)connective objects and com-
mutes with the truncation functors. This implies that the truncation functors on Perf(R)
preserve Perf(R on S) as claimed. The description of the heart is immediate. □

As a consequence, we get the special case of Quillen’s localization sequence Theorem 5.55
for the inclusion Modfp(R on S) ⊆ Modfp(R) whose Serre quotient is Modfp(R[S−1]).

5.88. Corollary Let R be regular coherent and S ⊆ π∗(R) a multiplicative subset satisfying
the Ore condition. Then we have a fibre sequence

K(Modfp(R on S))→ K(R)→ K(R[S−1]).
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As we discussed, the fibre sequence for Dedekind domains Theorem 5.56 is a consequence
of this fibre sequence, by another application of the dévissage theorem to the fibre term
K(Modfp(R on S)).

Let us do another application of the theorem of the heart concerning the Blumberg–Mandell
fibre sequence.

5.89. Corollary There is a fibre sequence

K(Z)→ K(ku)→ K(KU)

where ku and KU are the connective and periodic complex K-theory spectra.

Proof. First, we recall that π∗(ku) = Z[β] with |β| = 2 and that KU = ku[ 1β ]. Hence, we

obtain a fibre sequence

K(Perf(ku on β))→ K(ku)→ K(KU).

Now we claim that the standard t-structure on Mod(ku) restricts to a bounded t-structure
on Perf(ku on β). To see this, we first show that the t-structure restricts to Perf(ku), and
to do that, we again have only to show that π0(M) is a perfect ku-module for every perfect
and connective ku-module M . Since M is perfect, π0(M) is a finitely presented π0(ku) =
Z-module, and so it suffices to argue that Z is a perfect ku-module: Then also Z/n =
cofib(·n : Z→ Z) is perfect, and so all finitely generated abelian groups (which are just finite
sums of Z’s and Z/n’s) are also perfect. But then we see that Z = cofib(β : Σ2ku→ ku) which
is therefore perfect. Now we claim that this t-structure restricts to a bounded t-structure on
Perf(ku on β) whose heart consists of the perfect ku-modules with homotopy concentrated in

degree 0; this category is just the category Modfg(Z), so the regularity of Z and Corollary 5.43
give the result. □

Finally, we want to show that K-theory is polynomially homotopy invariant on regular
rings. Here, we will combine two computations:

5.90. Corollary Let R be a regular coherent ring. Then there is a fibre sequence

K(R)→ K(R[t])→ K(R[t±1])

where the first map is induced by the restriction of scalars functor Perf(R)→ Perf(R[t]).

Proof. As a special case of Corollary 5.88 above, we have a fibre sequence

K(Modfp(R[t] on t))→ K(R[t])→ K(R[t±1]).

Moreover, Corollary 5.51 gives an equivalenceG(R[t]/t)→ K(Modfp(R[t] on t)). ButR[t]/t =
R and since R is regular coherent, we also have that K(R) → G(R) is an equivalence by
Corollary 5.43. Unravelling the functors that induce these equivalences, we indeed find that
K(R)→ K(R[t]) is induced by the restriction of scalars functor as claimed. □

5.91. Remark We also note that the map K0(R[t])→ K0(R[t
±1]) is surjective, so the above

fibre sequence is one in spectra, not only in connective spectra: Since R is regular coherent,
so is R[t] and since K0(R[t

±1]) is generated by the classes of finite projectives, it suffices to
see that such modules can be lifted to finitely presented R[t]-modules. To that end, write
the finite projective as cokernel of a map between free modules. Such a map is represented
by a matrix with finitely many entries in R[t±1]. Hence, multiplying by a suitable power of t
(which is an isomorphism over R[t±1]), we can arrange a representing matrix to take values
in R[t] and hence obtain a finitely presented module lifting the given finite projective one.
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Next, we will consider the following situation. Note that there are evident ring maps
R[t]→ R[t±1]← R[t−1]. We may then consider the pullback diagram

Perf(P1
R) Perf(R[t])

Perf(R[t−1]) Perf(R[t±1])

where the left upper term is just a name for the pullback in Catst∞. If R is commutative,
however, then this term is indeed perfect complexes on the scheme P1

R. Now, the right vertical
map in this square is a Verdier projection as also used in Corollary 5.90. It is a general fact
that therefore also the pulled back functor Perf(P1

R) → Perf(R) is a Verdier projection. It
follows that the square of K-theory spectra

K(Perf(P1
R)) K(R[t])

K(R[t−1]) K(R[t±1])

is a pullback square. We therefore want to investigate K(P1
R) in more detail.

5.92. Proposition There is a right split Verdier sequence

Perf(R)→ Perf(P1
R)→ Perf(R)

where the first functor is induced by the canonical functor p : Perf(R) → Perf(P1
R), and

the right adjoint to the projection Perf(P1
R) → Perf(R) is given by the canonical functor

p composed with the functor −⊗ZO(−1), where O(−1) is the triple (Z[t−1],Z[t], ·t : Z[t±1]→
Z[t±1]) ∈ Perf(P1

Z).

Proof. Let us denote by O the object (Z[t−1],Z[t], id : Z[t±1] → Z[t±1]); this is the tensor
unit in the symmetric monoidal stable ∞-category Perf(P1

Z).
51 First, we need to argue that

Perf(R) → Perf(P1
R) is fully faithful. For this, it suffices to show fully faithfulness on the

generator R ∈ Perf(R). But then we see that the endomorphism spectrum in Perf(P1
R)

of the image of R is given by the pullback of the cospan R[t−1] → R[t±1] ← R[t], which
is R as needed. Second, we need to show that ⟨O,O(−1)⟩ = Perf(P1

R) and lastly, that
mapPerf(P1)(O,O(−1)) = 0, but again, this mapping spectrum is given by the pullback of the

cospan R[t−1]→ R[t±1]
·t←− R[t] which indeed vanishes as needed. Finally, we use that O(−1)

is invertible in Perf(P1
Z), so − ⊗Z O(−1) is an equivalence, and hence the right adjoint we

argue about is indeed fully faithful. □

5.93.Corollary The two functors p and p(−)⊗ZO(−1) induce an equivalence K(R)⊕K(R)→
K(P1

R). Under this equivalence, the canonical map K(P1
R)→ K(R[t]) becomes the composite

of the diagonal K(R)⊕K(R)→ K(R) with the canonical map K(R)→ K(R[t]).

Proof. The first claim follows immediately from the above analysis and the second claim from
the fact that the image of O(−1) along Perf(P1

Z)→ Perf(Z[t]) is just Z[t]. □

51The functors used to define Perf(P1
R) are symmetric monoidal if R is commutative, so the pullback carries

a canonical induced symmetric monoidal structure.
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From this, we deduce that the square

K(Perf(P1
R)) K(R[t])

K(R[t−1]) K(R[t±1])

admits a map from and to the constant square at K(R), and is hence equivalent to this
constant square plus a square of the form

K(R) NK+(R)

NK−(R) K̄(R[t±1])

where NK+(R) = cofib[K(R) → K(R[t])] and NK−(R) = cofib[K(R) → K(R[t−1])] are
the cofibres of the canonical maps. The above argument then shows that the resulting maps
K(R)→ NK±(R) are the zero map. We deduce the fundamental theorem of K-theory:

5.94. Corollary For any ring, we have K(R[t±1]) ≃ K(R)⊕ΣK(R)⊕NK+(R)⊕NK−(R).

Moreover:

5.95. Corollary Let R be regular coherent. Then NK(R) = 0, or in other words, the map
K(R)→ K(R[t]) is an equivalence, and there is a canonical equivalence K(R[t±1]) ≃ K(R)⊕
ΣK(R).

Proof. In this case, we deduce from Corollary 5.90 that the cofibre of the lower horizontal map
in the above square is canonically equivalent to ΣK(R). But by the fundamental theorem,
the cofibre is ΣK(R)⊕NK+(R) and being more careful with the precise maps, one deduces
that NK+(R) = 0 as claimed. □
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